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1.  INTRODUCTION  

Statistical analyses of the health effects of air pollution have increasingly used GIS-based 
covariates for prediction of ambient air quality in “land-use” regression models. More recently 
these regression models have accounted for spatial correlation structure in combining monitoring 
data with land-use covariates. The current paper builds on these concepts to address spatio-
temporal prediction of ambient concentrations of particulate matter with aerodynamic diameter 
less than 2.5 � m (PM2.5) on the basis of a model representing spatially varying seasonal trends 
and spatial correlation structures. Our hierarchical methodology provides a pragmatic approach 
that fully exploits regulatory and other supplemental monitoring data which jointly define a 
complex spatio-temporal monitoring design.   

The specification of a modeling approach depends on a number of factors that will vary 
depending on the scientific purpose of the study in which the predicted exposures will be 
applied.  Among these are: 

·  The spatial resolution and scale of the monitoring data: number and spacing of monitors, 
and the spatial extent of the modeling domain.  Different strategies may be appropriate 
depending on whether one is addressing an urban area, “mesoscale” regions, or larger 
scale regions such as those covering all of the U.S. east of the Mississippi. 

·  The temporal scales of monitoring data, with hourly, daily, 2-week, and monthly scales 
available in different applications. 

·  The characteristics of the monitoring devices, as these may vary for data from multiple 
monitoring networks. 

·  The characteristics of relevant spatio-temporal covariates, including their spatial and 
temporal scales. 

·  The spatial and temporal scales of interest for modeling and prediction.   

Our work has been developed for the Multi-Ethnic Study of Atherosclerosis and Air 
Pollution (MESA Air). MESA Air is a cohort study funded by the U.S. Environmental Protection 
Agency (EPA) that emphasizes accurate prediction of intra-urban variation in individual 
exposures to ambient air pollutants in order to accomplish its primary aim of assessing the 
relationship between chronic exposure to air pollution and sub-clinical cardiovascular disease. 
The MESA Air cohort includes more than 6000 male and female subjects in six major U.S. 
metropolitan areas (Los Angeles, CA; New York, NY; Chicago, IL; Minneapolis-St. Paul, MN; 
Winston-Salem, NC; and Baltimore, MD). The primary MESA Air hypotheses relate to chronic 
exposure to PM2.5. We note that final exposure estimates in MESA Air will integrate predictions 
of outdoor concentrations with additional subject-level data, including time-activity patterns, 
home infiltration characteristics, address history, and employment address (Cohen et al., 2009). 

Our aim is to provide point spatial predictions of long-term average concentrations at the 
residences of MESA Air subjects.  A primary source of monitoring data is the EPA’s regulatory 
Air Quality System (AQS) repository. The AQS network includes a number of fixed site 
monitors in each region, each of which measures ambient air pollution levels on a regular basis 
(every 1-6 days for PM2.5).  Although there are some missing data, most AQS sites provide 
nearly complete PM2.5 concentration time series over several years at their spatial locations.  The 
analysis here uses data for the time period 2000-2006.  
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The MESA Air study conducted supplemental air quality monitoring campaigns beginning in 
2005 to provide additional concentration data in order to better model and predict intra-urban 
variation in air quality not well-represented by the AQS regulatory monitoring network. The 
objective of the MESA Air monitoring is to more completely sample a spatial design space that 
emphasizes traffic-related pollution at small spatial scales (100s of meters) and to capture data at 
actual subject home locations. For logistical reasons, the supplementary monitoring data are 
sampled as two-week averages based on an unbalanced design that results in significant amounts 
of missing data at many measurement locations (Cohen et al. 2009).  In each region, the 
monitoring includes: (a) 2-5 fixed site monitors providing up to 1.5 years (through 2006) of 2-
week observations, and (b) rotating sets of 2-week observations at (typically) 4 subject homes, 
with monitors moved every two weeks to cover a total of about 50 subject homes, each observed 
twice.  The composite of the AQS and MESA Air monitoring data provide a rich but highly 
irregular spatio-temporal monitoring database for analysis. 

Statistical approaches to the modeling of spatio-temporal air quality monitoring data for 
ambient exposure estimation typically derive from a model that decomposes observations into 
spatio-temporal trend and spatio-temporal residuals, or variation around the trend.  Even after 
specification of the scientific questions and the spatio-temporal scales of interest, different 
statisticians will hold different perspectives on how-much spatial and temporal structure is to be 
represented as trend and how much as residual.  For example, considering just time series of air 
quality data one may explicitly model a trend using iterated moving averages as in the KZ filter 
(Rao and Zurbenko, 1994; Wise and Comrie, 2005), various state-space modeling approaches 
(e.g.  Taylor et al. 2006), spline smoothing, or simple parametric models such as polynomial or 
trigonometric series.  Alternatively, one can incorporate much of the variation in the residuals by 
using a sufficiently rich autocorrelation model.  Somewhat similar choices arise in modeling 
spatial trends and residuals, with different perspectives provided by splines that model the 
spatially correlated component semi-parametrically as part of the mean model and geostatistical 
approaches that account for spatial structure not predicted by covariates using a variogram model 
for the autocorrelation, although there are mathematical frameworks that allow one to show 
equivalence between certain spline and kriging predictions (Furrer and Nychka, 2007).   

