
1. Introduction

1.1. Decision-theoretic inference and evidential inference

Current needs to evaluate evidence over thousands of hypotheses in genomics
and data mining reopen the question of how to quantify the strength of evidence.
Some of the most pronounced di¤erences between inferences made by methods
based on coverage or error frequencies and by other statistical methods occur
in the realm of multiple comparisons, giving new importance to old debates on
the foundations of statistics.
Each of the two main frameworks of statistical inference rests on solid decision-

theoretic foundations. In the most-developed frequentist framework, that of
Neyman and Pearson, the practice of deciding to reject only those hypothe-
ses with valid p-values falling below a �xed signi�cance level strictly controls
the rate of Type I errors. In the most-developed Bayesian framework, that of F.
P. Ramsey (cited in Je¤reys (1948)), de Finetti (1970), and Savage (1954), the
concept of coherent decision-making leads to probability as a measure of belief
in the sense that it increases monotonically with how much the rational decision-
maker would wager on its truth given the available information and a �xed loss
function, prior distribution, and model. The methods of both frameworks �nd
direct applications to problems requiring some degree of automatic decision-
making. For example, the Neyman-Pearson framework provides rules deciding
when a clinical trial is successful or when to stop an unsuccessful trial, and the
Bayes-Ramsey framework enables e-mail �lters to decide which messages are
unwanted.
The methods of these decision-theoretic frameworks have been adapted to

problems requiring reports of the strength of the evidence in the data sup-
porting one hypothesis over another rather than automated decisions to reject
one hypothesis in favor of another. Bayes factors have long been advocated as
measures of the strength of statistical evidence (e.g., Je¤reys (1948); Kass and
Raftery (1995)). Accordingly, Osteyee and Good (1974) called the logarithm of
the Bayes factor the weight of evidence for one hypothesis over another. This
seems reasonable since the Bayes factor is equal to the posterior odds divided
by the prior odds if the two hypotheses considered are mutually exclusive and
jointly exhaustive.
Likewise, p-values from methods designed to control the rate of Type I (false

positive) errors are routinely interpreted in the scienti�c literature as measures
of evidence favoring alternative hypotheses over null hypotheses. Although the
comparison of a p-value to a previously �xed level of signi�cance to make a deci-
sion on rejecting a null hypothesis is common in clinical trials, in less regulated
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�elds, the p-value is more often interpreted as a measure of evidence or support
that a sample of data provides about a statistical hypothesis. Wright (1992)
put it simply, "The smaller the P -value, the stronger the evidence against the
null hypothesis." This use by Fisher of the p-value to quantify the degree of
consistency of the data with the null hypothesis is called signi�cance testing to
sharply distinguish it from its use by Neyman to decide whether to reject the
null hypothesis at a previously �xed Type I error rate (Cox, 1977). Among the
examples of signi�cance testing to be found in scienti�c disciplines as diverse
as biomedicine, basic neuroscience, and physics may be found the common but
theoretically unjusti�ed practice of taking a su¢ ciently high p-value as evidence
that there is "no e¤ect" (Spicer and Francisco, 1997; Pasterkamp et al., 2003)
and many statisticians�interpretation of a su¢ ciently a low p-value as strong
evidence against the null hypothesis; e.g., Fraser et al. (2004). Even the critics
of signi�cance testing acknowledge that it serves its purpose in some situations
(Spjøtvoll, 1977; Goodman and Royall, 1988).
In spite of the uncontested value of methods of the Neyman-Pearson and

Bayes-Ramsey frameworks in the decision-making roles for which they are opti-
mal, their application to quantifying the strength of statistical evidence remains
controversial. For neither the p-value nor the Bayes factor quali�es as a general
measure of evidence if the strength of statistical evidence in a particular data
set for one given hypothesis over another under a given a family of probability
distributions must meet both of these necessary criteria:

� the coherence condition, that strength of evidence is always consistent
with the rules of logic;

� the objectivity condition, that the strength of evidence does not vary from
one researcher to another.

Schervish (1996) and Lavine and Schervish (1999) point out that a candidate
measure of the strength of evidence is illogical or incoherent if it can assign more
support to a hypothesis than to a hypothesis it implies; candidates that cannot
do so are considered coherent. For example, an incoherent candidate might say
an observation of parents�eye colors supports the hypothesis that their child will
have brown eyes over the hypothesis that she will have either blue eyes or brown
eyes. The incoherence of the p-value as a measure of support is apparent when
comparing one-sided and two-sided p-values under the same model (Schervish,
1996; Royall, Statistical Evidence: A Likelihood Paradigm, 1997a). For a scalar
parameter �, say the null hypothesis � = 0 is tested with � 6= 0 and � > 0 as
the alternative hypotheses. If the p-value of the two-sided test is twice that of
the one-sided test, then signi�cance testing would attach more evidence to the
hypothesis that � > 0 than to the hypothesis that � 6= 0 relative to the same
null hypothesis; this is incoherent since � > 0 ) � 6= 0. If the signi�cance level
lies between the two p-values, then � > 0 but not � 6= 0 would be accepted over
the null hypothesis.
That the Bayes factor is likewise incoherent as a measure of evidence (Lavine

and Schervish, 1999) is evident in the case of nested hypotheses. Consider the
observation x of a discrete random variable X. Based on prior predictive mass
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functions P1 and P2 corresponding to hypotheses � = 0 and �1 < � < 1,
respectively, the Bayes factor

P1 (X = x) =P2 (X = x)

will be greater than 1 if the maximum likelihood estimate is su¢ ciently close
to 0 and if the prior density of � is nonzero for all � 2 (�1; 1). In this case, the
logarithm of the Bayes factor as the weight of evidence would attribute more
support to � = 0 than to �1 < � < 1, and yet � = 0) �1 < � < 1.
Even so, the Bayes factor may instead be used to compute a ratio of posterior

probabilities of the hypotheses in question, and such a ratio would satisfy the
coherence condition (Lavine and Schervish, 1999). In the strict Bayes-Ramsey
framework, however, since the prior probability of each hypothesis varies from
one decision maker to another, the ratio of posterior probabilities violates the
objectivity condition of a measure of evidence. Much of applied Bayesian analy-
sis is less strict, and the e¤ort required to elicit prior distributions from experts
to adequately re�ect their levels of uncertainty about parameter values is rarely
made, perhaps because it is justi�able in very few practical situations. The less
subjective practice of automatically assigning 50% prior probability to each hy-
pothesis sacri�ces coherence by reducing the ratio of posterior probabilities to
the Bayes factor. The Bayes factor also requires a prior distribution if either hy-
pothesis corresponds to more than one parameter value or if there is a nuisance
parameter. Although default priors are much more convenient than their frankly
subjective counterparts and seem to o¤er more objectivity (Berger, 2004), there
is no consensus on how to select one of the many available rules for generating
default priors, and yet small-sample inference can be sensitive to such selection
(Kass and Wasserman, 1996). Further, the automatic generation of priors intro-
duces a problem of interpretation since it implicitly rejects probability as a level
of belief as de�ned by Bayes-Ramsey decision theory unless the default priors in
fact approximate someone�s levels of belief. Consequently, a default prior often
serves to determine what a hypothetical individual whose beliefs were encoded
by that prior would believe upon observing the data (Bernardo, 1997). If a prior
is instead chosen in order to derive credible sets that match con�dence inter-
vals, using Bayesian calculations for frequentist inference, objectivity is again
purchased at the price of coherence.
By contrast, the likelihood ratio satis�es both of the necessary conditions for

a measure of the strength of statistical evidence; it is coherent in the above sense
(Lavine and Schervish, 1999) without resorting to levels of belief, hypothetical
or otherwise. In a philosophical study of the foundations of statistical theory,
I. Hacking proposed the law of likelihood in terms of data d and hypotheses h
and i: "d supports h better than i whenever the likelihood ratio of h to i given d
exceeds 1" (Hacking, 1965, p. 71). The law is usually restated as follows. At each
value of �, the p-dimensional parameter, f (�; �) denotes the probability density
or probability mass function of the random n-tuple X of which the �xed n-tuple
of observations x is a realization. L (�) = L (�;x) = f (�; �) ; a function on the
paramter space �; is called the likelihood function. In the evidential framework
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of statistical inference, the likelihood ratio L
�
�0;x

