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Abstract. Traditionally, the use of Bayes factors has required the specifica-

tion of proper prior distributions on model parameters implicit to both null

and alternative hypotheses. In this paper, I describe an approach to defining

Bayes factors based on modeling test statistics. Because the distributions of

test statistics do not depend on unknown model parameters, this approach

eliminates the subjectivity normally associated with the definition of Bayes

factors. For standard test statistics, including the χ2, F , t and z statistics, the

values of Bayes factors that result from this approach can be simply expressed

in closed form.

1. Introduction

Bayes factors are the cornerstone of Bayesian hypothesis testing (e.g., Jeffreys

1961). In contrast to classical p values, the value of a Bayes factor has a direct in-

terpretation in terms of whether or not a hypothesis is true: It represents the factor

by which data modify the prior odds of two hypotheses to give the posterior odds.

Unfortunately, the values of Bayes factors often depend critically on the prior den-

sities assigned to the model parameters inherent to null and alternative hypotheses.

In addition, the calculation of Bayes factors usually involves the evaluation of high

dimensional integrals. For this reason, Bayes factors are employed less frequently

than they otherwise would be, although progress in developing methodology to

reduce both the computational burden and the subjectivity of Bayes factors is pro-

ceeding rapidly. The volume of research on such Bayes factors makes it impractical
1
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to review here, but readers interested in a comprehensive review of this methodol-

ogy can consult Kass and Raftery (1995). Readers more interested in controversies

and comparisons of p values to Bayes factors might consult, among many other

references, Edwards et al (1963), Berger and Sellke (1989), or Sellke, Bayarri, and

Berger (2001).

In this article, I propose a new approach towards defining Bayes factors. This

approach eliminates much of the subjectivity associated with their definition and

drastically simplifies their computation. This simplification is achieved by model-

ing the sampling distributions of test statistics instead of the sampling distribution

of individual observations. Because the distribution of a test statistic under the

null hypothesis is completely specified–that is, it does not depend on unknown

parameters–no prior specification on model parameters is required. In cases for

which the alternative hypothesis is only vaguely specified, this approach often leads

to a convenient and parsimonious parameterization of the distribution of the test

statistic under a reasonably broad class of alternative models. In such cases, I

show that minimum bounds on the Bayes factor in favor of the null hypotheses

can be determined by maximizing over the marginal likelihood of the data under

the alternative hypothesis (see also, Good 1986, who explores maximization over

Bayes factors in more traditional settings). For standard test statistics, including

χ2, F, t and z statistics, maximization of the marginal likelihood under the alter-

native hypothesis can often be achieved analytically, leading to simple, closed form

expressions for the resulting Bayes factors.
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2. χ2 Tests Associated with Multinomial Data

2.1. Simple Null Hypotheses versus Vague Alternatives. To illustrate the

essential ideas behind the use of test statistics to compute Bayes factors, consider

Pearson’s χ2 goodness-of-fit statistic for testing a simple null hypothesis versus the

negation of that hypothesis. Under the assumption of multinomial sampling, sup-

pose that data have been binned into K predefined cells, and let n′ = (n1, . . . , nK)

denote the observed frequencies in the K cells. Let p′ = (p1, . . . , pK) denote the

probabilities of these cells under the null hypothesis, and let q′ = (q1, . . . , qK) de-

note the multinomial probability vector under the alternative hypothesis. Define

µ = {pi − qi} and assume that the elements of µ, {µi}, are Op(1/
√

n), n =
∑

ni.

From a practical perspective, this is the case of primary interest, as it is neither fea-

sible to detect smaller deviations from the null as the sample size becomes large, nor

is it difficult to detect larger deviations. Let κ denote the vector with components

µi/
√

pi and define

V′ =
(

n1 − np1√
np1

, . . . ,
nK − npK√

npK

)
.

Under these assumptions, Lemma 1 follows from standard results on the distribution

of quadratic forms. Here and for the remainder of the article, I adopt notation

similar to that used in Rao (1973). Proofs of lemmas follow directly from theorems

and results provided there.