A number of characteristics of the variation in air-quality data across the urban scales of 
interest in our current work motivate the modeling strategy and the approach to trend and 
residual that we present here.  We find that all air quality parameters demonstrate systematic 
time trends and seasonality, but these time trends vary in space, even over relatively small 
metropolitan area spatial scales.  The details of the trend and seasonality vary somewhat from 
year to year, so that they are not modeled well by simple periodic functions like sinusoids or 
other trigonometric functions.  Finally, characteristics of these systematic time trends, including 
the long-term mean and amplitude of seasonal variations, covary spatially and with spatial (or 
“land use”) covariates.  Thus, even though the primary interest in MESA Air is predicting spatial 
variation of long-term average concentrations to estimate exposures, the complex spatio-
temporal monitoring design necessitates a statistical modeling approach that accounts for spatio-
temporal interactions in the data.  Otherwise we cannot use the spatially rich but temporally 
sparse data at MESA Air homes to help in estimating the long-term averages.  

For an overview of general techniques for modeling correlated spatio-temporal data, see 
Banerjee et al. (2004). Smith et al. (2003) uses an expectation-maximization (EM) algorithm to 
allow for arbitrary missing data patterns, but their model does not accommodate complex spatio-
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temporal interactions.  A recent paper by Fanshawe et al. (2008) demonstrates how carefully 
chosen covariates may eliminate the need to accommodate spatio-temporal correlation in the 
residuals, but the model in that paper assumes a uniform time trend across a relatively small 
spatial area. Paciorek et al. (2009) and Sahu et al. (2006) model particulate matter using 
techniques that allow for more complex spatiotemporal interactions, however their estimation 
and prediction procedures are applicable only with relatively balanced monitoring data.  

The pragmatic modeling and prediction procedure described here includes sufficiently 
complex spatio-temporal interactions to accurately account for variation in seasonal patterns at 
different locations; it can accommodate significant amounts of missing data.  We use an 
extensive database of GIS-based covariates in a spatio-temporal generalization of universal 
kriging in order to predict spatial variation in seasonal trends and in 2-week ambient 
concentration levels.  We compute predictions of concentrations at all MESA Air subject 
residences, and then compute estimates of long-term average concentrations as empirical 
averages of the predicted time series at these locations. 

Szpiro et al. (2009) describe a likelihood-based version of the hierarchical model presented 
below and study its statistical properties by applying it to oxides of nitrogen (NOx) in a 
simulation scenario based on a subset of the MESA Air geographic covariates, subject locations, 
and monitoring data.  The present paper focuses on a more pragmatic approach to estimation and 
utilizes a more complete set of covariates and monitoring data to predict PM2.5 concentrations at 
the homes of all MESA Air subjects.  We use the Los Angeles study area as an example to 
illustrate the data structure and modeling approach.  In order to make predictions at all MESA 
Air subject homes, we fit the model separately in four geographic regions covering the six 
MESA Air study areas: Southern California, a Midwest region spanning Minneapolis-St Paul 
and Chicago, a Northeast region spanning Baltimore and New York City, and North Carolina.  

The outline of this paper is as follows.  In Section 2 we describe the monitoring data as well 
as the geographic covariates that are available to inform predictions.  In Section 3 we describe 
our hierarchical model, and in Section 4 we give a detailed account of the pragmatic multi-step 
estimation and prediction procedure.  In Section 5 we apply our model to predict concentrations 
at the home addresses of MESA Air subjects in all study areas.  We illustrate the procedure using 
data from the Los Angeles region, and we also show predictions for subjects in all six MESA Air 
regions.  We conclude in Section 6 with a discussion. 

2.  DATA 

2.1  AQS and MESA Air Monitoring data  

We incorporate data from two types of AQS fixed site monitors, monitors recording PM2.5 
concentrations daily and monitors recording concentrations every third day. We use all 247 
available "non-source oriented" monitors in counties nearby MESA Air subject locations that 
contain a minimum of at least 1 year of continuous data.  We extended the spatial domain as 
necessary to include a minimum of 20 monitors around each MESA Air study city.   

The MESA Air supplementary monitoring for PM2.5 in each of the six study areas collects 
two-week average concentrations under different sampling protocols in two different sets: “fixed 
sites” and “home outdoor” sites.  All of the locations at which data had been collected in the 
California region as of Dec 31, 2006 are shown on the map in Figure 1.  

--- Figure 1 --- 
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There are a total of seven MESA Air fixed sites in the Los Angeles area, one of which is co-
located with an AQS monitor to allow for instrument calibration. These fixed sites began 
measuring two-week average concentrations in November 2005.  There were approximately 40 
measurements per site and a total of 264 “fixed site” measurements during this timeframe. A 
total of 45 “home outdoor” monitoring locations in Los Angeles are also included, and these 
were sampled during two-week periods starting in May 2006. The plan calls for each home to be 
sampled two times, in different seasons.  (Not all homes were sampled twice before the end of 
2006, the closing date for the database for the analysis in this manuscript.)   Figure 2 presents a 
schematic illustration of the spatio-temporal sampling scheme combining the various AQS 
(EPA) and MESA Air monitoring sites.  It does not illustrate any irregular missing data and 
variation in start times for MESA AIR fixed sites. 