�
=L
�
�00;x

�
is the strength

of the statistical evidence in X = x that supports � = �0 over � = �00, and if
L
�
�0;x

�
=L
�
�00;x

�
> 1, there is more evidence for � = �0 than for � = �00 (Royall,

On the probability of observing misleading statistical evidence, 2000b). Both
hypotheses under consideration are simple in the sense that each corresponds
to a single parameter value, a point in �. In this case of two simple hypotheses,
the Bayes factor weight of evidence (Section 1.1) equals log

�
L
�
�0;x

�
=L
�
�00;x

��
,

which Edwards (1992) called the support for � = �0 over � = �00.
With the likelihood ratio as the measure of the strength of evidence, the

analog of a Type I error rate plays key roles in sample size planning and in the
choice of a method of eliminating nuisance parameters without itself quantify-
ing the strength of evidence (Strug et al., 2007; Blume, How often likelihood
ratios are misleading in sequential trials, 2008b). This analog, the probability of
observing misleading evidence, is de�ned as follows. Consider the strength of ev-
idence in a random sample of data drawn from a reference distribution and the
strength of evidence in that sample against the reference distribution in favor of
the hypothesis that the generating distribution is in a given set of other distri-
butions. The observation of misleading evidence is the event that the strength
of evidence for the false hypothesis exceeds a �xed threshold representing the
boundary between weaker and stronger evidence, and the probability of observ-
ing misleading evidence is the relative frequency of observations of misleading
evidence under in�nitely repeated sampling.
Ideally, the probability of observing misleading evidence would converge to

0 with increasing sample size. In other words, more information would increase
the reliability of inferences made from the available evidence, at least asymptot-
ically. Hypothesis testing at a �xed Type I error rate fails in this regard since
measuring the strength of evidence by the p-value results in the same proba-
bility of observing misleading evidence for all samples sizes. Consequently, the
result of a conventional hypothesis test, whether expressed as a p-value or as
an accept/reject decision, cannot be evidentially interpreted without taking the
sample size into consideration, which is why a given p-value is thought to pro-
vide stronger evidence against the null hypothesis if the sample is small than
if it is large (Royall, Statistical Evidence: A Likelihood Paradigm, 1997a). For
example, as Goodman and Royall (1988) explain, a p-value of 0.05 in many cases
corresponds to a likelihood ratio indicating overwhelming evidence in favor of
the null hypothesis for su¢ ciently large samples.

1.2. Evidence for a composite hypothesis

The classical law of likelihood is insu¢ cient for statistical inference if either
hypothesis is composite, that is, if it corresponds to multiple parameter values,
each an element of some �0 � �. This insu¢ ciently threatens to severely limit
the scope of likelihood-evidential inference since most statistical tests in com-
mon use compare a simple null hypothesis � = �00 to a composite alternative
hypothesis such as � > �00 or � 6= �00.
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In some areas of application, subject-matter knowledge can inform the re-
placement of a composite hypothesis � 2 �0 with a simple hypothesis � = �0

in order to compute L
�
�0
�
=L
�
�00
�
as the strength of statistical evidence. For

example, in linkage analysis, Strug and Hodge (2006) set �0 to the smallest plau-
sible value of the recombination fraction � for the purpose of using likelihood
ratios instead of p-values that employ composite alternative hypotheses. In other
domains, any selection of a simple hypothesis in place of a composite hypothesis
would be unacceptably arbitrary or subjective. Nonetheless, there may some-
times be advantages in evidential inference to setting �0 to the parameter value
as close as possible to �00 such that

���0 � �00�� remains high enough to be prac-
tically signi�cant; this concept of scienti�c signi�cance was previously applied
to non-evidential gene expression data analyses (Bickel, 2004; Van De Wiel and
Kim, 2007). An alternative is to set �0 to some conventional value, e.g., the
value corresponding to a two-fold expression di¤erence (an expression ratio es-
timate of 1/2 or 2) remains a commonly used threshold with gene expression
studies in spite of its arbitrary nature (Lewin et al., 2006). Comparing the ev-
idential strength of one simple hypothesis to another has the advantage that
P�00

�
L
�
�0
�
=L
�
�00
�
� �

�
, the probability of observing misleading evidence at

level � > 1, is asymptotically bounded by �
�
�
p
2 log �

�
if L is smooth and if p

is �xed, where � is the standard normal cumulative density function, or by 1=�
more universally (Royall, On the probability of observing misleading statistical
evidence, 2000b). In addition, limiting the parameter of interest to one of two
values is convenient when planning the size of a study (Strug et al., 2007).
Nonetheless, the strength of statistical evidence involving a composite hy-

pothesis cannot in general be measured or even approximated by substituting a
simple hypothesis selected prior to observing the data. This can be seen in the
problem of quantifying the strength of evidence favoring the composite hypoth-
esis that �; the mean of a normal distribution of unknown variance, is greater
than �00 to the simple hypothesis that it equals �00: Replacing the standard de-
viation � with b� (�), its value that maximizes the likelihood when the mean is
�; gives the pro�le likelihood Lpro�le (�) = L (�; b� (�)) instead of the likelihood
L (�; �). The use of some �0 > �00 in the simple hypothesis � = �0 as a surro-
gate for the composite hypothesis � > �00 leads to Lpro�le

�
�0
�
=Lpro�le

�
�00
�
=�b� ��0� =b� ��00���n as the approximate strength of statistical evidence for � = �0

over � = �00. No matter what �xed value was chosen for �0, some sample x
may be observed that is su¢ ciently far from typical samples of both �0 and �00

that there is arbitrarily little approximate evidence for either simple hypothe-

sis over the other: 8�>0 lim�=�!1 P
����1� �b� ��0� =b� ��00���n��� < �� = 1. Since

Lpro�le
�
�0
�
=Lpro�le

�
�00
�
approaches the value representing no evidence as ���00

increases with �; �0, and �00 �xed, it completely fails to approximate the strength
of statistical evidence for � > �0 over � = �00.
A general solution to the composite hypothesis problem is implicit in the use

of a likelihood interval or more general likelihood set. The level-� likelihood

set E (�) consists of all values of � satisfying L (�) � L
�b�� =�, where b� is the



D. R. Bickel/ 6

maximum likelihood estimate. Membership in a likelihood set determines which
parameter values are considered consistent with the data (Barnard, 1967; Hoch

and Blume, 2008). Thus, whenever L
�b�� =L ��00� > � and b� 6= �00, one or more

parameter values in E (�) are considered better supported than � = �00 by the
data, and, for that reason, L

�b�� =L ��00� measures the strength of statistical
evidence for the composite hypotheses � 2 E (�) over the simple hypothesis � =
�00. By the same reasoning, L

�b�� =L ��00� measures the strength of statistical
evidence for the composite hypotheses � 6= �00 over the simple hypothesis � = �00.
A discrepancy between the performance of the likelihood ratio for two �xed

simple hypotheses and the likelihood ratio maximized over a subset of parameter
space including parameter values arbitrarily close to that of a simple hypoth-
esis was uncovered by the example of the multivariate normal family with a
5-dimensional mean as � (Kalb�eisch, 2000). Asymptotically, for any �xed �0

and �00 in � = R5, there is a 2.1% upper bound on P�00
�
L
�
�0
�
=L
�
�00
�
> 8
�
,

the probability of observing misleading evidence at level � = 8 (Royall, On the
probability of observing misleading statistical evidence, 2000b). By contrast,
the probability that the level-8 likelihood set contains �00, assuming it is the
true value of �; is less than 50% (Kalb�eisch, 2000). This means the asymp-
totic probability of observing misleading evidence for � 2 R5n

�
�00
	
over � = �00

exceeds the asymptotic probability of observing misleading evidence for � = �0

over � = �00 by a factor of 25 or more. This malady is not limited to the nor-
mal case, but is symptomatic of inadequate interpretability when a hypothesis
representing practically the entire parameter space is pitted against a simple hy-
pothesis. The universal upper bound on P�00

�
L
�
�0
�
=L
�
�00
�
> 8
�
is 12.5%, more

than a factor of 4 smaller than P�00
�
L
�b�� =L ��00� > 8� = 52:7% in the exam-

ple of p = 5 and conditions under which 2 log
�
L
�b�� =L ��00�� is asymptotically

distributed as �2 with p degrees of freedom.