Lemma 1. Under the alternative hypothesis, the asymptotic distribution of x ≡

V′V is χ2
K−1(nκ′κ), a χ2 distribution on K − 1 degrees of freedom and non-

centrality parameter nκ′κ.
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Of course, under the null hypothesis, the asymptotic distribution of x is χ2
K−1,

a central χ2 distribution on K − 1 degrees of freedom.

Because the distribution of x under the null hypothesis is completely specified, we

need only specify a prior distribution on the non-centrality parameter that appears

in the χ2 distribution under the alternative hypothesis in order to calculate a Bayes

factor between the two models.

To motivate a model for the non-centrality parameter nκ′κ, assume that under

the alternative hypothesis the probability vector q is drawn from a Dirichlet distri-

bution with parameter cp. That is, the prior mean of q is p and the variance of

the components of q is inversely proportional to c + 1. To maintain the constraint

that µ = Op(1/
√

n), assume also that c = O(n). This assumption follows the gen-

eral philosophy espoused by Jeffreys (1961) and subsequently used by many others,

including, in this context, Albert (1990). According to it, the value of a model pa-

rameter in a vaguely specified alternative model is assumed to be distributed near

its value under the null hypothesis for the simple reason that the null hypothesis

would not be subjected to testing if it was not at least considered plausible.

Under these assumptions, the asymptotic distribution of κ′κ is specified in

Lemma 2.

Lemma 2. For large c, the distribution of (1 + c)κ′κ is χ2
K−1, a central χ2 distri-

bution on K − 1 degrees of freedom.

This result does not rely heavily on the assumption that the true probability

vector q is drawn from a Dirichlet distribution; that assumption is made only to

facilitate the conceptual modeling of q in what follows. Other distributions that
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approach a multivariate normal distribution for large values of their parameter and

having the same first and second order moments lead to the same result.

With these facts in hand, the strategy for defining a Bayes factor in this context

can be summarized as follows. The null hypothesis that the multinomial proba-

bility is equal to p has been operationalized by recasting the null hypothesis as

the statement that x is distributed as a χ2 random variable on K − 1 degrees of

freedom. The alternative hypothesis that the multinomial probability vector is not

equal to p has been recast as the statement that x is distributed as a non-central

χ2 random variable on K − 1 degrees of freedom. Finally, by assuming that the

distribution of the multinomial probability vector under the alternative hypothesis

is distributed around p with a Dirichlet distribution, the asymptotic distribution

of the non-centrality parameter of the alternative’s non-central χ2 distribution is

found to be distributed as a scaled version of a central χ2 distribution.

The probability density function of a non-central χ2
s(λ) random variable y can

be expressed

f(y | s, λ) = e−λ/2
∞∑

r=0

1
r!Γ(r + s/2)

(
λ

2

)r (
1
2

)r+s/2

yr+s/2−1e−y/2.

It follows that the conjugate prior density for the non-centrality parameter is a

gamma distribution. If z ≡ nκ′κ, then according to the prior model assumed for

the non-centrality parameter under the alternative hypothesis, the marginal density

of the χ2 statistic x, say ma(x), under the alternative hypothesis can be expressed
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in closed form as

ma(x) =
∫ ∞

0

f(x |K − 1, z) g

(
z

∣∣∣∣ K − 1
2

,
1 + c

2n

)
dz

= g

[
x

∣∣∣∣ K − 1
2

,
1 + c

2(1 + c + n)

]
.(1)

Here, the function g(· | a, b) represents a gamma density with shape parameter a

and scale parameter b.

