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1. INTRODUCTION

Statistical analyses of the health effects of allytion have increasingly used GIS-based
covariates for prediction of ambient air quality’iand-use” regression models. More recently
these regression models have accounted for spatialation structure in combining monitoring
data with land-use covariates. The current papgdsan these concepts to address spatio-
temporal prediction of ambient concentrations afipalate matter with aerodynamic diameter
less than 2.5m (PM,5) on the basis of a model representing spatialtying seasonal trends
and spatial correlation structures. Our hierardhoathodology provides a pragmatic approach
that fully exploits regulatory and other supplena¢monitoring data which jointly define a
complex spatio-temporal monitoring design.

The specification of a modeling approach depends mamber of factors that will vary
depending on the scientific purpose of the studyhith the predicted exposures will be
applied. Among these are:

The spatial resolution and scale of the monitodata: number and spacing of monitors,
and the spatial extent of the modeling domain.fdbént strategies may be appropriate
depending on whether one is addressing an urban ‘@anesoscale” regions, or larger
scale regions such as those covering all of the €a$t of the Mississippi.

The temporal scales of monitoring data, with houilily, 2-week, and monthly scales
available in different applications.

The characteristics of the monitoring deviceshasé¢ may vary for data from multiple
monitoring networks.

The characteristics of relevant spatio-temporaboates, including their spatial and
temporal scales.

The spatial and temporal scales of interest foreting and prediction.

Our work has been developed for the Multi-Ethnigdytof Atherosclerosis and Air
Pollution (MESA Air). MESA Air is a cohort study ifued by the U.S. Environmental Protection
Agency (EPA) that emphasizes accurate predictiantcd-urban variation in individual
exposures to ambient air pollutants in order teagaish its primary aim of assessing the
relationship between chronic exposure to air pmfuand sub-clinical cardiovascular disease.
The MESA Air cohort includes more than 6000 mald temale subjects in six major U.S.
metropolitan areas (Los Angeles, CA; New York, NDhicago, IL; Minneapolis-St. Paul, MN;
Winston-Salem, NC; and Baltimore, MD). The prim8gSA Air hypotheses relate to chronic
exposure to Pl We note that final exposure estimates in MESAVAIF integrate predictions
of outdoor concentrations with additional subjestdl data, including time-activity patterns,
home infiltration characteristics, address histaryd employment address (Cohen et al., 2009).

Our aim is to provide point spatial predictiondaig-term average concentrations at the
residences of MESA Air subjects. A primary sous€enonitoring data is the EPA’s regulatory
Air Quality System (AQS) repository. The AQS netwarcludes a number of fixed site
monitors in each region, each of which measuresemhhir pollution levels on a regular basis
(every 1-6 days for PM). Although there are some missing data, most A provide
nearly complete Pl concentration time series over several yearsedt $ipatial locations. The
analysis here uses data for the time period 200&-20



The MESA Air study conducted supplemental air gyationitoring campaigns beginning in
2005 to provide additional concentration data itheoito better model and predict intra-urban
variation in air quality not well-represented by thQS regulatory monitoring network. The
objective of the MESA Air monitoring is to more cphately sample a spatial design space that
emphasizes traffic-related pollution at small sgdagcales (100s of meters) and to capture data at
actual subject home locations. For logistical reasthe supplementary monitoring data are
sampled as two-week averages based on an unbaldesigt that results in significant amounts
of missing data at many measurement locations (€ehal. 2009). In each region, the
monitoring includes: (a) 2-5 fixed site monitor®ywding up to 1.5 years (through 2006) of 2-
week observations, and (b) rotating sets of 2-wamervations at (typically) 4 subject homes,
with monitors moved every two weeks to cover altotabout 50 subject homes, each observed
twice. The composite of the AQS and MESA Air moriitg data provide a rich but highly
irregular spatio-temporal monitoring database falgsis.

Statistical approaches to the modeling of spatiopi@ral air quality monitoring data for
ambient exposure estimation typically derive from@del that decomposes observations into
spatio-temporalrend and spatio-temporaésiduals,or variation around the trend. Even after
specification of the scientific questions and that®-temporal scales of interest, different
statisticians will hold different perspectives amihmuch spatial and temporal structure is to be
represented as trend and how much as residualexaonple, considering just time series of air
guality data one may explicitly model a trend udiegated moving averages as in the KZ filter
(Rao and Zurbenko, 1994; Wise and Comrie, 2005)oua state-space modeling approaches
(e.g. Taylor et al. 2006), spline smoothing, on@e parametric models such as polynomial or
trigonometric series. Alternatively, one can inmmate much of the variation in the residuals by
using a sufficiently rich autocorrelation modelongewhat similar choices arise in modeling
spatial trends and residuals, with different pectpes provided by splines that model the
spatially correlated component semi-parametricadlypart of the mean model and geostatistical
approaches that account for spatial structure reatigted by covariates using a variogram model
for the autocorrelation, although there are mathimalarameworks that allow one to show
equivalence between certain spline and kriging iptieehs (Furrer and Nychka, 2007).