Given such an asymptotic distribution, L
�b�� =L ��00� does not meet the in-

terpretability condition of Section 1.1 since

8�>1 lim
n!1

P�00
�
L
�b�� =L ��00� > �� > 0:

Thus, L
�b�� =L ��00� is no more interpretable than a p-value as the strength

of evidence. Interpretability is recovered by instead quantifying the strength of
evidence for a composite hypothesis over an interval hypothesis, e.g., for j�j > �+
over j�j � �+ for some �xed �+ > 0. The proof is in Section 2, which highlights
connections between Hacking�s law of likelihood, evidence sets, and evidence for
or against composite hypotheses.
The main drawback of replacing a simple hypothesis with an interval hypoth-

esis is the sensitive dependence on the interval bounds. This is largely overcome
by the extension of evidential inference to handle imprecise composite hypothe-
ses in Section 3.



D. R. Bickel/ 7

The proposed methodology is studied by simulation (Section 4) and illus-
trated by application to microarray gene expression data (Section 5). Imprecise
composite hypotheses provide a natural formalization of the imprecision inher-
ent in what is meant when a biologist says a gene is "di¤erentially expressed";
this imprecision applies to di¤erential protein and metabolite expression as well
as to di¤erential gene expression.
Looking over thousands of genes for di¤erential expression poses an extreme

multiple comparisons problem in the Neyman-Pearson framework. Because, un-
like the p-value, the likelihood ratio as a measure of statistical evidence is not
based on the control of a Type I error rate, it is not adjusted for multiple com-
parisons by enforcing control of a family-wise error rate or a false discovery rate.
While many statisticians see the ability to correct for multiple tests in this way
as an important advantage of the p-value over the likelihood ratio alone (Korn
and Freidlin, 2006), others maintain that the perceived need to correct for mul-
tiple comparisons exposes a shortcoming in the evidential interpretation of the
p-value (Royall, Statistical Evidence: A Likelihood Paradigm, 1997a). This issue
is discussed further in Section 6, which concludes with a sketch of opportunities
for further research.

2. Evidential inference about precise hypotheses

2.1. Preliminaries

The symbols � and � designate proper subsets and (possibly improper) sub-
sets, respectively. Consider the �xed positive integer p and the parameter space
� � Rp. For all � 2 �, the distribution of the observable random variable
X 2 
 � Rn has a probability measure admitting a probability density or
mass function f (�; �) on 
 such that �0 6= �00 ) f

�
�; �0

�
6= f

�
�; �00

�
. For

X = x; the likelihood function on � is L (�) = L (�;x) = f (x; �). Unless
speci�ed otherwise, the propositions of this paper hold generally for all x in�
y : y 2 
;8�02�f

�
y; �0

�
> 0
	
.

Operators ^ and _ will be used for the minimum and maximum, respec-
tively. In addition, for any set S and functions g0 : S ! R and g00 : S ! R,
8u2S (g0 ^ g00) (u) = g0 (u) ^ g00 (u) and 8u2S (g0 _ g00) (u) = g0 (u) _ g00 (u).

De�nition 1 For any nonempty subset �0 of �, the hypothesis that � 2 �0

is simple if �0 has only one element; otherwise, the hypothesis that � 2 �0 is
composite.

In the sequel, every subset of � is nonempty and thus corresponds to either
a simple hypothesis or a composite hypothesis.

2.2. Evidential theory

Restated in these terms, the original law of likelihood governs the special case
of comparing two simple hypotheses:
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Axiom 1 Special law of likelihood. For all �0 2 � and �00 2 �, the strength of
the statistical evidence in X = x that supports � = �0 over � = �00 is

ev
��
�0
	
;
�
�00
	�
= ev

��
�0
	
;
�
�00
	
;x
�
=
L
�
�0;x

�
L
�
�00;x

� : (1)

Mathematically, the special law of likelihood in e¤ect de�nes what is meant
by the strength of evidence for one simple hypothesis over another. It does not
specify how to measure the strength of evidence for or against a composite
hypothesis (Royall, Rejoinder to comments on R. Royall, �On the probability of
observing misleading statistical evidence�, 2000c; Blume, Likelihood methods for
measuring statistical evidence, 2002a). Such measurement is made possible by
precisely de�ning what is meant by the strength of evidence when a composite
hypothesis is involved:

Axiom 2 General law of likelihood. For all �0 � � and �00 � �, the strength
of the statistical evidence in X = x that supports � 2 �0 over � 2 �00 is
ev (�0;�00) = ev (�0;�00;x), where ev is the function satisfying the following
two coherence and non-accumulation conditions as well as Axiom 1 and

8�0;�00;�000�� ev (�
0;�000) � ev (�00;�000), ev (�000;�0;x) � ev (�000;�00) :

Condition 1 Coherence. If ev (�0;�00;x) is the strength of the statistical evi-
dence in X = x that supports � 2 �0 over � 2 �00 for all �0 � � and �00 � �,
then 8�00;�000��8�0��00 ev (�0;�000;x) � ev (�00;�000;x).
Condition 2 Non-accumulation. If ev (�0;�00;x) is the strength of the statis-
tical evidence in X = x that supports � 2 �0 over � 2 �00 for all �0 � � and
�00 � �, then 8�0;�00��9�02�0 ev

��
�0
	
;�00;x

�
� ev (�0;�00;x).

The non-accumulation condition prevents attributing more evidence to a
composite hypothesis than to any of its constituent simple hypotheses, as the
posterior probability does by integrating the likelihood function of each hy-
pothesis with respect to the same prior distribution. The coherence condition
prevents the logical fallacy of attributing more evidence to a hypothesis than to
an implication of that hypothesis (Schervish, 1996; Lavine and Schervish, 1999),
as noted in Section 1.1. It is now clear that neither the p-value nor the Bayes
factor quali�es as a coherent measure of evidence:

Proposition 1 Let evp (�A; f�0g ;x) be 1 minus a p-value for a test of null
hypothesis � = �0 against alternative hypothesis � 2 �A. Condition 1 contradicts
the assertion that, for all �0 2 � and �A � �n f�0g, evp (�A; f�0g ;x) is the
strength of the statistical evidence in X = x that supports � 2 �A over � = �0.
Proof. Consider the two-sided alternative hypothesis � 6= �0 and the one-sided
alternative hypotheses � < �0 and � > �0 for � = R. Under commonly used
models,

1� evp (Rn f�0g ; f�0g ;x) = 2 inf
�A2f(�1;�0);(�0;1)g

(1� evp (�A; f�0g ;x))
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and thus either

evp ((�1; �0) ; f�0g ;x) > evp (Rn f�0g ; f�0g ;x)

or
evp ((�0;1) ; f�0g ;x) > evp (Rn f�0g ; f�0g ;x)

even though (�1; �0) � Rn f�0g and (�0;1) � Rn f�0g, in violation of Condi-
tion 1.

Proposition 2 Let evBF (�0;�00;x) be the Bayes factor

evBF (�
0;�00;x) =

R
�0 f

�
x; �0

�
d�0
�
�0
�R

�00 f
�
x; �00

�
d�00

�
�00
� ;

where �0 and �00 are the probability measures representing the prior distributions
of � on �0 and �00, respectively. Condition 1 contradicts the assertion that, for all
�0 � � and �00 � �, evBF (�0;�00;x) is the strength of the statistical evidence
in X = x that supports � 2 �0 over � 2 �00.