Coupled with the simple form of the marginal density of x under the null

hypothesis–a chi-squared probability density function–we can use (1) to express

the Bayes factor between the null and alternative hypothesis as

Bayes factor =
g

(
x

∣∣ K−1
2 , 1

2

)
g

[
x

∣∣∣ K−1
2 , 1+c

2(1+c+n)

]
=

(
1 + c + n

1 + c

)K−1
2

exp
[

−nx

2(1 + c + n)

]
(2)

Recalling that c = O(n) and letting c = αn− 1, α > 1/n, (2) can be re-written as

(3) Bayes factor =
(

α + 1
α

)K−1
2

exp
[

−x

2(α + 1)

]

When the chi-squared statistic x exceeds its expectation under the null hypoth-

esis (i.e., when x > K − 1), the value of α that maximizes the marginal density

of the data under the alternative hypothesis (or equivalently, the value of α that

minimizes of the Bayes factor of M0 to Ma) is

(4) α =
K − 1

x− (K − 1)
.



BAYES FACTORS BASED ON TEST STATISTICS 7

At this value of α, the Bayes factor equals

(5)
(

x

K − 1

)K−1
2

exp
[
−x− (K − 1)

2

]
.

This value represents a lower bound on the weight of evidence in favor of the null

hypotheses and is explored further in Section 2.2. When x < K − 1, the minimum

value of the Bayes factor is 1, and this value is achieved by letting α become large

(i.e., when the alternative hypothesis concentrates its mass near p).

2.2. Composite Hypotheses. Next, consider a null hypothesis in which the multi-

nomial cell probabilities represent functions of a s-dimensional parameter vector

θ, where s < K − 1. That is, assume that the multinomial cell probabilities

p1(θ), . . . , pK(θ) are specified functions of a parameter vector θ, and let θ̂ denote

the maximum likelihood estimate of θ (or another efficient estimator of θ in the

sense specified in Cramér (1946)). Suppose also that each pk(θ) possesses continu-

ous first partial derivatives with respect to each of the components of θ and define

M to be the (K × s) matrix of rank s having elements {p−1/2
i ∂pi/∂θj}. Let θ0

denote the point in the s-dimensional space of θ for which the Kullback-Leibler in-

formation between p(θ) and q, the true value of the multinomial probability vector

under the alternative hypothesis, is maximized. The Kullback-Leibler information

is defined at any value of θ by

E
[
log

(
p(θ)
q

)]
=

∫
log

(
p(θ)
q

)
q dq,
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where the dependence on data has been suppressed in both densities. If V is now

redefined to represent the vector

V′ =

n1 − p1(θ̂)√
np1(θ̂)

, . . . ,
nK − pK(θ̂)√

npK(θ̂)

 ,

and µ is redefined to be the vector with components {pi(θ0)−qi}, then the following

lemma applies.

Lemma 3. Under the alternative hypothesis, the asymptotic distribution of V′V

is χ2
K−s−1(nκ′κ), where κ is the vector having components µi/

√
pi(θ0).

The distribution of V′V under the null hypothesis is χ2
K−s−1.

Specifying an appropriate alternative model for the deviation of q from p(θ0) is

somewhat more complicated here than it was in the case of a simple null hypothesis.

The difficulty arises from the constraint that q be “close” to a probability vector

satisfying the functional constraints p(θ). However, a natural way to view this

problem is to assume that both q and p(θ0) are generated jointly from the following

sampling procedure. First, a point p∗(θ) satisfying the constraints imposed by the

null model is selected at random. (The prior distribution from which the given

value of θ is drawn is arbitrary and does not affect the asymptotic results that

follow.) Under the alternative hypothesis, the true multinomial probability q is

then drawn from a Dirichlet distribution with parameter cp∗(θ). For large c, the

error term µ can be written

µ
a=

(
I−MJ−1M′) (q− p∗) = q− p(θ0)
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where

p(θ0)
a= p∗ + MJ−1M′(q− p∗)

and J = M′M. Here, a= denotes asymptotic equivalence. Given this alternative

model for the generation of q, we obtain the following result.

Lemma 4. Under the assumptions stated above, if κ denotes the vector with com-

ponents µi/
√

pi(θ0), the asymptotic distribution of (1 + c)κ′κ is χ2
K−s−1.