--- Figure 2. --- 

For this analysis all AQS data are summarized at the 2-week time scale of the MESA Air 
monitoring campaigns.  One practical feature of this data structure is that 2-week mean pollutant 
concentrations have far simpler temporal structure than daily data which demonstrate high 
temporal autocorrelation.  Figure 3 shows four example time series on the 2-week time scale.  
We computed overlapping 2-week averages of PM2.5 concentrations from AQS monitoring sites 
because the MESA Air monitoring periods in the Riverside area to the east were offset one week 
from the monitoring periods for central and coastal Los Angeles. These 2-week averages are 
centered on the Wednesday midpoints of the MESA Air 2-week sampling periods.  We required 
at least 4 valid daily AQS observations for computation of a 2-week mean (actually a mean over 
15 days).  For this preliminary analysis we do not account for differences between monitor types 
or sampling density (i.e. daily vs. every 3rd day).  Monitoring sites sampling only every 6th day 
did not provide enough data to estimate valid 2-week averages. 

--- Figure 3. --- 

Figure 3 shows four PM2.5 series after a log transformation of two-week averages. The three 
AQS monitoring sites are located: just northwest of the main concentration of MESA Air 
subjects in central LA (060371002), in the north central area of the concentration of MESA Air 
subjects (060372005), and in the Riverside area to the east (060658001).  We note similar, but 
slightly varying temporal trends as depicted by the smooth curves (explained in section 4) and 
variation in the long-term mean concentration.   

The final short time series presents one of the MESA AIR fixed sites in the coastal area of 
Los Angeles County.  The black time trend drawn on this plot is largely determined by an 
average of the trends from the AQS sites nearest this MESA AIR fixed site.  We must be able to 
spatially interpolate the trend at MESA Air monitoring sites in order to make use of these data in 
the estimation of a long-term mean concentration.   

2.2  GIS-based geographical covariates 

Our strategy for predicting concentrations at locations and times without measurements 
includes the use of regression models with geographic covariates. This is often termed “land use” 
regression (LUR) (Moore et al. 2007; Ross et al. 2007). Our application of LUR is embedded in 
a hierarchical spatio-temporal model that incorporates flexible correlation structures. We 
consider a variety of geographic covariates, including:  (i) indirect measures of traffic influences 
provided by distances to major roads (major roads identified by census feature class codes A1-



  6 

A3), together with lengths of such roads in seven circular buffers of 50 to 750 meters around 
sites of interest, (ii) average population density (number of people per square km in the 
blockgroup where the monitor or participant is located), (iii) percentages of land in circular 
buffers described by various land use categories such as commercial property, cropland, 
industrial property, and residential property. These are all derived using the ArcGIS (ESRI, 
Redlands, CA) software package. The population density is calculated from publicly available 
U.S. Census Bureau data, and the roadway variables are derived from the proprietary TeleAtlas 
Dynamap 2000 roadway network.  In total we considered approximately 200 possible covariates 
accounting for the road and land use variables measured in seven nested circular buffers.   
Covariates were screened prior to analysis and those with essentially no variability in a given 
study region (e.g. percent of cropland in Los Angeles) were omitted.   The number of non-trivial 
covariates remaining for analysis ranged from 41 for Southern California to 66 for the Northeast 
region (including geographic coordinates). 

3.  COMPONENTS OF THE SPACE-TIME HIERARCHICAL MODEL  

Our statistical model is comprised of a spatio-temporal trend model and spatio-temporal 
residuals.    This decomposition of space-time concentrations (for log-transformed 2-week 
averages) can be written 

, ( , ) ( , )s tY s t s tm e= +  
where s indexes space, t time, µ is the trend surface and �  is the residual surface.  Our approach 
accounts for spatial variability in temporal trends in order to make use of the complex spatio-
temporal monitoring data from the combined AQS and MESA Air monitoring campaigns as well 
as a possibly nonstationary spatial covariance structure in these data.  Our proposed model 
includes sufficiently complex spatio-temporal interactions to account for both variations in 
seasonal patterns at different locations and changes over time in the configuration of sites 
available for spatial predictions.  It accommodates the fact that air quality parameters 
demonstrate systematic time trends and seasonality, that these time trends vary in space, even 
over relatively small metropolitan area spatial scales, and that the details of the trend and 
seasonality vary somewhat from year to year (and, hence, are not modeled well by simple 
sinusoids).    

We write the temporal trend at location s as a linear combination of m smooth, orthogonal, 
temporal basis functions 

  
f

j
(t) : 

 0 1
( , ) ( )

m

s js jj
s t f tm b b

=
= +�  (1) 

We compute the 
  
f

j
(t)  from data and therefore refer to them as smoothed empirical orthogonal 

functions (SEOFs) (Fuentes et al., 2006).   These basis functions are defined to have temporal 
averages equal to zero so that   b0s represents the long-term temporal mean.  We will demonstrate 
that the linear combination of a small number of these SEOFs is sufficient to characterize the 
variation in temporal trends resulting in residuals with negligible temporal correlation.   

The coefficients of this model are the amplitudes of the temporal basis function patterns.  
They are modeled to vary systematically in space according to regressions on q spatial covariates 
assembled into an  N ´ q design matrix X : 
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where 1, , Ns s�  denote the spatial locations of the N monitoring sites, and  Xk  is the   N ´ 1 vector 

of values on the kth spatial covariate with regression coefficients 
 
a

jk
.  The spatial covariance 

model, ( )e jfS , needs to be estimated for each of the 1, ,j m= �  spatial regressions (also called 

universal krigings).  We fit standard exponential spatial correlation functions with nugget effects.  