Proof. If there is a unique maximum likelihood value, b�, and if �00 on � has
support outside � = b�, then

evBF

�nb�o ;�;x� =
L
�b�;x�R

�
L
�
�00;x

�
d�00

�
�00
�

> 1:

Therefore, 8�000�� evBF

�nb�o ;�000;x� > evBF (�;�
000;x) even though

nb�o �
�, against Condition 1.
Following Je¤reys (1948) with the strength of statistical evidence in place of

the Bayes factor and with a slight change of wording, the number of achieved
bans (b = log10 ev (�

0;�00;x)) indicates weak evidence (0 < jbj < 1=2), moderate
evidence (1=2 � jbj < 1), strong evidence (1 � jbj < 3=2), very strong evidence
(3=2 � jbj < 2), or decisive evidence (jbj � 2) supporting � 2 �0 over � 2 �00 if
b > 0 or supporting � 2 �00 over � 2 �0 if b < 0. The next result facilitates
the measurement of the strength of statistical evidence for or against composite
hypotheses.

Proposition 3 For all �0 � � and �00 � �, the strength of the statistical

evidence in X = x that supports � 2 �0 over � 2 �00 is

ev (�0;�00) = ev (�0;�00;x) =
sup�02�0 L

�
�0;x

�
sup�002�00 L

�
�00;x

� : (2)

Proof. Equation (2) obviously satis�es Condition 1 (as Lavine and Schervish



D. R. Bickel/ 10

(1999) observed), Condition 2, and, whenever �0 =
�
�0
	
and �00 =

�
�00
	
, equa-

tion (1). To prove that the solution is unique, �rst assume

ev (�0�;�
00
�) = sup

�02�0
�

inf
�002�00

�
ev
��
�0
	
;
�
�00
	�

(3)

holds for some �0�;�
00
� � �. Then Condition 1 implies that

8
�
02�n�0

�
ev
�
�0� [

n
�
0o
;�00�

�
� ev (�0�;�

00
�) _ ev

�n
�
0o
;�00�

�
= sup

�02�0
�[f�0g

ev
��
�0
	
;�00�

�
and, likewise, that

8
�
002�n�00

�
ev
�
�0�;�

00
� [

n
�
00o� � inf

�002�00
�[f�00g

ev
�
�0�;

�
�00
	�
:

But Condition 2 implies that

8
�
02�n�0

�
ev
�
�0� [

n
�
0o
;�00�

�
� sup

�02�0
�

ev
��
�0
	
;�00�

�
_ ev

�n
�
0o
;�00�

�
= sup

�02�0
�[f�0g

ev
��
�0
	
;�00�

�
and, similarly, that

8
�
002�n�00

�
ev
�
�0�;�

00
� [

n
�
00o� � inf

�002�00
�[f�00g

ev
�
�0�;

�
�00
	�
:

Therefore, the assumption that equation (3) holds for some �0�;�
00
� � � implies

that
ev (�0;�00) = sup

�02�0
inf

�002�00
ev
��
�0
	
;
�
�00
	�

(4)

holds for all �0;�00 � � such that �0� � �0 and �00� � �00. Now equation (3)
holds for �0� =

�
�0
	
� � and �00� =

�
�00
	
� � for all �0 2 � and �00 2 �.

Thus, equation (4) holds for all �0;�00 � �. From the substitution provided by
equation (1), 8�0;�00�� ev (�

0;�00) = sup�02�0 inf�002�00 L
�
�0;x

�
=L
�
�00;x

�
.

The probably of observing misleading evidence mentioned in Section 1.1 is
now de�ned more generally.

De�nition 2 If, for all �0 � � and �00 � �, ev (�0;�00;x) is the strength of
the statistical evidence in X = x that supports � 2 �0 over � 2 �00, then for any
�0 � �, �00 � �; and � > 1, the probability of observing misleading evidence
in X = x that supports � 2 �0 over � 2 �00 at level � with respect to some �00
in �00 is

��00 (�;�
0;�00) = P (ev (�0;�00;X�00) � �) ;

where the random variable X�00 has probability density or mass function f
�
�; �00

�
.
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In the case that one of two mutually exclusive hypotheses is a composite
hypotheses corresponding to a parameter interval, the probability of observing
misleading evidence approaches 0 as the sample size increases. As argued in
Section 1.1, that property is needed to interpret a level of evidence apart from
the sample size. Accordingly, the strength of statistical evidence almost always
asymptotically selects the correct hypothesis:

Proposition 4 Consistency. Suppose X is a random variable with probability

mass or density function f (�; �). Under regularity conditions ensuring the weak
consistency of the maximum likelihood estimate of �,

8��2R;�+2(��;1) lim
n!1

P (ev ([��; �+] ;�n [��; �+] ;X) > 1) = 1

if � 2 (��; �+) or

8��2R;�+2(��;1) lim
n!1

P (ev ((��; �+) ;�n (��; �+) ;X) < 1) = 1

if � 2 �n [��; �+].

Proof. In the case that � 2 (��; �+), from 8�>0 limn!1 P
����b� � ���� < �� =

1, it follows that 8��2R;�+2(��;1) limn!1 P
�b� 2 [��; �+]� = 1. Proposition 3

indicates that b� 2 [��; �+]) ev ([��; �+] ;�n [��; �+] ;X) > 1. Similarly, in the
case that � 2 �n [��; �+], from 8�>0 limn!1 P

����b� � ���� < �� = 1, it follows that
8��2R;�+2(��;1) limn!1 P

�b� 2 �n (��; �+)� = 1. Proposition 3 indicates thatb� 2 �n (��; �+)) ev ((��; �+) ;�n (��; �+) ;X) < 1.

Proposition 5 Interpretability. Suppose X is a random variable with probabil-

ity mass or density function f (�; �). Under regularity conditions ensuring the
weak consistency of the maximum likelihood estimate of �,

8��2R;�+2(��;1);�002(��;�+);�>1 limn!1
��00 (�;�n [��; �+] ; [��; �+]) = 0:

Proof. By Propositions 4 and 3,

lim
n!1

P (ev (�n [��; �+] ; [��; �+] ;X�00) < �) = 1

for all �� 2 R; �+ 2 (��;1) ; �00 2 (��; �+) ; and � > 1. De�nition 2 completes
the proof.
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2.3. Likelihood sets and composite hypotheses

The concept of the likelihood set is closely related to that of the strength of
evidence for composite hypotheses, as sketched in Section 1.2.

De�nition 3 Given some �xed � > 1, the likelihood set of level � for X = x
is

E (�) =
�
�00 : �00 2 �; L

�
�00;x

�
� sup

�02�0
L
�
�0;x

�
=�

�
:

De�nition 4 Given some �xed � 2 R and �0 � �, the �-ban likelihood set �0
is E

�
10�
�
, its likelihood set of level 10�.

Remark 1 Likewise, the the �-bit likelihood set and the �-nat evidence set could
be de�ned by substituting � = 2� and � = e�, respectively. MacKay (2002)
discusses the history of calling logarithmic "units" bits, bans, or nats, according
to the base of the logarithm.

The likelihood set is used to distinguish parameter values supported by the
data from parameter values less consistent with the data (Barnard, 1967; Hoch
and Blume, 2008). Such usage implicitly invokes a method of measuring the
strength of evidence of a composite hypothesis in the same way as rejecting
the hypothesis of a parameter value falling outside a 1 � � con�dence interval
implicitly invokes a hypothesis test with a Type I error rate of �. This practice
is more precisely understood in terms of the general law of likelihood:

Proposition 6 Given E (�), the likelihood set of level � for X = x,

ev (E (�) ;�nE (�) ;x) > �:

Proof. The result follows immediately from Proposition 3 and De�nition 3.
In short, the practice of considering a parameter value insu¢ ciently sup-

ported by the data if it falls outside a likelihood set receives formal justi�cation
from measuring the strength of evidence for a composite hypothesis by its best-
supported parameter value.