Noting that p(θ0) maximizes the Kullback-Leibler information to q among prob-

ability vectors satisfying the given constraints, the proofs of these lemmas follow

directly from results given in Rao (1973).

The similarity of Lemmas 3 and 4 to Lemmas 1 and 2 implies that the results of

Section 2.1 can be applied to composite hypotheses by simply substituting (K−s−1)

for (K − 1) in (1-5) (when x > K − s− 1).

In current statistical practice, the value of Pearson’s χ2 statistic is used to cal-

culate a p value against a null hypothesis. Usually, the null hypothesis is rejected

when a p value less than 0.05 is observed. It is therefore of some interest to examine

the probability that the null hypothesis is true (as calculated from (5)) when the p

value of the test just achieves its critical value of 0.05. Figure 1 displays this prob-

ability as a function of the degrees of freedom of the χ2 test statistic. Because the

marginal density of the data under the alternative hypothesis has been maximized

with respect to the parameter α, the probabilities displayed in Figure 1 represent

the minimum probability that the null hypothesis is true when the alternative hy-

pothesis takes the form specified above. For one degree of freedom, the probability
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Figure 1. The posterior probability that the null hypothesis is
true when Pearson’s χ2 statistic is observed to equal its .95 quantile
under the null and equal prior probability is assigned to the null
and alternative hypotheses.

that the null is true is 0.32; at 30 degrees of freedom, the probability that the null

is true is 0.23.

The compliment to Figure 1 is provide in Figure 2. In Figure 2, p values of

the χ2 statistics that lead to a 5% probability that the null is true are displayed.

Perhaps not surprisingly, these p-values are substantially smaller than 0.05.
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Figure 2. The p values required of the χ2 test statistic for the
null hypothesis to be true with posterior probability 0.05 when the
prior odds are 1.

2.2.1. A contingency table example. It is interesting to compare the Bayes factor

based on the χ2 statistic, as proposed above, to more traditionally-computed Bayes

factors for the purpose of testing independence of row and column classifications in

contingency tables. Of course, the values of the traditional Bayes factors depend

on the prior densities assumed for the multinomial probability vector under the

null and alternative models. For that reason, we consider Bayes factors based on

only two prior specifications here. Both are based on priors that are approximately
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Blood Group
Site O A B or AB
Pylorus and antrum 104 140 52
Body and fondus 116 117 52
Cardia 28 39 11
Extensive 28 12 8

Table 1. White and Eisenberg’s classification of cancer patients

equivalent to the implicit assumption made on the alternative hypothesis assumed

in the derivation of the Bayes factors above. The first, based on Albert (1990),

uses a prior density for the multinomial probability under the alternative model

that is “concentrated about the ‘independence surface’.” The second, based on

methodology described in Good and Crook (1987), employs a mixed Dirichlet prior

with hyperparameter values determined from an empirical Bayes approach.

The particular contingency table considered here is taken from White and Eisen-

berg (1959) and was also considered in Albert (1990). The data represent a cross-

classification on cancer site and blood type for 707 stomach cancer patients. The

data appear in Table 1.

Pearson’s χ2 statistic for the test of independence for White and Eisenberg’s

data is 12.65 on 6 degrees of freedom. Based on (5), the Bayes factor on the odds

for the independence model against a general alternative is 0.337.

The prior models underlying the computation of the Bayes factors proposed in

Albert (1990) and Good and Crook (1987) are rather intricate, as are the methods

for numerically evaluating them. For this reason, a detailed description of these

methodologies is not presented here. Instead, only those details required for the

replication of results are presented; interested readers should consult the original

articles for more complete accounts.
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The computation of the Bayes factor for independence under Albert’s model re-

quires the specification of a hyperparameter w. Albert recommends a value of 1 for

this hyperparameter; this value corresponds to placing a uniform prior on second

stage Dirichlet distributions for the marginal multinomial probabilities under the

null. Accepting that recommendation, we take w = 1. A second parameter, K, is

used to control the dispersion of the multinomial probabilty vector around the inde-

pendence surface under the alternative model. The minimum Bayes factor against

independence in this formulation can be obtained by minimizing an approximation

to the Bayes factor given in Albert with respect to K. Doing so leads to a Bayes

factor in favor of independence equal to 0.331.