A number of characteristics of the variation in@irality data across the urban scales of
interest in our current work motivate the modelstigategy and the approach to trend and
residual that we present here. We find that altjaality parameters demonstrate systematic
time trends and seasonality, but these time treadsin space, even over relatively small
metropolitan area spatial scales. The detaile®trtend and seasonality vary somewhat from
year to year, so that they are not modeled wedlimple periodic functions like sinusoids or
other trigonometric functions. Finally, characséids of these systematic time trends, including
the long-term mean and amplitude of seasonal vanstcovary spatially and with spatial (or
“land use”) covariates. Thus, even though the anininterest in MESA Air is predicting spatial
variation of long-term average concentrations toveste exposures, the complex spatio-
temporal monitoring design necessitates a stalstiodeling approach that accounts for spatio-
temporal interactions in the data. Otherwise wenoause the spatially rich but temporally
sparse data at MESA Air homes to help in estimatiegong-term averages.

For an overview of general techniques for modetiogelated spatio-temporal data, see
Banerjee et al. (2004). Smith et al. (2003) usesxgectation-maximization (EM) algorithm to
allow for arbitrary missing data patterns, but tireodel does not accommodate complex spatio-



temporal interactions. A recent paper by Fanshetvat. (2008) demonstrates how carefully
chosen covariates may eliminate the need to accalat@spatio-temporal correlation in the
residuals, but the model in that paper assumed@rnmtime trend across a relatively small
spatial area. Paciorek et al. (2009) and Sahu €@06) model particulate matter using
techniques that allow for more complex spatioterapmteractions, however their estimation
and prediction procedures are applicable only watatively balanced monitoring data.

The pragmatic modeling and prediction procedureriesd here includes sufficiently
complex spatio-temporal interactions to accuraaelgount for variation in seasonal patterns at
different locations; it can accommodate significamtounts of missing data. We use an
extensive database of GIS-based covariates intengpenporal generalization of universal
kriging in order to predict spatial variation inasenal trends and in 2-week ambient
concentration levels. We compute predictions ofcemtrations at all MESA Air subject
residences, and then compute estimates of longdeerage concentrations as empirical
averages of the predicted time series at thesédnsa

Szpiro et al. (2009) describe a likelihood-basedioa of the hierarchical model presented
below and study its statistical properties by apyyt to oxides of nitrogen (NQin a
simulation scenario based on a subset of the MEBA&ographic covariates, subject locations,
and monitoring data. The present paper focusesroare pragmatic approach to estimation and
utilizes a more complete set of covariates and toang data to predict Pp4 concentrations at
the homes of all MESA Air subjects. We use the Rageles study area as an example to
illustrate the data structure and modeling approdwctorder to make predictions at all MESA
Air subject homes, we fit the model separatelyorfgeographic regions covering the six
MESA Air study areas: Southern California, a Midtvegjion spanning Minneapolis-St Paul
and Chicago, a Northeast region spanning BaltimateNew York City, and North Carolina.

The outline of this paper is as follows. In Sectibwe describe the monitoring data as well
as the geographic covariates that are availablgdom predictions. In Section 3 we describe
our hierarchical model, and in Section 4 we givdetiled account of the pragmatic multi-step
estimation and prediction procedure. In SectiaveSapply our model to predict concentrations
at the home addresses of MESA Air subjects intatlysareas. We illustrate the procedure using
data from the Los Angeles region, and we also ghi@dictions for subjects in all six MESA Air
regions. We conclude in Section 6 with a discussio

2. DATA
2.1 AQS and MESA Air Monitoring data

We incorporate data from two types of AQS fixe@ sitonitors, monitors recording PM2.5
concentrations daily and monitors recording conegioins every third day. We use all 247
available "non-source oriented" monitors in countiearby MESA Air subject locations that
contain a minimum of at least 1 year of continudata. We extended the spatial domain as
necessary to include a minimum of 20 monitors adoeecch MESA Air study city.

The MESA Air supplementary monitoring for PM2.5dach of the six study areas collects
two-week average concentrations under differentpdiagn protocols in two different sets: “fixed
sites” and “home outdoor” sites. All of the locats at which data had been collected in the
California region as of Dec 31, 2006 are shownhannhap in Figure 1.

--- Figure 1 ---



There are a total of seven MESA Air fixed sitesha Los Angeles area, one of which is co-
located with an AQS monitor to allow for instrumeadibration. These fixed sites began
measuring two-week average concentrations in Noeer2®05. There were approximately 40
measurements per site and a total of 264 “fixesl siteasurements during this timeframe. A
total of 45 “home outdoor” monitoring locationslins Angeles are also included, and these
were sampled during two-week periods starting iry@06. The plan calls for each home to be
sampled two times, in different seasons. (Nohathes were sampled twice before the end of
2006, the closing date for the database for théysisan this manuscript.) Figure 2 presents a
schematic illustration of the spatio-temporal sangpscheme combining the various AQS
(EPA) and MESA Air monitoring sites. It does nikdstrate any irregular missing data and
variation in start times for MESA AIR fixed sites.