2.3.1. Bioequivalence

Suppose � is some scalar di¤erence between two treatments that are considered
bioequivalent if �� < � < �+ for two values �� and �+; which are often set by
a regulatory agency. The bioequivalence testing problem is naturally framed as
that of measuring the strength of evidence for � 2 (��; �+) over � 62 (��; �+).
In a Neyman-Pearson approach to bioequivalence, � 2 (��; �+) is accepted if an
interval of a su¢ cient level of con�dence is a subset of (��; �+). Choi et al. (2007)
similarly consider there to be strong evidence of bioequivalence if a likelihood
interval E (�) of su¢ ciently high level � is a subset of (��; �+).



D. R. Bickel/ 13

The latter approach is justi�ed by the following implication of the general law
of likelihood. In order to accomodate multidimensional parameters, the impli-
cation is stated in terms of equivalence intervals and likelihood intervals rather
than equivalence sets and likelihood sets. Quantifying the strength of evidence
for equivalence, � 2 �0, over nonequivalence, � 62 �0, for some �0 � � corre-
sponds to �nding the likelihood set of highest level that is a subset of �0:

Proposition 7 The strength of the statistical evidence in X = x that supports
� 2 �0 over � 62 �0 exceeds � if and only if E (�), the likelihood set of level �,
is a subset of �0.

Proof. From E (�) � �0; the de�nition of a likelihood set gives

8�00 62�09�02�0L
�
�00;x

�
� < L

�
�0;x

�
;

requiring that sup�02�0 inf�00 62�0 L
�
�0;x

�
=L
�
�00;x

�
> �, the left-hand side of

which equals ev (�0;�n�0;x) by Proposition 3, proving su¢ ciency. To prove
necessity, assume there is a value �00 that is in E (�) but not in �0. Given
ev (�0;�n�0;x) > �, Proposition 3 yields sup�02�0 L

�
�0;x

�
> �L

�
�00;x

�
since

�00 2 �n�0. Because �00 2 E (�) ; we have sup�02� L
�
�0;x

�
� �L

�
�00;x

�
, pro-

ducing a contradiction.

2.4. Nuisance parameters

Suppose the family of distributions is parameterized by a free nuisance parame-
ter  2 � � R� as well as by the free interest parameter � 2 � � Rp; both �
and p are �xed positive integers. The likelihood function corresponding to each
probability density or mass function f (�; �; ) on 
 is L (�) = L (�;x) = f (x; �)
on �� �.
The problem of measuring the strength of statistical evidence in the pres-

ence of a nuisance parameter has been posed as a problem of approximating
the strength of statistical evidence that would be in the data were the value
of the nuisance parameter known (Tsou and Royall, 1995). The nuisance para-
meter is often eliminated by replacing the likelihood function with Lpro�le; the
pro�le likelihood function on �, de�ned by 8�2�Lpro�le (�) = Lpro�le (�;x) =
sup2� L (�; ;x). Under the special law of likelihood, the pro�le likelihood ra-
tio Lpro�le

�
�0;x

�
=Lpro�le

�
�00;x

�
serves as a widely applicable approximation to

the strength of statistical evidence in X = x for � = �0 over model � = �00:
Likewise, the strength of evidence in X = x that supports � 2 �0 over � 2 �00

may be approximated by

evpro�le (�
0;�00) = evpro�le (�

0;�00;x) =
sup�02�0 Lpro�le

�
�0;x

�
sup�002�00 Lpro�le

�
�00;x

� : (5)

Example 1 The normal family. The proposed methodology will be illustrated
with the comparison of the hypotheses j�j > �+ and j�j � �+ for some �+ � 0
on the basis of x =

�
x(1); :::; x(n)

�
, a sample of n independent observations from
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a normal distribution with unknown mean � 2 R and variance  = �2 2 (0;1).
Hence, the density function satis�es

f
�
x; �; �2

�
=

nY
j=1

1p
2��

exp

 
�1
2

�
x(j) � �
�

�2!
: (6)

Since, as noted in Section 1.2,

Lpro�le
�
�0
�
=Lpro�le

�
�00
�
=
�b� ��0� =b� ��00���n ;

the strength of evidence for j�j > �+ over j�j � �+ is

evpro�le (Rn [��+; �+] ; [��+; �+]) =
inf�002f��+;�+g

� b�b�(�00)��n ���b���� > �+
sup�02f��+;�+g

�b�(�0)b�
��n ���b���� � �+ ;

where b� and b� = b� �b�� are the maximum likelihood estimates of � and �. In

bioequivalence applications (Section 2.3.1),

evpro�le ((��+; �+) ;Rn (��+; �+)) = 1= evpro�le (Rn (��+; �+) ; (��+; �+))

approximates the evidence for equivalence.

The pro�le likelihood has several advantages as an approximation: it resem-
bles a likelihood ratio under certain conditions and has a low asymptotic proba-
bility of misleading evidence (Royall, On the probability of observing misleading
statistical evidence, 2000b), and, if the nuisance parameter is orthogonal to the
interest parameter, it is equal to the likelihood ratio (Royall, Statistical Evi-
dence: A Likelihood Paradigm, 1997a). Instead of seeing the pro�le likelihood
as an approximation, it could be derived from Proposition 2 by framing the
nuisance parameter problem as an instance of the composite hypothesis prob-
lem. That interpretation of the pro�le likelihood would be problematic, however,
since there are models for which it fails to approximate the strength of statis-
tical evidence unless the sample is su¢ ciently large (Royall, On the probability
of observing misleading statistical evidence, 2000b).
For some models, the nuisance parameter may instead be eliminated by use

of a marginal or conditional likelihood (Royall, Statistical Evidence: A Likeli-
hood Paradigm, 1997a) as approximations of the likelihood function without
nuisance parameters. Alternatively, provided a prior distribution of  that is
suitable for evidential inference, it could be eliminated by integration. (Meth-
ods have been proposed for specifying a nuisance parameter prior to integrate
the likelihood not only for Bayesian inference (Kass and Raftery, 1995; Berger
et al., 1999; Clyde and George, 2004) but also for Neyman-Pearson inference
(Severini, 2007).) While this �exibility in the method for eliminating nuisance
parameters allows researchers to optimize performance for particular applica-
tions according to their best judgments, it thereby to some extent relaxes the
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motivating objectivity condition of Section 1.1. On the other hand, di¤erent
approaches to eliminating nuisance parameters can yield similar results; for ex-
ample, likelihoods integrated with respect to certain priors approximate the
pro�le likelihood (Severini, 2007).

3. Evidential inference about imprecise hypotheses

Since the boundary between one composite hypothesis and another is often ar-
bitrary to a large extent, the e¤ect of specifying that boundary will be mitigated
by making it imprecise or, more technically, fuzzy. An objection against the use
of fuzzy logic is that problems solved using fuzzy set theory can be solved using
probability theory instead (Laviolette, 2004). However, whereas in the context
of statistical inference, probability is usually seen in terms of the representation
of uncertainty, there is no uncertainty associated with hypothesis speci�cation
as envisioned here. Because the speci�cation of hypotheses does not depend on
frequencies of events or levels of belief, fuzzy set membership functions rather
than probability distributions will be used to specify hypotheses in order to
avoid confusion. This approach is in line with traditional interpretations of de-
grees of set membership (Klir, 2004; Nguyen and Walker, 2000) as opposed to
reinterpreting them as degrees of uncertainty as per Singpurwalla and Booker
(2004). By keeping vagueness or imprecision distinct from uncertainty, fuzzy set
theory enables a clearer presentation of the proposed methodology than would
be possible with the probability calculus alone.
The use of vague hypotheses to broaden the framework of Section 2 has a

di¤erent motivation than related work on the interface between statistics and
fuzzy logic. Fuzzy set theory has been used to specify vague hypotheses for gen-
eralizations of both Neyman-Pearson hypothesis testing (Romer et al., 1995)
and Bayesian inference (Zadeh, 2002). Similarly, Dollinger et al. (1996) sug-
gested measuring evidence by the extent to which a test statistic falls in a fuzzy
rejection region determined by a �xed Type I error rate; this leads to fuzzy hy-
pothesis tests and fuzzy con�dence intervals. Fuzzy hypothesis tests and fuzzy
con�dence intervals have also been formulated to overcome a �aw in previous
methods involving discrete distributions (Geyer and Meeden, 2005).