 We assume the spatio-temporal residuals   e(s,t)  are temporally independent but spatially 
correlated with a common covariance for all time periods, written as 
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where the spatial correlation matrix 
 
Se(f e ) , with spatial correlation parameters f e , is computed 

using the Sampson-Guttorp spatial-deformation model for nonstationary spatial covariance 
(Damian et al., 2003).   This model is based on the assumption that the meteorological events 
that can drive high temporal autocorrelation structure on a daily time scale are largely averaged 
out on the 2-week time scale of the MESA Air supplemental monitoring.  Our aim is to separate 
the spatially varying temporal trends from the residuals, thus leaving the residuals from the trend 
essentially uncorrelated in time.   

4.  COMPUTATIONAL STEPS IN ESTIMATION OF THE SPACE- TIME MODEL 

4.1  Smoothed Empirical Orthogonal basis Functions  

The first step in fitting our hierarchical model to data is to derive the smoothed empirical 
orthogonal basis functions (SEOFs), 

  
f

j
(t) , that we use to fit spatially varying temporal trend.  

Sampson introduced an approach to computing SEOFs in Fuentes et al. (2006).  We elaborate 
this approach here.  Consider a spatio-temporal matrix Y of  T  observations at  N  locations in 
space and suppose that we want to approximate Y as a linear combination of m SEOFs.  We 
write 

 Y M +E=  (4) 

where  

  M = Fbbbb , (5) 

 F  being a  T ´ m matrix with columns representing the values of  m temporal basis functions, 
and bbbb  being an  m´ N  matrix of coefficients. 

[ ]0 1( ) ( ) ( )F mf t f t f t= �  
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The most parsimonious set of basis functions for a least squares minimization of E is 
obtained by taking  F  to be the matrix of the first  m left singular vectors of the singular value 
decomposition (SVD): 

 .Y U D V ¢=  (6) 

That is, using the superscript   (m)  to denote sub-matrices with  m columns, write 

 ( )( ) ( ) ( )( )m m m ¢= +Y U D V E   (7) 

This suggests that we take the matrix of empirical orthogonal functions,  F , to be the matrix 
of left singular vectors    U

( m) .  However we wish our temporal basis functions to be defined as 
smooth functions of time, and the usual left singular vectors will not vary smoothly over the row 
(time) index.  In addition, in practice every data matrix  Y  that we consider will have some 
missing data so that we cannot simply compute the usual singular value decomposition.  We 
therefore embed the following “EM-like” procedure (algorithm SVD.em) for computation of an 
“SVD” of a matrix with missing data in a cross-validated smoothing loop to derive SEOFs 
(algorithm SEOF).   

Algorithm SVD.em: 

1. Specify a dimension (rank),  m, for the model 

2. Scale the observations at each monitoring site (columns of  Y ) to norm (variance) one; 
call this matrix Y�  

3. Initialize missing observations in the data matrix Y�  using elements of a rank-one 
approximation provided by a regression through the origin of the data in each column 
(site) on an initial average temporal vector   u1  computed as the set of row averages of 

nonmissing values in Y� . 

4. Compute the rank- m SVD-approximation of the now complete data matrix.  

5. Impute the missing values in Y�  by the elements of the rank- m  SVD approximation just 
computed. 

6. Return to step 4 and iterate to convergence. 

We explicitly specify the scaling in step 2 so that all sites contribute equally to the 
characterizing variability in patterns of temporal trend regardless of the amplitude of trends at the 
sites. This algorithm coded simply in the R system (R Development Core Team, 2009) converges 
adequately fast in all of the applications we have faced.  The computation of EOFs in the 
presence of missing data has also been addressed in the oceanographic literature (Beckers and 
Rixen, 2003). 
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As a practical approach to smoothing the EOFs, we compute smoothing spline regressions 
on the time index using the smooth.spline  function in the R language (with generalized cross-
validation specified by the argument cv=F ).  To choose the dimension of the SEOF model we 
use the BIC criterion computed for predictions of trend in the following cross-validation loop:  

Algorithm SEOF: 

In a cross-validation loop leaving out a random subset of sites in each iteration:     

1. Compute the SVD using the SVD.em algorithm above  

2. Smooth every other observation of  m  left-singular vectors using smooth.spline  (with 
generalized cross-validation specified by argument cv=F ).  Evaluate the fitted spline on 
every weekly observation using the R function predict.smooth.spline .     

3. Compute the trend prediction of every site in the left-out cross validation group by least 
squares regression on the smoothed trend components and evaluate a BIC criterion for fit.  

The smoothing in step (b) uses every other observation so that the smoothing spline would 
not be applied to time series with temporal correlations artificially inflated by the overlapping of 
2-week averages.  We choose as optimal the number of components m with best (or near-best) 
distribution of BIC values in the cross-validated fits. 

Although the SVD.em algorithm can be run on matrices with arbitrary amounts of missing 
data, MESA Air home sites have too little data, only one or two observations, to permit 
meaningful multiple regressions on the smoothed temporal basis functions.  Furthermore, as 
MESA Air fixed site monitors began operation in 2005 or 2006, these sites also have few 
observations compared to the AQS sites.  For this reason the specification of the temporal trend 
functions just described was computed using only the AQS monitoring sites.   

4.2  Trend fits at MESA Air monitoring sites 

Once the SEOFs are determined, the next step in our pragmatic procedure is to estimate 
values for the corresponding trend coefficients 0 2, , ,s s msb b b�  at each spatial location with 
monitoring data.  Since there is nearly complete temporal data at each AQS monitor, we estimate 
the coefficients at these locations by linear regression of the data on the corresponding SEOFs.   