--- Figure 2. ---

For this analysis all AQS data are summarizedativeek time scale of the MESA Air
monitoring campaigns. One practical feature of thata structure is that 2-week mean pollutant
concentrations have far simpler temporal structinia® daily data which demonstrate high
temporal autocorrelation. Figure 3 shows four epl@ntime series on the 2-week time scale.
We computed overlapping 2-week averages of Pédncentrations from AQS monitoring sites
because the MESA Air monitoring periods in the Rside area to the east were offset one week
from the monitoring periods for central and coaktzd Angeles. These 2-week averages are
centered on the Wednesday midpoints of the MESA2Aireek sampling periods. We required
at least 4 valid daily AQS observations for compataof a 2-week mean (actually a mean over
15 days). For this preliminary analysis we doaxatount for differences between monitor types
or sampling density (i.e. daily vs. ever§ 8ay). Monitoring sites sampling only ever) @ay
did not provide enough data to estimate valid 2iaerages.

--- Figure 3. ---

Figure 3 shows four Pp4series after a log transformation of two-week agesa The three
AQS monitoring sites are located: just northweghefmain concentration of MESA Air
subjects in central LA (060371002), in the northtca area of the concentration of MESA Air
subjects (060372005), and in the Riverside ar¢gag@ast (060658001). We note similar, but
slightly varying temporal trends as depicted byshwoth curves (explained in section 4) and
variation in the long-term mean concentration.

The final short time series presents one of the MB®R fixed sites in the coastal area of
Los Angeles County. The black time trend drawritos plot is largely determined by an
average of the trends from the AQS sites nearesMBSA AIR fixed site. We must be able to
spatially interpolate the trend at MESA Air monitay sites in order to make use of these data in
the estimation of a long-term mean concentration.

2.2 GIS-based geographical covariates

Our strategy for predicting concentrations at lmret and times without measurements
includes the use of regression models with geogeagavariates. This is often termed “land use”
regression (LUR) (Moore et al. 2007; Ross et ab7200ur application of LUR is embedded in
a hierarchical spatio-temporal model that incorpegdlexible correlation structures. We
consider a variety of geographic covariates, indgd (i) indirect measures of traffic influences
provided by distances to major roads (major roddstified by census feature class codes Al-



A3), together with lengths of such roads in seviecutar buffers of 50 to 750 meters around
sites of interest, (ii) average population dengitymber of people per square km in the
blockgroup where the monitor or participant is kech, (iii) percentages of land in circular
buffers described by various land use categoriels as commercial property, cropland,
industrial property, and residential property. Tehage all derived using the ArcGIS (ESRI,
Redlands, CA) software package. The populationitieisscalculated from publicly available
U.S. Census Bureau data, and the roadway varialdederived from the proprietary TeleAtlas
Dynamap 2000 roadway network. In total we congidapproximately 200 possible covariates
accounting for the road and land use variables amedsn seven nested circular buffers.
Covariates were screened prior to analysis ancethwith essentially no variability in a given
study region (e.g. percent of cropland in Los Aegglvere omitted. The number of non-trivial
covariates remaining for analysis ranged from 41Southern California to 66 for the Northeast
region (including geographic coordinates).

3. COMPONENTS OF THE SPACE-TIME HIERARCHICAL MODEL

Our statistical model is comprised of a spatio-teraptrend model and spatio-temporal
residuals. This decomposition of space-time eatrations (for log-transformed 2-week
averages) can be written

Yo =mMs 9+ €s)

wheres indexes space time, u is the trend surface ang the residual surface. Our approach
accounts for spatial variability in temporal tremd®rder to make use of the complex spatio-
temporal monitoring data from the combined AQS RIS A Air monitoring campaigns as well
as a possibly nonstationary spatial covariancetstre in these data. Our proposed model
includes sufficiently complex spatio-temporal istetions to account for both variations in
seasonal patterns at different locations and cleager time in the configuration of sites
available for spatial predictions. It accommodakesfact that air quality parameters
demonstrate systematic time trends and seasorthliythese time trends vary in space, even
over relatively small metropolitan area spatialsgaand that the details of the trend and
seasonality vary somewhat from year to year (aad¢cé, are not modeled well by simple
sinusoids).

We write the temporal trend at locatisas a linear combination of smooth, orthogonal,
temporal basis functionsﬁj (t):

ms )=+ T b5 (1)

We compute thef (t) from data and therefore refer to thensamothed empirical orthogonal
functions(SEOFs) (Fuentes et al., 2006). These basigifunscare defined to have temporal

averages equal to zero so titgt represents the long-term temporal mean. We ithonstrate
that the linear combination of a small number efsth SEOFs is sufficient to characterize the
variation in temporal trends resulting in residuaith negligible temporal correlation.

The coefficients of this model are the amplitudethe temporal basis function patterns.
They are modeled to vary systematically in spacerakng to regressions apspatial covariates
assembled into alN *~ g design matrix :
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wheres, ,s, denote the spatial locations of tRemonitoring sites, an&, is the N~ 1 vector
of values on th&" spatial covariate with regression coefficieatjg The spatial covariance
model, S,(7;) , needs to be estimated for each of frel, ,m spatial regressions (also called
universal krigings). We fit standard exponentftgal correlation functions with nugget effects.