3.1. Additional terminology

Consider �, the parameter space of a family of probability density or mass
functions that have support on all 
.

De�nition 5 Any function that maps � to [0; 1] is a fuzzy subset of �.

Following Nguyen and Walker (2000), this de�nition makes no distinction
between a fuzzy subset and its membership function; e� ��0� is considered to be
the extent to which �0 belongs to a fuzzy subset e� of �. Let F (�) be the set
of all fuzzy subsets of �.
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For each �0 2 � and �0 2 [0; 1], let e��0;�0 denote the fuzzy subset of � such
that e��0;�0 ��0� = �0 and �0 6= �00 ) e��0;�0 ��00� = 0. The index �0 may be
dropped in the case of full membership: e��0 = e��0;1; this corresponds to the
simple hypothesis that � = �0 (De�nition 1).

3.2. Evidential theory of imprecise hypotheses

The statements below use the concept of the strength of evidence to extend the 2
symbol, operationally de�ning a hypothesis as a proposition that the parameter
value corresponding to the data-generating distribution "is a member of" a fuzzy
subset, which mathematically is a function rather than a set. First, the special
law of likelihood is restated in the terminology of Section 3.1:

Axiom 3 For all �0 2 � and �00 2 �, the strength of the statistical evidence in
X = x that supports � = �0 over � = �00; i.e., for � 2 e��0 over � 2 e��00 , is

ev
�e��0 ; e��00� = ev �e��0 ; e��00 ;x� = L

�
�0;x

�
L
�
�00;x

� : (7)

To overcome the criticism that fuzzy set theory lacks a way to unambigu-
ously assign membership values other than 0 and 1 (Lindley, 2004), a fractional
membership value is calibrated as the strength of evidence associated with two
hypotheses that share a probability distribution:

De�nition 6 For all �0 2 � and �0 2 [0; 1], the strength of the statistical evi-
dence in X = x that supports � 2 e��0;�0 over � = �0 is equal to the degree to
which �0 is a member of e��0;�0 :

ev
�e��0;�0 ; e��0� = ev �e��0;�0 ; e��0 ;x� = �0:

With that calibration, the special law of likelihood applies to imprecise hy-
potheses:

Proposition 8 For all �0 2 � and �00 2 �, the strength of the statistical evi-
dence in X = x that supports � 2 e��0 over � 2 e��00 is

ev
�e��0;�0 ; e��00;�00� = ev �e��0;�0 ; e��00;�00 ;x� = �0L

�
�0;x

�
�00L

�
�00;x

�
under the multiplicative convention that for all fuzzy subsets e�0, e�00, and e�000 of
�,

ev
�e�0; e�00;x� ev �e�00; e�000;x� = ev �e�0; e�000;x� :

Proof. By the multiplicative convention,
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ev
�e��0;�0 ; e��00;�00� = ev

�e��0;�0 ; e��0� ev �e��0 ; e��00� ev �e��00 ; e��00;�00�
= ev

�e��0;�0 ; e��0� ev �e��0 ; e��00� ev
�e��00 ; e��00�

ev
�e��00;�00 ; e��00� :

Axiom 3 and De�nition 6 complete the proof.
The general law of likelihood is likewise extended to govern imprecise hy-

potheses:

Axiom 4 For all fuzzy subsets e�0 and e�00 of �, the strength of the statistical
evidence in X = x that supports � 2 e�0 over � 2 e�00 is ev �e�0; e�00;x�, where
ev is the function satisfying the following two coherence and non-accumulation
conditions as well as equation (7) and

8e�0;e�00;e�0002F(�) ev
�e�0; e�000� � ev �e�00; e�000�, ev

�e�000; e�0� � ev �e�000; e�00� :
Condition 3 Imprecise coherence. If, for all fuzzy subsets e�0 and e�00 of �,
ev
�e�0; e�00;x� is the strength of the statistical evidence in X = x that supports

� 2 e�0 over � 2 e�00, then
8e�00;e�0002F(�)8e�02

�e�00^e��:e��2F(�)
	 ev �e�0; e�000;x� � ev �e�00; e�000;x� :

Condition 4 Imprecise non-accumulation. If, for all fuzzy subsets e�0 and e�00
of �, ev

�e�0; e�00;x� is the strength of the statistical evidence in X = x that

supports � 2 e�0 over � 2 e�00, then
8e�0;e�002F(�)9�02� ev

�e��0 ^ e�0; e�00;x� � ev �e�0; e�00;x� :
The next two propositions extend equation (2) to the imprecise hypothesis

case.

Proposition 9 For all fuzzy subsets e�0 and e�00 of �, the strength of the sta-
tistical evidence in X = x that supports � 2 e�0 over � 2 e�00 is

ev
�e�0; e�00;x� = sup

�02�
inf
�002�

ev
�e�0 ^ e��0 ; e�00 ^ e��00 ;x� :

Proof. The proof is analogous to that of equation (2), replacing, for example,
�0� [

n
�
0o
for all �

0 2 �n�0� with e�0� _ e��0;�0 for all
�
0 2
n
�0 : �0 2 �; e�0� ��0� < 1o

and �0 2
�e�0� ��0� ; 1i.
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Proposition 10 For all fuzzy subsets e�0 and e�00 of �, the strength of the sta-
tistical evidence in X = x that supports � 2 e�0 over � 2 e�00 is

ev
�e�0; e�00;x� = sup�02� e�0 ��0�L ��0;x�

sup�002� e�00 ��00�L ��00;x� : (8)

Proof. By Propositions 8 and 9,

ev
�e�0; e�00;x� = sup

�02�
inf
�002�

ev
�e�

�0;e�0(�0)
; e�

�00;e�00(�00)
;x
�

= sup
�02�

inf
�002�

e�0 ��0�L ��0;x�e�00 ��00�L ��00;x� :

4. Simulation study

To quantify the impact of replacing a simple hypothesis with a small-interval
composite hypotheses in evidential inference, a series of simulations were carried
out for the case of normal distributions (Example 1). M = 105 independent
samples of independent standard normal observations were randomly generated
for each of 23 sample sizes from n = 2 to n = 10; 000. Given samples x1; :::; xM ,
each of size n, and a threshold of b bans of evidence for � 6= 0 over � = 0, the
probability of observing misleading evidence was computed by

b��00

n (b) =
1

M

MX
i=1

I[10b;1) (evpro�le (Rn�00;�00;xi)) (9)

with�00 = f0g for the composite-simple hypothesis pair or with�00 = [�1=10; 1=10]
for the composite-composite hypotheses pair; " 2 S ) IS (") = 1 and " 62 S )
IS (") = 0. The levels of evidence were chosen to correspond to the proba-
bilities of observing at least weak evidence (b = 1=1), at least moderate evi-
dence (b = 1=2), at least strong evidence (b = 1), at least very strong evidence
(b = 3=2), and decisive evidence (b = 2). Every observation of evidence favoring
� 6= 0 or j�j > 1=10 at any level is misleading since the data were generated
under � = 0.
The results are displayed as Figures 1-5, with one �gure per level of evidence.

Figure 1 highlights the most obvious discrepancy between the two choices of
hypothesis pairs. Since the maximum likelihood estimate almost never equals
0, the evidence favors � 6= 0 over � = 0 with probability 1. By contrast, the
evidence usually favors j�j � 1=10 over j�j > 1=10; except for small samples.
At the higher evidence grades, Figures 2-5 also show that the probability of
observing evidence for the incorrect hypothesis decreases as the sample size
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increases for �00 = [�1=10; 1=10], as expected from Proposition 5, but not for
�00 = f0g, with the exception of smaller samples.
Figure 6 focuses on the comparison between and approximate evidence for

sample sizes common in experimental biology. Its plots for n = 5 and n = 6 are
directly relevant to the application of the next section.