Since the data at MESA Air sites are more limited, we fit trends at these locations using 
information provided by AQS sites in a spatial neighborhood.  In principal we might use a model 
like that of Banerjee and Johnson (2006,), which we would call a “spatial random effects” model.   
However, the fitting of that model as currently implemented is computationally impractical for 
the size of our spatio-temporal datasets. We choose instead to use local random effects modeling 
strategy so that the fitted trend at a MESA AIR site is a simple empirical Bayes fit with 
shrinkage of trend model coefficients to the average trend of those AQS sites in a local 
neighborhood.  We chose neighborhood sizes of 25 to 40 km in different regions in order to 
assure that at least three neighboring AQS sites were used in this fitting at each of the MESA Air 
sites.  The random effects regression models were computed by REML using the lmer  function 
of the lme4  package for the R system (http://cran.r-project.org/web/packages/lme4/). 

The shape of the temporal trends determined by the coefficients 1 2, ,s sb b �  computed this 
way is necessarily determined almost entirely by the neighboring AQS sites as the MESA Air 
time series are too short to carry much weight.  However, to assure that the MESA Air 
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observations contribute as much as possible to estimation of the long-term average coefficients 

  b0s, rather than use the REML estimate we used the estimated coefficients 1 2
ˆ ˆ ˆ, , ,s s msb b b� , to 

detrend the MESA Air observations, computing 

 
1

ˆ ( )
md

st st js jj
Y Y f tb

=
= - �  (8) 

and then take the average of the detrended observations as an estimate of the long-term average 

 
  

öb
0s

=
1
T

Y
st
d

t
� . (9) 

Fitted trends computed by this procedure appear appropriate by visual inspection.  In 
principal, estimated trend coefficients should be influenced by the spatial covariates as indicated 
in equation (2).  That is the case in our likelihood-based approach to the hierarchical model 
(Szpiro et al., 2009), but covariates are not incorporated at this stage of our sequential fitting 
procedure.  Fitted trend coefficients are used to compute the spatial regression models as 
explained in the following sub-section. 

4.3  Spatial regression by Partial Least Squares (PLS) 

Our hierarchical model proposes that the spatial variation in the parameters ˆ jsb  of the 

temporal trend models can be modeled via regression on spatial covariates.  The GIS-based 
dataset of spatial covariates for PM2.5 concentrations provides substantial numbers of highly 
correlated spatial covariates.  For example, the composite length of A1 roads in buffers of, say, 
400 meters around specified locations are highly correlated with lengths of roads in 500 meter 
buffers and negatively correlated with the distance to the nearest A1 road.  Percentages of 
property in various land use categories are similarly correlated across buffer sizes and, for 
example, percentages of land classified residential in a buffer are substantially negatively 
correlated with percentages of land classified as commercial.  Model specification with large sets 
of multicollinear predictors typically involves either (a) variable selection, (b) shrinkage or 
regularization, perhaps including variable selection as in a “lasso” approach (http://www-
stat.stanford.edu/~hastie/Papers/LARS/), or (c) regression on a smaller number of composite 
covariate scores.  While our fundamental concern is the quality of predictions, we prefer not to 
choose a method that would select one particular buffer size for inclusion in a model ignoring 
neighboring buffer sizes, or one particular land use categorization at the expense of a correlated 
land use categorization.  We choose, instead, to regress on a small number of composite 
covariate scores using the method of PLS regression to define the composite scores.  The 
description of the composite scores in terms individual variable loadings can be useful as it 
facilitates comparison of regression models across the four geographic modeling regions.  PLS 
regressions were computed using the pls package for the R system (http://cran.r-
project.org/web/packages/pls). 

Almost all the numeric land use covariates considered here have skewed distributions and 
are log-transformed for analysis.  Most of the spatial covariates fall into one of three groups: (1) 
shortest distances to roads and commercial properties, (2) lengths of roads of different classes 
(A1, A2, A3) within buffers, and (3) percentage of property in difference land use categories in 
buffers.  We have chosen to log-transform all of the numerical scores except for the “angle” to 
A1/A2/A3 road variables and the “residential” land use variables which span the entire 0-100 
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percent range.  Log-transformations were computed after selection of an empirically determined 
constant to add in order to deal with zero scores.  To be considered for analysis we require a 
covariate to have more than 5 observations or 5% of the observations as non-zero.  Nearly 200 
covariates were coded, including land use classes such as “mining” and “wetlands” which were 
zero for all or nearly all monitoring sites in many regions, but the four regions we modeled 
yielded between 41 and 66 covariates satisfying this criterion. 

The code in the pls package for the R system computes conventional leave-one-out cross-
validatory assessments of predictions of these regression models.  However, these cross-
validations assume a modeling framework with spatially independent errors.  Since our 
hierarchical model includes spatial correlation, we choose the dimension of the PLS regression 
by cross-validation with a universal kriging prediction involving component scores defined by 
the PLS algorithm and a model for the spatial covariance structure of the residuals from those 
regressions as indicated in equation (2).  We computed spatial covariance matrices ( )e jfS  in 

terms of exponential variogram models fitted to the residuals of the PLS regressions using the 
likfit  function in the geoR package for the R system (http://cran.r-
project.org/web/packages/geoR). 