To compute the Bayes factor under Good and Crook’s model assumptions, a

prior density is required on a hyperparameter k0 that determines the degree of

smoothing applied in an empirical Bayes prior density on the row and column

probabilities under the null model. To estimate this probability, Good and Crook

suggest mixing over a log-Cauchy density with lower and upper quartiles given by 10

and 50 divided by the number of rows or columns. Accepting this recommendation,

if the Bayes factor is minimized over the value of a second hyperparameter κ,

and if Good and Crook’s suggestion to assume that the mixing density on the

Dirichlet priors represents a point mass at h(κ), then a mininum Bayes factor in

favor of independence of 0.327 is obtained. This figure agrees well with Bayes factor

obtained using Albert’s prior assumptions, and suggests some degree of robustness

of Bayes factors obtained when this general approach towards specifying vague

alternative models is adopted.
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Both of these Bayes factors also agree well with the Bayes factor based on the

χ2 statistic, suggesting that little information has been lost by modeling the distri-

bution of the test statistic directly.

2.3. Bayes factors between specific hypotheses. The discussion above as-

sumes that the alternative hypothesis has been vaguely specified in the sense that it

represents only the negation of the null. Computing the Bayes factor from compara-

ble test statistics obtained from two well defined hypotheses is also straightforward.

If x0 and x1 represent the values of the test statistic under each model, and f0(·)

and f1(·) represent their sampling densities, then the Bayes factor between the two

hypotheses based on the test statistics is simply

Bayes factor =
f0(x0)
f1(x1)

.

If the test statistics are nominally χ2 on ν0 and ν1 degrees of freedom, then

2 log(Bayes factor) = −x0 + x1 + (ν0 − 2) log(x0)− (ν1 − 2) log(x1)−

(ν0 − ν1) log(2) + 2 log
[
Γ

(ν0

2

)]
− 2 log

[
Γ

(ν1

2

)]
= constant− x0 + x1 + (ν0 − 2) log(x0)− (ν1 − 2) log(x1).(6)

There is an interesting connection between (6) and the BIC criterion. If we

consider the asymptotic case in which both the number of observations and the

degrees of freedom for each model is large, then the term 2 log(x0/x1) is of smaller

order than the remaining terms and so can be ignored. Noting that the expected

value of a χ2 statistic is equal to its degrees of freedom, and assuming that νi ≈ n—

so that log(xi) ≈ log(n)—for large values of x0 and x1, we see that (6) takes
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the approximate form of the (scaled) difference between BIC values for comparing

models M0 and M1. This similarity is even more pronounced when the test statistics

x0 and xa included in this equation represent realizations of deviance statistics

rather than realizations of Pearson’s χ2 statistic.

3. F, t and z tests

Consider now the problem of testing the validity of a linear constraint on a

regression parameter. Adopting notation similar to that used in Rao (1973, page

191), suppose that

y |β, σ2 ∼ N(Xβ, σ2I),

where y is an n × 1 observation vector, β is an r × 1 regression parameter, X is

a n × r matrix of rank r, and σ2 is a scalar variance parameter. Suppose that

under the null hypothesis, H′β = ξ where H is an m × k matrix of rank k whose

range space is contained in the range space of X′. As Rao notes, there then exists

a matrix C such that H = X′XC where the rank of XC is k.

If we define R2
1 by

R2
1 = min(y −X′β)′(y −Xβ),

minimized over all β subject to the condition H′β = ξ, and R2
0 to be the corre-

sponding minimum when β is unconstrained, then under the null hypothesis the

quantity

f =
(R2

1 −R2
0))/k

R2
0/(n− r)

is distributed as Fk,n−r, a central F distribution on (k, n− r) degrees of freedom.