5. Application to gene expression data

In this section, the strength of evidence is compared to the approximate strength
of evidence in tomato gene expression data described in Alba et al. (2005). Dual-
channel microarrays were used to measure the mutant-to-wild-type expression
ratios of 13; 440 genes at the breaker stage of ripening and at 3 and 10 days
thereafter. Each of the later two stages has six biological replicates (n = 6),
but one of the biological replicates is missing at the breaker stage of ripening
(n = 5).
For each of the three time points, there are two competing hypotheses per

gene: the geometric mean of the expression ratio between mutant tomatoes and
wildtype tomatoes is either 1 (the simple hypothesis corresponding to no muta-
tion e¤ect) or is not 1 (the composite hypothesis corresponding to a mutation
e¤ect). Since the data are approximately lognormal, the relevant family of distri-
butions for each gene i is that of equation (6), replacing � with �i, the logarithm
of geometric mean of the expression ratio of the ith gene, and replacing x with
xi, each component of which is the logarithm of an observed expression ratio of
the ith gene. The maximum likelihood estimate of �i is b�i, the sample mean of
the logarithms of the expression ratios for the ith gene.
As in the simulation study of the last section, equation (5) gives the strength

of evidence for di¤erential expression between the wild type and the mutant
(�i 6= 0) over equivalent expression (�i = 0). Since, however, the expression ra-
tio is not exactly 1, Bickel (2004), Lewin et al. (2006), Van De Wiel and Kim
(2007), and Bochkina and Richardson (2007) rede�ned what is meant by "dif-
ferential expression" by employing some biologically relevant value �+ > 0.
Accordingly, equation (5) also yields the strength of evidence for biologically sig-
ni�cant di¤erential expression between the wild type and the mutant (j�ij > �+)
over biologically insigni�cant di¤erential expression (j�ij � �+). Due to the im-
portance of the twofold change in biochemistry, �+ is here set to 1

2 log 2, the
midpoint between 0 and log 2. (Lewin et al. (2006) and Bochkina and Richard-
son (2007) similarly derived posterior probabilities that j�ij > log 2, and Bickel
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Fig 1. Probabilities b�f0gn (1=1) and b�[�1=10;1=10]n (1=1) of observing any misleading positive
evidence for the hypothesis that � 6= 0 over the "simple" hypothesis that � = 0 and for the
hypothesis that j�j > 1=10 over the "composite" hypothesis that j�j � 1=10, respectively.
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Fig 2. Probabilities b�f0gn (1=2) and b�[�1=10;1=10]n (1=2) of observing misleading moderate or
stronger evidence for the hypothesis that � 6= 0 over the "simple" hypothesis that � = 0 and
for the hypothesis that j�j > 1=10 over the "composite" hypothesis that j�j � 1=10, respectively.
The horizontal gray line is drawn at limn!1;M!1 b�f0gn (1=2) according to the �2 distribution

with 1 degree of freedom; limn!1;M!1 b�[�1=10;1=10]n (1=2) = 0 by Proposition 5.
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Fig 3. Probabilities b�f0gn (1) and b�[�1=10;1=10]n (1) of observing misleading strong, very
strong, or decisive evidence for the hypothesis that � 6= 0 over the "simple" hypothesis that
� = 0 and for the hypothesis that j�j > 1=10 over the "composite" hypothesis that j�j � 1=10,
respectively.
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Fig 4. Probabilities b�f0gn (3=2) and b�[�1=10;1=10]n (3=2) of observing misleading very strong or
decisive evidence for the hypothesis that � 6= 0 over the "simple" hypothesis that � = 0 and for
the hypothesis that j�j > 1=10 over the "composite" hypothesis that j�j � 1=10, respectively.
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Fig 5. Probabilities b�f0gn (2) and b�[�1=10;1=10]n (2) of observing misleading decisive evidence
for the hypothesis that � 6= 0 over the "simple" hypothesis that � = 0 and for the hypothesis
that j�j > 1=10 over the "composite" hypothesis that j�j � 1=10, respectively.
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Fig 6. Probabilities b�f0gn (b) and b�[�1=10;1=10]n (b) of observing misleading evidence for the
hypothesis that � 6= 0 over the "simple" hypothesis that � = 0 and for the hypothesis that
j�j > 1=10 over the "composite" hypothesis that j�j � 1=10, respectively, for each of the
evidence levels b of Figures 1-5 and at each of three sample sizes (n 2 f4; 5; 6g).
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(2004) and Van De Wiel and Kim (2007) considered false discovery rates for
which a "discovery" is de�ned in terms of a fold change threshold.)
As seen in Figure 7, the use of j�ij > log

p
2 rather than j�ij > 0 as the hy-

pothesis corresponding to di¤erential expression leads to considering many fewer
genes di¤erentially expressed at each stage of maturity and at each level of evi-
dence. Now the composite hypotheses for gene i are �i 2 �0 = Rn

�
� log

p
2; log

p
2
�

and �i 2 �00 =
�
� log

p
2; log

p
2
�
. There is an order of magnitude more genes

counted as di¤erentially expressed at each evidence grade when using evpro�le (Rn f0g ; f0g ;xi)
than when using evpro�le (�0;�00;xi) as the strength of evidence in xi; the data
for the ith gene.
The left-hand-side of Figure 8 stresses the main limitation of comparing

two composite hypotheses: the results are sensitive to the speci�cation of �+,
the value that determines the sharp boundary between equivalent expression
(j�ij � �+) and di¤erential expression (j�ij > �+) ; in this case, �+ = log

p
2.

By instead allowing degrees of whether a gene is di¤erentially expressed, the
approach of Section 3 mitigates this e¤ect. For correspondence with the above
analyses with precise hypotheses, a gene is considered di¤erentially expressed
to extent e�0 (�) = j�j = log 2 j�j � log 2

1 j�j > log 2

and equivalently expressed to extent e�00 (�) = 1� e�0 (�), as illustrated in Figure
9. Sokhansanj et al. (2004) instead considered a fuzzy subset on gene expression
measurements that would only achieve full expression membership for in�nite
measurements. By contrast, e�0 considers all genes with a two-fold or greater
di¤erence between populations to be fully di¤erentially expressed.
The success in eliminating the undesirable discontinuity at the rigid boundary

between hypotheses is evident from the right-hand-side of Figure 8, which dis-

plays evpro�le
�e�0; e�00;xi� ; the result of putting the pro�le likelihood function

in place of likelihood function in equation (8), against exp
�b�i�, the maximum

likelihood estimate of the expression ratio. Although the strength of evidence
still changes sign at b�i = � logp2, no trace remains of what resembles a phase
transition at those points in the precise hypothesis case.

The replacement of evpro�le (�0;�00;xi) with evpro�le
�e�0; e�00;xi� has high

impact on inference for a large portion of the genes (Figure 10). Levels of ev-
idence between 0 and 2 are most important for �nding genes with evidence of
di¤erential expression since negative levels correspond to evidence for equivalent
expression, and levels above 2 normally indicate decisive evidence for di¤erential
expression regardless of whether precise or imprecise hypotheses are speci�ed.
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6. Discussion

6.1. Multiple comparisons

Since it is often maintained that the thousands of comparisons made in the
analysis of microarray data call for di¤erent methods of analysis than those used
for single comparisons, it may seem that the control of a false discovery rate or
other adjusted Type I error rate may be more appropriate than an evidential
analysis such as that described here. Indeed, Korn and Freidlin (2006) voiced
concerns about the direct application of the law of likelihood to the multiple
comparisons situation. Because the law of likelihood quanti�es the strength
of evidence associated with each comparison rather than controlling a rate of
false positives, the strength of evidence for one hypothesis over another remains
the same irrespective of the number of comparisons made (Blume, Likelihood
methods for measuring statistical evidence, 2002a).
The evidential interpretation of p-value adjusted for multiple comparisons