We assume the spatio-temporal residugtst) are temporally independent but spatially
correlated with a common covariance for all timequs, written as

€= N(0.S,(7.)) 3)

where the spatial correlation matr$,(7,) , with spatial correlation parametefs, is computed

using the Sampson-Guttorp spatial-deformation méatehonstationary spatial covariance
(Damian et al., 2003). This model is based oradsmption that the meteorological events
that can drive high temporal autocorrelation stiteon a daily time scale are largely averaged
out on the 2-week time scale of the MESA Air supp@tal monitoring. Our aim is to separate
the spatially varying temporal trends from the dasis, thus leaving the residuals from the trend
essentially uncorrelated in time.

4. COMPUTATIONAL STEPS IN ESTIMATION OF THE SPACE- TIME MODEL

4.1 Smoothed Empirical Orthogonal basis Functions

The first step in fitting our hierarchical modeldata is to derive the smoothed empirical
orthogonal basis functions (SEOFé}.(t), that we use to fit spatially varying temporaird.

Sampson introduced an approach to computing SEOFgantes et al. (2006). We elaborate
this approach here. Consider a spatio-temporaixnétof T observations alN locations in
space and suppose that we want to approximate a linear combination af SEOFs. We
write

Y=M+E (4)
where
M =Fb, (5)

F being aT =~ m matrix with columns representing the valuesyofemporal basis functions,
and b being anm” N matrix of coefficients.

F=[f,) f.() f.()]
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The most parsimonious set of basis functions fieaat squares minimization Bfis
obtained by taking- to be the matrix of the firai left singular vectors of the singular value
decomposition (SVD):

Y =UDV¢ (6)
That is, using the superscrifrh) to denote sub-matrices with columns, write
% =U(m)(D("‘)(V(”’)<I) +E 7)

This suggests that we take the matrix of empilecdiogonal functionsk , to be the matrix
of left singular vectorsJ™ . However we wish our temporal basis functionbealefined as
smoothfunctions of time, and the usual left singulartees will not vary smoothly over the row
(time) index. In addition, in practice every datatrix Y that we consider will have some
missing data so that we cannot simply compute sli@luisingular value decomposition. We
therefore embed the following “EM-like” proceduadorithm SVD.em for computation of an
“SVD” of a matrix with missing data in a cross-\gadied smoothing loop to derive SEOFs
(algorithm SEOB,.

Algorithm SVD.em:
1. Specify a dimension (rankjn, for the model
2. Scale the observations at each monitoring sitaifeok of Y ) to norm (variance) one;
call this matrixY

3. Initialize missing observations in the data matrixusing elements of a rank-one
approximation provided by a regression throughattigin of the data in each column

(site) on an initial average temporal vectprcomputed as the set of row averages of
nonmissing values iry .

4. Compute the rankyn SVD-approximation of the now complete data matrix.

5. Impute the missing values M by the elements of the rank- SVD approximation just
computed.

6. Return to step 4 and iterate to convergence.

We explicitly specify the scaling in step 2 so thttsites contribute equally to the
characterizing variability in patterns of temparaind regardless of the amplitude of trends at the
sites. This algorithm coded simply in the R sys{@evelopment Core Team, 2009) converges
adequately fast in all of the applications we hiaged. The computation of EOFs in the
presence of missing data has also been addres#w®zl ageeanographic literature (Beckers and
Rixen, 2003).



As a practical approach to smoothing the EOFs, ameptite smoothing spline regressions
on the time index using theenooth.spline function in the R language (with generalized cross
validation specified by the argumenwt=F ). To choose the dimension of the SEOF model we
use the BIC criterion computed for predictionsreht in the following cross-validation loop:

Algorithm SEOF:
In a cross-validation loop leaving out a randoms&tilof sites in each iteration:
1. Compute the SVD using ti&VD.emalgorithm above

2. Smooth every other observation of left-singular vectors usingmooth.spline (with
generalized cross-validation specified by arguneenE ). Evaluate the fitted spline on
every weekly observation using the R functpedict.smooth.spline

3. Compute the trend prediction of every site in gfe-but cross validation group by least
squares regression on the smoothed trend compaaathisvaluate a BIC criterion for fit.

The smoothing in step (b) uses every other observab that the smoothing spline would
not be applied to time series with temporal cotrefe artificially inflated by the overlapping of
2-week averages. We choose as optimal the nunfilsengonentsn with best (or near-best)
distribution of BIC values in the cross-validatéd.f

Although the SVD.em algorithm can be run on masriegh arbitrary amounts of missing
data, MESA Air home sites have too little data,yase or two observations, to permit
meaningful multiple regressions on the smoothegteal basis functions. Furthermore, as
MESA Air fixed site monitors began operation in 808 2006, these sites also have few
observations compared to the AQS sites. For #asan the specification of the temporal trend
functions just described was computed using ordyAQS monitoring sites.

4.2 Trend fits at MESA Air monitoring sites

Once the SEOFs are determined, the next step ipragmatic procedure is to estimate
values for the corresponding trend coefficiefs, b,., b, at each spatial location with

monitoring data. Since there is nearly completep@ral data at each AQS monitor, we estimate
the coefficients at these locations by linear regian of the data on the corresponding SEOFs.