Now suppose that under the alternative hypothesis, β is generated by the fol-

lowing mechanism. First, a value of the regression parameter satisfying the null
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hypothesis is selected. Denote this value by β∗. Next, β is drawn from a r-variate

normal distribution centered on β∗ and having covariance matrix τσ2(X′X)−1.

Again, this is the case of practical interest because values of β not drawn from a

distribution similar to this will either be accepted or rejected with probability close

to 0 or 1 as the number of observations becomes large. Note also that the marginal

variances of the components of β around the point β∗ are typically O(1/n), mak-

ing the deviation of the components of β away from the null hypothesis Op(1/
√

n)

under the alternative.

Under this scheme for generating β under the alternative hypothesis, the distri-

bution of H′β is normally distributed with mean ξ and covariance matrix equal to

τσ2H′(X′X)−1H. Under both the null and alternative hypotheses, the distribution

of R2
1 −R2

0 is χ2
k(λ) where the non-centrality parameter λ is given by

λ = σ−2(H′β − ξ)′(C′X′XC)−1(H′β − ξ).

Under the alternative, it follows that λ/τ is distributed as a χ2
k random variable,

and that the distribution of f given λ has a non-central F distribution with density

function

p(f |λ) =
(

k

m

)k/2

e−λ/2
∞∑

r=0

(
kλ

2m

)r 1
r!

B

(
k

2
+ r,

m

2

)
fr−1+k/2(

1 + k
mf

)r+(k+m)/2
.

In this equation, m = n−r and B(s, t) = Γ(s+ t)/[Γ(s)Γ(t)]. Marginalizing over λ,

it can be shown that the distribution of f/(1 + τ) under the alternative hypothesis

has a central Fk,m distribution.

The marginal maximum likelihood estimate of τ based on the observed value of

f under the alternative hypothesis is τ = f − 1 when f > 1. At this value of τ , the
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marginal density of f is

(7) p(f | τ = f − 1) = B

(
k

2
,
m

2

) (
k

m

)k/2 1(
1 + k

m

)(k+m)/2

1
f

.

Finally, the minimum Bayes factor in favor of the null hypothesis for f > 1 is

(8) Bayes factor =
[ m

k + 1
m
k + f

] k+m
2

f
k
2 .

For large f , the minimum Bayes factor is approximately f−(m/2).

The case k = 1 is of particular interest, as it corresponds to the t-test for a

normal mean when the variance is unknown. In this case, the minimum Bayes

factor against the null reduces to

(9)
(

m + 1
m + f

)m+1
2 √

f

where f = t2.

Figure 3 depicts the minimum posterior probability that the null is true for t-

tests as a function of the degrees of freedom m, assuming prior odds of 1 between

the null and alternative. As m → ∞, the limiting value of this probability at

f = 1.962 is 0.32 , which is consistent with the corresponding χ2 test reported in

the previous section.

The one-sample z statistic can be obtained from (9) by taking the limit as m

becomes large. Taking this limit, we find that the Bayes factor for testing the value

of a normal mean against the alternative that the mean has different value is

(10) Bayes factor =
√

f exp
(
−f − 1

2

)
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Figure 3. The posterior probability that the null hypothesis is
true as a function of the observed f statistic when the numerator
degrees of freedom is 1 (assuming prior odds equal to 1). From
top to bottom, the curves represent the null’s posterior probability
when the degrees of freedom in the denominator are 5, 10, 25, and
500.

This is equivalent to the result given in Section 2 based on a χ2
1 distribution.

4. Extensions to other test statistics

Conclusions from Section 2 can be extended to other χ2 statistics, like the score

test, likelihood ratio test, and Wald’s test, although the motivation for the probabil-

ity models underlying the alternative hypotheses is less natural for those statistics
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than it is for Pearson’s statistic. To see why, consider as an example the score test.