has its roots in Fisher�s disjunction: if the p-value is low, then either an event
of low probability has occurred or the null hypothesis is false (Fisher, 1925;
Johnstone, 1986; Barnard, 1967). Without some adjustment, a low p-value can
instead occur with high probability given enough tests. Thus, even when the
p-value is understood as a measure of evidence, the multiple testing problem
is formulated in terms of error rate control. If a single hypothesis is tested at
a given signi�cance level �, then � is the probability of making a Type I er-
ror under the null hypothesis. However, if multiple hypotheses are each tested
at level �, then the probability of at least one Type I error under the truth
of all null hypotheses is greater than � except in the trivial case of complete
dependence between test statistics. This probability is called the family-wise
error rate (FWER). Consequently, a plethora of methods have been developed
to control the FWER for various assumptions while retaining as much power
to reject the null hypothesis as possible. The control of FWERs has been criti-
cized for admitting many false negatives in order to avoid all false positives in
most samples, and newer criteria for judging signi�cance gain power by allowing
more false positives. Such criteria include control of the probability that false
positives exceed a given number or proportion (Van der Laan et al., 2004). A
less conservative multiple comparison procedure controls the false discovery rate
(FDR), the expectation value of the ratio of the number of Type I errors to the
number of rejected null hypotheses (Benjamini and Hochberg, 2000; Benjamini
et al., 2001; Benjamini and Yekutieli, 2005; Yekutieli et al., 2006; Benjamini and
Liu, 1999). The smallest FDR at which a hypothesis is rejected (Storey, 2002) is
o¤erred in many microarray data analysis programs as a corrected or adjusted
p-value; e.g., Pollard et al. (2005). All of these approaches replace control of the
test-wise error rate with control of a di¤erent Type I error rate, and all may
lead to a corrected p-value for each null hypothesis considered (Van der Laan
et al., 2004).
Considering the p-value as a measure of statistical evidence that must be ad-

justed to continue to measure statistical evidence under multiple comparisons
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Fig 7. Probabilities b�f0gn (b) and b�[� log
p
2;log

p
2]

n (b) of observing misleading evidence for
the hypothesis that �i 6= 0 over the "simple" hypothesis that �i = 0 and for the hypothesis
that j�ij > log

p
2 over the "composite" hypothesis that j�ij � log

p
2, respectively, for each

of the evidence levels of Figures 1-5 (b 2 f1=1; 1=2; 1; 3=2; 2g) and at each of three stages
of maturity (0, 3, and 10 days after the breaker stage of ripening). These proportions were
computed using equation (9), but with xi as the vector of the logarithms of the expression
ratios for the ith gene and with M as the number of genes that have su¢ cient data for the
computation of likelihood ratios.
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Fig 8. Strength of statistical evidence for di¤ erential expression over equivalent expression
plotted against the maximum likelihood estimate of the expression ratio for the tomato data at
10 days after the breaker stage of ripening. The vertical gray lines are drawn at the boundary
that separates the two precise hypotheses, re�ecting the idea that a gene is either di¤ erentially
expressed or is equivalently expressed, with no possibility of something in between. By contrast,
the imprecise hypotheses have no rigid boundary between di¤ erential expression and equivalent
expression. Darker circles represent genes that correspond to higher values of

��2e�0 �b�i�� 1��
and that thus seem to be more closely aligned with either one imprecise hypothesis or the
other, whereas lighter circles correspond to more borderline genes. e�0 �b�i� estimates e�0 (�i),
the degree to which the ith gene is di¤ erentially expressed.
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Fig 9. The degree of the truth of each imprecise hypothesis plotted against e�; the geomet-
ric mean of the expression ratio in the population. The black curve represents e�0, and the
gray curve represents e�00. The vertical lines correspond to the boundary between the precise
hypotheses �0 and �00. Degrees of truth are calibrated by De�nition 6.



D. R. Bickel/ 31

Fig 10. E¤ ects of replacing the precise hypotheses with the imprecise hypotheses for
the data of Figure 8. The left-hand-side displays evpro�le

�e�0; e�00;xi� plotted against

evpro�le (�
0;�00;xi), and the right-hand-side has evpro�le (�0;�00;xi)� evpro�le

�e�0; e�00;xi�
against e�0 �b�i�, the estimated extent of di¤ erential expression. The grayscale is the same as
that of Figure 8.

has been formally justi�ed as follows. In signi�cance testing, the observed p-
value is viewed as the probability that a true null hypothesis would be rejected
under repeated sampling in the hypothetical case that the observed test sta-
tistic happenned to lie on the boundary of the rejection region (Cox, 1977).
Here, the rejection region is purely hypothetical since no decision to reject or
not reject the null hypothesis is made on the basis of any error rate actually
selected before observation, as the Neyman-Pearson framework would require.
That signi�cance testing interpretation of the p-value lies behind de�ning the
adjusted p-value of a null hypothesis as the lowest Type I error rate of a test at
which the null hypothesis would be rejected (Sha¤er, 1995). This overall Type I
error rate is usually a family-wise error rate, a generalization thereof, or a false
discovery rate (Van der Laan et al., 2004). This formalism of de�ning a corrected
p-value in terms of controlling an error rate is combined with the motivation
behind reporting a corrected p-value rather than a decision on the rejection of
the hypothesis, namely, the corrected p-value quanti�es the strength of evidence
against the null hypothesis (Wright, 1992). Evidentially interpreting a p-value
corrected in order to control a hypothetical Type I error rate exempli�es what
Goodman (1998) and Johnstone (1986) noted of signi�cance testing in general:
Neymanian theory fuels Fisherian practice. It is worth emphasizing that the
error-control rationale for adjusting p-values is distinct from the rationale be-
hind empirical Bayes and hierarchical Bayesian methods formulated in order to
"borrow strength" or available information from distributions besides the distri-
bution corresponding to the comparison at hand. The latter rationale motivates
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some applications to genomic expression data since it is believed that measure-
ments of the expression of some genes are informative for inference about the
expression of other genes.
By contrast, the argument that p-values must be corrected to control a Type

I error rate would obtain even in the absence of information about the distri-
bution of interest in data from other distributions. This raises the question of
whether an adjusted p-value or an unadjusted likelihood ratio better measures
the strength of statistical evidence with respect to one of several comparisons.
An analogy with legal evidence may clarify the issue. In weighing the evidence
for and against the hypothesis that a defendant is guilty, should the jury take
into account the number of defendants currently under trial for the same crime
elsewhere in the country, perhaps to control a rate of false convictions, or is that
information irrelevant to task of assessing the strength of evidence for guilt over
innocence in the trial at hand?
Evidential inference based directly on the law of likelihood is only begin-

ning to �nd applications in extreme multiple comparison situations. Taking an
important �rst step, Strug and Hodge (2006) studied the implications of eviden-
tial inference as an alternative to Neyman-Pearson error rate control in linkage
analysis. They argue that although consideration of error rates is important for
study design, their use in correcting p-values interpreted evidentially distorts
the strength of evidence. Evidential inference may also play an important role
in the analysis of gene expression data, especially in light of the unexpected
�nding that with microarrays the control of the false discovery rate can yield
less reproducible results that does a simple method unencumbered by multiple
comparison procedures (Guo et al., 2006).

6.2. Further development

As axioms, the laws of likelihood are not derived from more primitive assump-
tions but invite examination of their practical e¤ects on statistical inference.
The examination of normal variates of Section 4 concentrated on the probabil-
ity of observing misleading evidence for a composite hypothesis over an interval
hypothesis, �nding that it is often much less than that for a composite hypoth-
esis over a simple hypothesis. The microarray case study of Section 5 quanti�ed
the impact on evidential inference of replacing simple hypotheses with interval
hypotheses and of replacing precise hypotheses with imprecise hypotheses.
The proposed framework may be further examined for other families of dis-

tributions and for other applications. In particular, the �ndings of Sections 2.3.1
and 3 suggest a fresh approach to bioequivalence studies in which researchers
seek to determine whether the evidence favors an interval hypothesis over a
composite hypothesis without requiring an arti�cially precise speci�cation of
the largest e¤ect size considered equivalent.
There remains ample opportunity for research improving the measurement

of how much evidence favors composite hypotheses of interest. Methods that
make the special law of likelihood less sensitive to model misspeci�cation (Tsou
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and Royall, 1995; Blume et al., 2007) may be adapted to robust inference under
the general law of likelihood. For large samples, nonparametric methods such as
those of empirical likelihood and bootstrap likelihood might enable even more
objective measurement of the strength of evidence.
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