Since the data at MESA Air sites are more limited,fit trends at these locations using
information provided by AQS sites in a spatial iigrhood. In principal we might use a model
like that of Banerjee and Johnson (2006,), whichweald call a “spatial random effects” model.
However, the fitting of that model as currently ieypented is computationally impractical for
the size of our spatio-temporal datasets. We chimssead to use local random effects modeling
strategy so that the fitted trend at a MESA AIR ssta simple empirical Bayes fit with
shrinkage of trend model coefficients to the averamgnd of those AQS sites in a local
neighborhood. We chose neighborhood sizes of 28 tkm in different regions in order to
assure that at least three neighboring AQS sites used in this fitting at each of the MESA Air
sites. The random effects regression models warguated by REML using thener function
of thelme4 package for the R system (http://cran.r-projegtweb/packages/Ime4/).

The shape of the temporal trends determined bydb#icients b, ,,, computed this

way is necessarily determined almost entirely l®yrteighboring AQS sites as the MESA Air
time series are too short to carry much weightweleer, to assure that the MESA Air



observations contribute as much as possible tmastn of the long-term average coefficients

b,,, rather than use the REML estimate we used theaisd coefﬁmentsbls, bZS, bm_, to
detrend the MESA Air observations, computlng
d _
Yst - Yst - j=1 JS ]( t) (8)
and then take the average of the detrended obgersats an estimate of the long-term average
5 1 d
b=y Y. ©)

Fitted trends computed by this procedure appeaoapte by visual inspection. In
principal, estimated trend coefficients shouldfuenced by the spatial covariates as indicated
in equation (2). That is the case in our likeliddzased approach to the hierarchical model
(Szpiro et al., 2009), but covariates are not ipocaited at this stage of our sequential fitting
procedure. Fitted trend coefficients are usedtopute the spatial regression models as
explained in the following sub-section.

4.3 Spatial regression by Partial Least Squaret &y

Our hierarchical model proposes that the spatiahtian in the parameteréjS of the

temporal trend models can be modeled via regressi@patial covariates. The GIS-based
dataset of spatial covariates for PMoncentrations provides substantial numbers dflhig
correlated spatial covariates. For example, tmeposite length of Al roads in buffers of, say,
400 meters around specified locations are highiyetated with lengths of roads in 500 meter
buffers and negatively correlated with the distatoche nearest A1 road. Percentages of
property in various land use categories are sitygitzorrelated across buffer sizes and, for
example, percentages of land classified resideintialbuffer are substantially negatively
correlated with percentages of land classifiedcasmercial. Model specification with large sets
of multicollinear predictors typically involves bér (a) variable selection, (b) shrinkage or
regularization, perhaps including variable seletas in a “lasso” approach (http://www-
stat.stanford.edu/~hastie/Papers/LARS/), or (c)eggjon on a smaller number of composite
covariate scores. While our fundamental concethagjuality of predictions, we prefer not to
choose a method that would select one particulfieibsize for inclusion in a model ignoring
neighboring buffer sizes, or one particular land categorization at the expense of a correlated
land use categorization. We choose, instead g@ss on a small number of composite
covariate scores using the method of PLS regressidefine the composite scores. The
description of the composite scores in terms irtllial variable loadings can be useful as it
facilitates comparison of regression models actles$our geographic modeling regions. PLS
regressions were computed using plepackage for the R system (http://cran.r-
project.org/web/packages/pls).

Almost all the numeric land use covariates congiddrere have skewed distributions and
are log-transformed for analysis. Most of the spp@bvariates fall into one of three groups: (1)
shortest distances to roads and commercial prege(®) lengths of roads of different classes
(A1, A2, A3) within buffers, and (3) percentagepobperty in difference land use categories in
buffers. We have chosen to log-transform all ef tlumerical scores except for the “angle” to
A1/A2/A3 road variables and the “residential” lamsk variables which span the entire 0-100
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percent range. Log-transformations were computied selection of an empirically determined
constant to add in order to deal with zero scofiesbe considered for analysis we require a
covariate to have more than 5 observations or 5#%ebbservations as non-zero. Nearly 200
covariates were coded, including land use clagasgs & “mining” and “wetlands” which were
zero for all or nearly all monitoring sites in mamggions, but the four regions we modeled
yielded between 41 and 66 covariates satisfyingdhterion.

The code in the pls package for the R system coesprdnventional leave-one-out cross-
validatory assessments of predictions of theseessgsn models. However, these cross-
validations assume a modeling framework with sfigtiadependent errors. Since our
hierarchical model includes spatial correlation,alieose the dimension of the PLS regression
by cross-validation with a universal kriging pre@a involving component scores defined by
the PLS algorithm and a model for the spatial ciewee structure of the residuals from those
regressions as indicated in equation (2). We caetpspatial covariance matric&g(f ;) in

terms of exponential variogram models fitted tordsiduals of the PLS regressions using the
likfit function in thegeoR package for the R system (http://cran.r-
project.org/web/packages/geoR).