4.4  Residual covariance modeling 

The hierarchical model of equations (1)-(3) involves a spatial covariance matrix 
 
Se(f e )  for 

the spatio-temporal residuals in equation (2).  The structure of, 
 
Se(f e ) , is estimated using the 

Sampson-Guttorp deformation model for nonstationary spatial covariance fitted to an empirical 
spatial covariance matrix computed from the spatio-temporal matrix of residuals from the site-
specific trend models for the AQS monitoring sites.  That is, we compute residuals 

 ,ˆ ˆ ˆ( , ) ( , ) , 1, ,
iit i s t is t Y s t i Ne e m= = - = �  (10) 

where  

 0 1
ˆ ˆˆ ( , ) ( )

i i

m

i s js jj
s t f tm b b

=
= + �  (11) 

with parameter estimates 0 1
ˆ ˆ ˆ, , ,

i i is s msb b b�  computed at these AQS sites as explained in section 

4.2.   We compute a covariance matrix with elements ˆ ˆcov( , )ij it jts e e=  based on empirical 

covariances over time between time series of residuals at locations is  and js .  Because of 

possibly substantial amounts of missing data, we use an EM algorithm to compute or estimate 
this spatial covariance matrix from an incomplete data matrix.  The spatial deformation model 
expresses spatial correlations as  

 
  
cor(e(si ,t),e(sj ,t)) = gq d(si ) - d(sj )( ) (12) 

where   d(s)  is a smooth deformation of the coordinate system and 
  
gq (h)  is the exponential 

spatial correlation model with parameter q .  We fit this model, estimating q  and the smooth 
deformation   d(s)  as a pair of thin-plate splines using the Bayesian computations explained and 
illustrated in Damian et al (2001, 2003). 
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4.5  Cross-validated spatio-temporal predictions 

We predict concentrations at subject homes using the hierarchical model described above.  
Our methodology incorporates covariates and spatial interpolation of long-term average and 
seasonal trends based on spatial correlation model, a procedure that may be regarded as a 
generalization of “universal kriging” or “kriging with external drift” (Wackernagel 2003).  
Specifically, given estimates of the parameters of the components of the hierarchical model as 
explained in sections 4.1-4.4, spatio-temporal predictions at target locations 0s  are computed as 

 
0 , 0 0

ˆ ˆˆ ( , ) ( , )s tY s t s tm e= +  (13) 

where  

 
0 00 0 1

ˆ ˆˆ ( , ) ( )
m

s js jj
s t f tm b b

=
= +�  (14) 

Each of the 
0

ˆ
jsb  is computed by universal kriging using the PLS component scores as spatial 

covariates and the spatial covariance models underlying the estimates of the matrices ( )e jfS .  

The spatio-temporal residual field 0ˆ( , )s te , being mean zero, is computed by a simple kriging 
calculation with the spatial covariances defined by the spatial deformation model underlying the 
spatial covariance matrix 

 
Se(f e ) .  Estimates are computed for each two week period indexed by 

t using all monitoring data available at that time point from the AQS, MESA Air fixed, and 
MESA Air home monitors.   

5.  APPLICATION 

Figure 4 presents the results of the calculation of the SEOFs by the algorithm of section 4.1.  
The unsmoothed SEOFs include a lot of short temporal scale variation and there is a 
considerable loss of explanatory power as a result of the smoothing.  The unsmoothed first 
singular vector explains over 70% of the variation in the 24 log-transformed AQS time series 
while the SEOF explains only 27.5%.  This first component reflects a long-term decrease in 
PM2.5 levels across most of the sites over these six years and seasonal structure that is quite 
variable from year-to-year.  The second SEOF, explaining only 9.4% of the variation in the 
original time series, turns out to describe a relatively simple seasonal structure.  (Note that the 
signs of the SEOFs are arbitrary, and both of the SEOFs shown Figure 4 appear in our 
hierarchical model with negative coefficients.)  The nature of these SEOFs varies across the four 
modeling regions.  In North Carolina, for example, the dominant SEOF is a simple seasonal 
pattern like that of the second SEOF here. 

--- Figure 4 --- 

The cross-validatory assessment of the number of PLS components for our land use 
regressions based on universal kriging predictions suggests at most two predictive components 
for all of the trend coefficients in all regions.  This result is strikingly different from the result of 
conventional PLS regression cross-validation without a spatial correlation model.  As many as 10 
PLS components are suggested for the intercept parameter  b0 by conventional cross-validation, 
but substantially better cross-validatory predictions are found using only two components 
together with a spatial correlation model.   Loadings (correlations) of the spatial covariates on the 
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two PLS components for the spatial regression model for the intercept (long-term mean),   b0s, are 
illustrated in Figure 5.  We see that the first component is highly negatively correlated with 
distance to the nearest A1 highway and positively correlated with the distances to the nearest A2 
and A3 highways.  Lengths of A1 vs A2 and A3 roads in buffers show the expected opposite 
correlation pattern.  That is, this first component predictive of long-term mean concentrations 
defines a score that contrasts sites relatively near A1 highways but not necessarily near A2 
and/or A3 roads with sites that are near A2 and /or A3 roads but far from A1 highways.  The 
former sites have higher PM2.5 concentrations on average while the latter sites have lower 
concentrations.  The sites with positive scores (near A1 highways) are largely residential as 
indicated by the positive loadings on the residential land use covariates and contrasting negative 
correlations with the cropland covariates.  The second PLS component defines a commercial vs. 
residential property contrast. 