If the efficient score is denoted by V and the information matrix by J, then the

score statistic is V′J−1V. The most direct line of reasoning leading to a “conjugate

hypothesis” under which the distribution of the score statistic has a non-central χ2

distribution is an assumption that the distribution of V under the alternative hy-

pothesis is Gaussian with a non-zero mean, say λ, and covariance matrix J. If

λ is assumed to follow a Gaussian distribution, then the results of Section 2 can

also be extended to the score statistic. However, the specification of an alterna-

tive probability model on the score vector itself, rather than on a parameter in

a data model, seems less intuitive than the specification of a Dirichlet prior on a

multinomial probability vector. Still, the specification of a scaled χ2 distribution

on the noncentrality parameter, with degrees of freedom equal to that of the test

statistic, appears to work well for other χ2 statistics, and makes subsequent anal-

yses tractable. As a “conjugate” alternative, this approach seems to offer many

advantages.

Bayes factors can be defined from test statistics in many small sample settings as

well. Fisher’s exact test provides an interesting case in point. By conditioning on

row and column totals in a 2×2 table, the counts in a contingency table are known

to follow a (central) hypergeometric distribution. When the null hypothesis is false,

the natural alternative model is that that counts follow a non-central hypergeomet-

ric distribution with, say, non-centrality parameter φ. If φ is parameterized so as

to represent the odds ratio, then it is natural to define a class of alternative models

by assuming that log(φ) is drawn from a symmetric distribution centered on 0 with

scale parameter, say, σ. With this definition of the alternative model, it is a simple
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matter to numerically maximize the marginal likelihood of the data with respect

to the scale parameter σ to obtain the Bayes factor of the test. And, of course, the

use of Bayes factors in this context eliminates the necessity of determining which

of several possible tail probabilties are relevant to the calculation of the p value.

Fisher’s tea-tasting experiment (1935) is perhaps the most famous example of the

exact test for independence in contingency tables. In this experiment, a colleague

of Fisher claimed to be able to distinguish whether tea was added to milk or milk

to tea. After being told that four cups of tea had been prepared each way, she

was able to correctly identify three of four cups of each preparation after tasting

them in randomized order. The resulting 2 × 2 table contained entries (3,1,1,3).

The probability of this table according to a central hypergeometric distribution is

.229. The only table that is more extreme is the table (4,0,0,4), corresponding to

all correct identifications. That table has probability .014, leading to a one-sided p

value of .243.

The Bayes factor in favor of the null, when log(φ) is assumed drawn from a

N(0, σ2) distribution and the marginal density of the alternative is maximized with

respect to σ, is .90. The maximum marginal likelihood of the data is achieved when

σ = 1.3. Thus, there is some evidence against the null, but its posterior probability

(assuming equal prior odds) is relatively high, equalling .47.

5. Summary

By modeling the distribution of test statistics directly, Bayes factors can be

computed in many standard problems without the specification of subjective prior

densities. Because the distribution of the test statistic does not involve unknown

parameters, no prior densities are involved in the calculation of the marginal density
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of the data under the null. Alternative models can often be defined in a natural

way as the ”non-central” version of the test statistic’s distribution under the null

hypothesis. Doing so introduces a noncentrality parameter that must be modeled,

but for standard test statistics a conjugate prior density or other convenient prior

density for the noncentrality parameter is often apparent and typically involves a

only single scale parameter. Marginalizing over the noncentrality parameter and

maximizing with respect to the scale parameter leads to the maximum marginal

likelihood estimate of the density of the data under the alternative, which in turn

leads to what might be considered a default Bayes factor.

Bayes factors defined in this way are numerically easy to compute, and require

neither the specification of prior densities on model parameters nor the explicit

specification of alternative models. For normal-theory test statistics, they are ac-

tually easier to compute than p values, and so can be applied routinely to common

testing problems.

The most important aspect of this framework is that it provides practitioners

with an alternative to p values for summarizing evidence against null hypotheses.

Because the value of a Bayes factors represents the modification of the probability

that a hypothesis is true based on test data, the routine use of default Bayes factors

would reduce the confusion that often occurs when p values are reported to the

public.
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