4.4 Residual covariance modeling

The hierarchical model of equations (1)-(3) invaleespatial covariance matr& (7 ) for

the spatio-temporal residuals in equation (2). Stnecture of,S_(f), is estimated using the

Sampson-Guttorp deformation model for nonstatiosgatial covariance fitted to an empirical
spatial covariance matrix computed from the sptamporal matrix of residuals from the site-
specific trend models for the AQS monitoring sitdhat is, we compute residuals

&=ds.,9=X,- s Y, FL ,N (10)
where
s )=+ T B fO (11)
with parameter estimateébS ,/31$, ,5m§ computed at these AQS sites as explained in sectio
4.2. We compute a covariance matrix with elemeptscov(§, , & ) based on empirical
covariances over time between time series of redsdat locationss ands; . Because of

possibly substantial amounts of missing data, veeamsEM algorithm to compute or estimate
this spatial covariance matrix from an incompledéadnatrix. The spatial deformation model
expresses spatial correlations as

cor(e(s 1), &(s,.) = g, (d(s) - d(s,)]) (12)

where d(s) is a smooth deformation of the coordinate sysaenhgq(h) is the exponential

spatial correlation model with parametgr We fit this model, estimating and the smooth
deformationd(s) as a pair of thin-plate splines using the Bayes@mputations explained and
illustrated in Damian et al (2001, 2003).
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4.5 Cross-validated spatio-temporal predictions

We predict concentrations at subject homes usiadpigrarchical model described above.
Our methodology incorporates covariates and spat@tpolation of long-term average and
seasonal trends based on spatial correlation magebcedure that may be regarded as a
generalization of “universal kriging” or “krigingitih external drift” (Wackernagel 2003).
Specifically, given estimates of the parameterthefcomponents of the hierarchical model as
explained in sections 4.1-4.4, spatio-temporal jotexhs at target locations, are computed as

Y, =S, 0+ &s, (13)

where
s, 0= B4, + T B () (14)

Each of thelSjSO is computed by universal kriging using the PLS porent scores as spatial
covariates and the spatial covariance models wyidgrthe estimates of the matricg(7 ) .

The spatio-temporal residual fielé(s,, t), being mean zero, is computed by a simple kriging
calculation with the spatial covariances definedh®yspatial deformation model underlying the
spatial covariance matri$_(f_). Estimates are computed for each two week pénidexed by

t using all monitoring data available at that tinoénp from the AQS, MESA Air fixed, and
MESA Air home monitors.

5. APPLICATION

Figure 4 presents the results of the calculatioth@fSEOFs by the algorithm of section 4.1.
The unsmoothed SEOFs include a lot of short tentjscede variation and there is a
considerable loss of explanatory power as a re$dite smoothing. The unsmoothed first
singular vector explains over 70% of the variatiothe 24 log-transformed AQS time series
while the SEOF explains only 27.5%. This first gmment reflects a long-term decrease in
PM2.5 levels across most of the sites over thesgesirs and seasonal structure that is quite
variable from year-to-year. The second SEOF, émxiplg only 9.4% of the variation in the
original time series, turns out to describe a neddy simple seasonal structure. (Note that the
signs of the SEOFs are arbitrary, and both of t8®5s shown Figure 4 appear in our
hierarchical model with negative coefficients.) eTimature of these SEOFs varies across the four
modeling regions. In North Carolina, for examplee dominant SEOF is a simple seasonal
pattern like that of the second SEOF here.

--- Figure 4 ---

The cross-validatory assessment of the number 8fdmponents for our land use
regressions based on universal kriging predictsuggests at most two predictive components
for all of the trend coefficients in all region$his result is strikingly different from the resolt
conventional PLS regression cross-validation witreogpatial correlation model. As many as 10
PLS components are suggested for the interceptnedea 5, by conventional cross-validation,
but substantially better cross-validatory predicsi@re found using only two components
together with a spatial correlation model. Loaditicorrelations) of the spatial covariates on the
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two PLS components for the spatial regression mfwdehe intercept (long-term meany,_, are

illustrated in Figure 5. We see that the first pament is highly negatively correlated with
distance to the nearest Al highway and positivelyetated with the distances to the nearest A2
and A3 highways. Lengths of A1 vs A2 and A3 romdsuffers show the expected opposite
correlation pattern. That is, this first componpredictive of long-term mean concentrations
defines a score that contrasts sites relatively Aéahighways but not necessarily near A2
and/or A3 roads with sites that are near A2 and\®roads but far from Al highways. The
former sites have higher BN concentrations on average while the latter site® hower
concentrations. The sites with positive scorear#e highways) are largely residential as
indicated by the positive loadings on the resiggmdind use covariates and contrasting negative
correlations with the cropland covariates. TheoeddPLS component defines a commercial vs.
residential property contrast.

--- Figure 5 ---

Scatterplots of cross-validated universal krigimgdictions using two component PLS
regressions for each of the three trend coeffisiané presented in Figure 6. The red dots are the

MESA Air fixed sites. We see reasonably good regjans for the long-term mean,_ and the
3 coefficient b, for the amplitude of the simple cyclic seasonalctire, but no ability to

predict the ¥ trend coefficientb, for the component carrying the long-term decrease
concentrations.