--- Figure 5 --- 

Scatterplots of cross-validated universal kriging predictions using two component PLS 
regressions for each of the three trend coefficients are presented in Figure 6.  The red dots are the 
MESA Air fixed sites.  We see reasonably good regressions for the long-term mean    b0s and the 

3rd coefficient   b2s  for the amplitude of the simple cyclic seasonal structure, but no ability to 

predict the 2nd trend coefficient   b1s  for the component carrying the long-term decrease in 
concentrations. 

--- Figure 6 --- 

The strength of the spatial correlation structure in the deviations from the fitted trends is 
illustrated in Figure 7.  Panel (c) shows inter-site correlations vs inter-site distance for the 
geographic configuration of sites given in panel (a).  The horizontal axis has units of 100s of 
kms.  After a Sampson-Guttorp deformation of the geographic coordinate system, panel (b), we 
obtain the scatterplot of panel (d) which shows a much clearer spatial correlation structure.  Note 
that correlations do not die out to zero even over the greatest spatial separation. 

--- Figure 7 --- 

Figure 8 presents cross-validated predictions of the 2-week observations for the four sites 
seen in Figure 2.  The dashed black lines represent the long-term means of the trend models 
fitted to the data (black dots) while the dashed red lines are the long-term means of the cross-
validation predictions (green lines).  The predictions generally track the observations quite well 
with slight under-estimation of the long-term mean at LA site 060371002 and slight over-
estimation of the long-term mean at LA site 060372005.  The long-term mean at the Riverside 
site, 060658001, is quite good.   

--- Figure 8 --- 

Model fitting and model predictions as illustrated above for the MESA Air Southern 
California study area were carried out similarly for the other three geographic modeling domains, 
the Midwest region spanning Minneapolis-St Paul and Chicago, the Northeast region spanning 
Baltimore and New York City, and North Carolina.  These regions are depicted in Figures 9-11.  
Prediction of long-term averages at the locations of the MESA Air subjects in all six study areas 
are summarized in the boxplots of Figure 12. 
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--- Figure 9 --- 

--- Figure 10 --- 

--- Figure 11 --- 

--- Figure 12 --- 

Results demonstrate the substantially higher and spatially variable PM2.5 concentration 
levels for the MESA Air subject locations in Southern California in contrast to all the other 
MESA Air study areas.  St Paul, MN, Baltimore, MD, and New York City all demonstrate 
similar ranges of concentrations while there is relatively little variation in concentration levels 
for the MESA Air subjects in and around Winston-Salem, NC. 

Conventional “plug-in” estimates of the standard errors of predictions of long-term averages 
could be computed for the final step of our prediction strategy (section 4.5).  However, we 
refrain from computing these estimates as the current model has some recognized deficiencies (it 
does not, for example, account for the differences in precision of two week averages derived 
from the AQS 2-day and daily monitors and from MESA Air monitors) and because such 
standard errors do not account for prediction uncertainty that derives from the multi-step 
pragmatic model-fitting procedure we have employed.   We report instead the accuracy of these 
pragmatic ambient concentration predictions only in terms of descriptive statistics on the cross-
validated (leave-one-out) errors of prediction of long-term mean concentrations for 6 MESA Air 
study areas. 

Table 1 reports first (in rows one and two) means and standard deviations for the fitted long-
term mean concentrations across all the AQS and MESA Air monitoring sites in each of the 
study regions. We then report in row three the root-mean-square error of the cross-validated 
predictions at these sites.  The maps in Figures 1 and 9-11 show that these descriptive statistics 
pertain to monitoring sites over geographic areas substantially exceeding the spatial domain of 
the MESA Air subjects.  We therefore computed these same summary statistics on just the 
MESA Air fixed sites which were located within the domains of the MESA Air subjects.  These 
sites provide more relevant characterizations of the accuracy of our model predictions, albeit for 
a relatively small number of sites in each region. 

We see that the uncertainty of long-term estimates is similar across regions, about 3% to 5% 
of the mean.  Comparison of standard deviations of long-term means to cross-validated root-
mean-squared errors indicates that predictions are capturing meaningful intra-urban spatial 
variability in some areas including California, but these root-mean-square errors are nearly as 
large as the standard deviations in some of the other study areas such as North Carolina.  In 
future work we expect improved city-specific spatio-temporal predictions and lower uncertainty 
using new GIS computations and additional land use and traffic covariates. Furthermore, 
uncertainty will be assessed by model-based standard errors using the likelihood modeling 
computations of Szpiro et al. (2009) as well as cross-validation. 
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6.  DISCUSSION 

The current pragmatic PM2.5 modeling and long-term ambient concentration predictions 
described here are based on the first phase of data collection by the MESA Air study.  Revised 
analyses will be based on monitoring data complete through 2009 and improved measures of our 
GIS-based covariates including measures of traffic volumes not available for the current 
analyses.  Nonetheless, there are a number of important contributions of the data analyses and 
results presented here. 

We have obtained insight into model selection, including the importance of accounting for 
the spatial correlation model in using cross-validation to select the number of PLS components 
for the mean model.  We benefitted by using the MESA Air supplemental monitoring data in 

addition to AQS data to determine estimates of model parameters 
  
öb

sj
 at both AQS and MESA 

Air fixed sites for this regression modeling.  Estimates of long-term average ambient PM2.5 
exposure described here are being used in preliminary health effect analyses with the MESA Air 
cohort (Adar et al., 2009, Krishnan et al., 2009 ). 