--- Figure 6 ---

The strength of the spatial correlation structarthie deviations from the fitted trends is
illustrated in Figure 7. Panel (c) shows intee-gibrrelations vs inter-site distance for the
geographic configuration of sites given in pangl (&Bhe horizontal axis has units of 100s of
kms. After a Sampson-Guttorp deformation of theggaphic coordinate system, panel (b), we
obtain the scatterplot of panel (d) which showsuelnclearer spatial correlation structure. Note
that correlations do not die out to zero even olergreatest spatial separation.

--- Figure 7 ---

Figure 8 presents cross-validated predictions @Pthveek observations for the four sites
seen in Figure 2. The dashed black lines repréberibng-term means of the trend models
fitted to the data (black dots) while the dashetllirees are the long-term means of the cross-
validation predictions (green lines). The predics generally track the observations quite well
with slight under-estimation of the long-term meah A site 060371002 and slight over-
estimation of the long-term mean at LA site 060320The long-term mean at the Riverside
site, 060658001, is quite good.

--- Figure 8 ---

Model fitting and model predictions as illustratgabve for the MESA Air Southern
California study area were carried out similarly fiee other three geographic modeling domains,
the Midwest region spanning Minneapolis-St Paul @hétago, the Northeast region spanning
Baltimore and New York City, and North Carolinah€Be regions are depicted in Figures 9-11.
Prediction of long-term averages at the locatidith® MESA Air subjects in all six study areas
are summarized in the boxplots of Figure 12.
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--- Figure 9 ---
--- Figure 10 ---
--- Figure 11 ---
--- Figure 12 ---

Results demonstrate the substantially higher aatiadly variable PM2.5 concentration
levels for the MESA Air subject locations in Soutih€alifornia in contrast to all the other
MESA Air study areas. St Paul, MN, Baltimore, Mdhd New York City all demonstrate
similar ranges of concentrations while there iatrely little variation in concentration levels
for the MESA Air subjects in and around Winstonesa NC.

Conventional “plug-in” estimates of the standanmses of predictions of long-term averages
could be computed for the final step of our praeditstrategy (section 4.5). However, we
refrain from computing these estimates as the num®del has some recognized deficiencies (it
does not, for example, account for the differenogwecision of two week averages derived
from the AQS 2-day and daily monitors and from MESAmonitors) and because such
standard errors do not account for prediction uag#y that derives from the multi-step
pragmatic model-fitting procedure we have employ&tle report instead the accuracy of these
pragmatic ambient concentration predictions onlienms of descriptive statistics on the cross-
validated (leave-one-out) errors of predictionarfd-term mean concentrations for 6 MESA Air
study areas.

Table 1 reports first (in rows one and two) meams standard deviations for the fitted long-
term mean concentrations across all the AQS andAMEEmonitoring sites in each of the
study regions. We then report in row three the-raetin-square error of the cross-validated
predictions at these sites. The maps in Figui@sdl9-11 show that these descriptive statistics
pertain to monitoring sites over geographic aredstmntially exceeding the spatial domain of
the MESA Air subjects. We therefore computed tressae summary statistics on just the
MESA Air fixed sites which were located within tdemains of the MESA Air subjects. These
sites provide more relevant characterizations efatcuracy of our model predictions, albeit for
a relatively small number of sites in each region.

We see that the uncertainty of long-term estimetegmilar across regions, about 3% to 5%
of the mean. Comparison of standard deviationsragj-term means to cross-validated root-
mean-squared errors indicates that predictionsaytiring meaningful intra-urban spatial
variability in some areas including California, blaése root-mean-square errors are nearly as
large as the standard deviations in some of theratiudy areas such as North Carolina. In
future work we expect improved city-specific spagmporal predictions and lower uncertainty
using new GIS computations and additional landamsktraffic covariates. Furthermore,
uncertainty will be assessed by model-based stdretanrs using the likelihood modeling
computations of Szpiro et al. (2009) as well assrealidation.
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6. DISCUSSION

The current pragmatic PMmodeling and long-term ambient concentration prexhs
described here are based on the first phase otdléztion by the MESA Air study. Revised
analyses will be based on monitoring data comgletaugh 2009 and improved measures of our
GIS-based covariates including measures of tratilames not available for the current
analyses. Nonetheless, there are a number of temgarontributions of the data analyses and
results presented here.

We have obtained insight into model selection,udiig the importance of accounting for
the spatial correlation model in using cross-vdiatato select the number of PLS components
for the mean model. We benefitted by using the MBS supplemental monitoring data in

addition to AQS data to determine estimates of r‘npaﬂametersgSj at both AQS and MESA

Air fixed sites for this regression modeling. Bsdites of long-term average ambient PM2.5
exposure described here are being used in prelignivealth effect analyses with the MESA Air
cohort (Adar et al., 2009, Krishnan et al., 2009 ).

We will ultimately use the likelihood method repatin Szpiro et al. (2009) because it
provides a unified framework and gives standardrerfas opposed to cross-validation in this
paper). However, much of the model selection waitkstill be done outside of the likelihood
framework using the methods developed and repbrteel This includes the specification of
the SEOFs and the PLS or similar regression modklawniversal kriging cross-validation
approach. The work here, carried out in paradiehe development of the likelihood method,
provided the most pragmatic approach to obtaimitgal ambient concentration estimates for
use in our epidemiology studies.

The current modeling and analysis leaves some @muddic issues to be addressed in future
work. The most important is dealing appropriatelth the fact that 2-week average
concentrations derive from different monitoringwetks (AQS and MESA Air) with different
monitoring instruments and temporal sampling prok®c This will require a nested
specification of spatio-temporal correlation ataglydtime scale. This daily time scale structure
is also fundamental to a “downscaling” extensiothef current model predictions in order to
obtain estimates at a daily time scale for acufmswre estimation in epidemiologic outcomes
and, especially cardiovascular events that areategddo be sensitive to acute rather than
chronic exposure.

The current model includes only temporal factdng emporal basis functions) and
spatially varying covariates. Further extensiothef current modeling will incorporate spatio-
temporal covariates, the most important of whiaghspatio-temporally varying characterizations
of the effects of traffic on ambient exposure. Wéee extended the likelihood model to
incorporate as covariates theoretical predictidrnsotiutant concentrations provided by physics-
based dispersion models, including plume modelshi@influence of traffic using EPA’s
CALINE model (Wilton et al. 2009).

The ultimate objective of the modeling describerkhs to provide predicted exposures for
estimating health effects in epidemiology studiefp to now, we have used a “plug-in”
approach that does not account for the additioaability resulting from uncertainty in the
spatio-temporal prediction procedure. We haventgeleveloped an efficient bootstrap-based
approach to incorporating this uncertainty in Healffect estimation (Szpiro et al. 2009a). In
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future work, we will apply this methodology in cangction with fitting the spatio-temporal
model using likelihood methods in order to obtainrected standard errors for the disease model
parameters of interest.
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Table 1. Descriptive statistics on the cross-validated&one-out) errors of prediction of

long-term mean concentrations for 4 major modetegjons

Data Site All Sites MESA Air Fixed Sites
Scale Mean SD RMSE Mean SD RMSE
Log CA 2.85 0.27 0.15 3.02 0.15 0.04
IL 2.66 0.13 0.09 2.67 0.12 0.04
MN 2.30 0.14 0.10 2.36 0.07 0.03
MD 2.70 0.08 0.07 2.76 0.06 0.03
NY 2.61 0.11 0.09 2.68 0.18 0.03
NC 2.66 0.06 0.07 2.69 0.03 0.03
Original CA 17.84 4.47 2.42 20.64 3.04 0.94
IL 14.45 1.89 1.31 14.59 1.93 0.68
MN 10.07 1.32 0.88 10.61 0.72 0.34
MD 14.90 1.23 1.05 15.77 0.90 0.42
NY 13.66 1.58 1.21 14.70 2.52 0.44
NC 14.34 0.92 0.95 14.72 0.39 0.40
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Figure 1. Monitoring and subject home locationthim Los Angeles region.
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Figure 2. Schematic of the planned temporal sarggdattern for AQS monitors and the
MESA Air fixed and home sites.
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Figure 3. Example log-transformed two-week ave@lye sdata at AQS and MESA Air
fixed sites in the Los Angeles region. The blaoknfs are measurements and the lines
represent estimated temporal trends based on @& $todel (see Section 4.2). The
locations of each of these sites are shown on @q@imFigure 1.
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Figure 4. Smoothed empirical orthogonal basis fonstfor log-transformed two-week
average conncetrations of RMn the Los Angeles area. The signs of the SE@&s a
arbitrary, and both of the SEOFs shown below apjmeaur hierarchical model with

negative coefficients.
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Figure 5. Loadings of the two partial least squéRtsS) components used the model the

mean in the long-term average spatial field forltbe Angeles study region.
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Figure 6. Cross-validated predictions of the, 6,,, and b,, spatial fields of coefficients for

the long-term average and two SEOF temporal trenttee Los Angeles region. The black
dots represent the AQS locations while the red daighe MESA Air fixed sites.
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Figure 7. Spatial structure of the spatio-tempogaiduals before (a and c) and after (b and d)
transformation using the Sampson-Guttorp methattmunt for nonstationarity.
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Figure 8. Example cross-validated predictionsgttransformed two-week concentrations
060371002

at AQS and MESA Air fixed sites in the Los Angetegion. The black dots are the
measured data, the red curves show predicted ties#sl on the SEOF part of the spatio-

temporal model, and the green lines show two-weekaae predictions that incorporate the

spatio-temporal residuals.
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Figure 9. Monitoring and subject home locationthim midwest region spanning the
Minneapolis-St Paul and Chicago MESA Air study area
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Figure 10. Monitoring and subject home locationsthie northeast region spanning the New
York and MESA Air study areas.
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Figure 11. Monitoring and subject home locationthim North Carolina region.
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Figure 12. Predicted long-term average concentratod PM s (ppb) at all subject home
locations in each of the six MESA Air study areas.
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