We will ultimately use the likelihood method reported in Szpiro et al. (2009) because it 
provides a unified framework and gives standard errors (as opposed to cross-validation in this 
paper).  However, much of the model selection work will still be done outside of the likelihood 
framework using the methods developed and reported here.  This includes the specification of 
the SEOFs and the PLS or similar regression model with a universal kriging cross-validation 
approach.   The work here, carried out in parallel to the development of the likelihood method, 
provided the most pragmatic approach to obtaining initial ambient concentration estimates for 
use in our epidemiology studies. 

The current modeling and analysis leaves some problematic issues to be addressed in future 
work.  The most important is dealing appropriately with the fact that 2-week average 
concentrations derive from different monitoring networks (AQS and MESA Air) with different 
monitoring instruments and temporal sampling protocols.  This will require a nested 
specification of spatio-temporal correlation at a daily time scale.  This daily time scale structure 
is also fundamental to a “downscaling” extension of the current model predictions in order to 
obtain estimates at a daily time scale for acute exposure estimation in epidemiologic outcomes 
and, especially cardiovascular events that are expected to be sensitive to acute rather than 
chronic exposure. 

The current model includes only temporal factors (the temporal basis functions) and 
spatially varying covariates.  Further extension of the current modeling will incorporate spatio-
temporal covariates, the most important of which are spatio-temporally varying characterizations 
of the effects of traffic on ambient exposure.  We have extended the likelihood model to 
incorporate as covariates theoretical predictions of pollutant concentrations provided by physics-
based dispersion models, including plume models for the influence of traffic using EPA’s 
CALINE model (Wilton et al. 2009). 

The ultimate objective of the modeling described here is to provide predicted exposures for 
estimating health effects in epidemiology studies.  Up to now, we have used a “plug-in” 
approach that does not account for the additional variability resulting from uncertainty in the 
spatio-temporal prediction procedure.  We have recently developed an efficient bootstrap-based 
approach to incorporating this uncertainty in health effect estimation (Szpiro et al. 2009a).  In 
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future work, we will apply this methodology in conjunction with fitting the spatio-temporal 
model using likelihood methods in order to obtain corrected standard errors for the disease model 
parameters of interest. 
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 Table 1.  Descriptive statistics on the cross-validated (leave-one-out) errors of prediction of 
long-term mean concentrations for 4 major modeling regions 

All Sites MESA Air Fixed Sites Data  

Scale 

Site 

Mean SD RMSE Mean SD RMSE 

CA 2.85 0.27 0.15 3.02 0.15 0.04 

IL 2.66 0.13 0.09 2.67 0.12 0.04 

MN 2.30 0.14 0.10 2.36 0.07 0.03 

MD 2.70 0.08 0.07 2.76 0.06 0.03 

NY 2.61 0.11 0.09 2.68 0.18 0.03 

Log 

NC 2.66 0.06 0.07 2.69 0.03 0.03 

CA 17.84 4.47 2.42 20.64 3.04 0.94 

IL 14.45 1.89 1.31 14.59 1.93 0.68 

MN 10.07 1.32 0.88 10.61 0.72 0.34 

MD 14.90 1.23 1.05 15.77 0.90 0.42 

NY 13.66 1.58 1.21 14.70 2.52 0.44 

Original 

NC 14.34 0.92 0.95 14.72 0.39 0.40 
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Figure 1. Monitoring and subject home locations in the Los Angeles region. 
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Figure 2. Schematic of the planned temporal sampling pattern for AQS monitors and the 
MESA Air fixed and home sites.   
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Figure 3. Example log-transformed two-week average PM2.5 data at AQS and MESA Air 
fixed sites in the Los Angeles region.  The black points are measurements and the lines 
represent estimated temporal trends based on the SEOF model (see Section 4.2).  The 
locations of each of these sites are shown on the map in Figure 1.   
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Figure 4. Smoothed empirical orthogonal basis functions for log-transformed two-week 
average conncetrations of PM2.5 in the Los Angeles area.  The signs of the SEOFs are 
arbitrary, and both of the SEOFs shown below appear in our hierarchical model with 
negative coefficients. 
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Figure 5. Loadings of the two partial least squares (PLS) components used the model the 
mean in the long-term average spatial field for the Los Angeles study region. 
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Figure 6. Cross-validated predictions of the   b0s, 1sb , and 2sb  spatial fields of coefficients for 
the long-term average and two SEOF temporal trends in the Los Angeles region.  The black 
dots represent the AQS locations while the red dots are the MESA Air fixed sites. 
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Figure 7. Spatial structure of the spatio-temporal residuals before (a and c) and after (b and d) 
transformation using the Sampson-Guttorp method to account for nonstationarity.   

(a) (b) 

 
(c ) (d) 
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Figure 8.  Example cross-validated predictions of log-transformed two-week concentrations 
at AQS and MESA Air fixed sites in the Los Angeles region.  The black dots are the 
measured data, the red curves show predicted trends based on the SEOF part of the spatio-
temporal model, and the green lines show two-week average predictions that incorporate the 
spatio-temporal residuals. 
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Figure 9. Monitoring and subject home locations in the midwest region spanning the 
Minneapolis-St Paul and Chicago MESA Air study areas. 
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Figure 10. Monitoring and subject home locations in the northeast region spanning the New 
York and MESA Air study areas. 
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Figure 11. Monitoring and subject home locations in the North Carolina region. 
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Figure 12. Predicted long-term average concentrations of PM2.5 (ppb) at all subject home 
locations in each of the six MESA Air study areas. 

 


