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SUMMARY

Association studies in environmental statistics often involve exposure and outcome data that are mis-

aligned in space. A common strategy is to employ a spatial model such as universal kriging to predict

exposures at locations with outcome data and then to estimate the regression parameter of interest based

on the predicted exposures. This procedure results in measurement error because the predicted exposures

do not correspond exactly to the true values. We characterize the measurement error by decomposing it

into Berkson-like and classical-like components. An important effect of both components is to change

the variability of parameter estimates, so naı̈ve standard errors are incorrect. The classical-like compo-

nent can also introduce bias in the parameter estimates. We focus on deriving corrected standard errors,

and one approach to doing this is the parametric bootstrap. While effective, the parametric bootstrap

is computationally intensive since it requires solving a nonlinear optimization problem to estimate the

exposure model parameters in each bootstrap sample. We propose a less computationally intensive alter-

native termed the “parameter bootstrap” that exploits our decomposition of the measurement error into
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Berkson-like and classical-like components. The primary advantage of the parameter bootstrap is that it

only requires solving one nonlinear optimization problem. We illustrate our methodology in simulations

and with forestry data from the Environmental Protection Agency.
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1. INTRODUCTION

A major challenge for association studies in environmental statistics is that we cannot directly measure

the exposure at every location where there is outcome data. Modern Geographic Information System

(GIS) technology makes it feasible to sample environmental exposures at a relatively small number of

monitoring locations and then to predict exposures at unmonitored locations using a statistical model

such as universal kriging that exploits dependence on GIS covariates and incorporates spatial smoothing

(Cressie 1993). The overall strategy is to use predicted exposures in place of the true exposures at locations

with outcome data in order to estimate the parameter of interest in a regression model. The problem that

we address in this paper is how to ensure valid inference in light of the measurement error that results

from using predicted exposures in place of the exact values.

An example application in environmental epidemiology is evaluating the relationship between expo-

sure to ambient air pollution and adverse health outcomes. Many studies have documented adverse effects

of air pollution (Dockery et al. 1993; Samet et al. 2000; Pope et al. 2002), but until recently most studies

have assigned exposures based on area-wide monitored concentrations. More recent studies have empha-

sized the importance of using predicted individual air pollution exposures to account for spatial variability

of pollution levels within urban areas (Jerrett et al. 2005b; Kunzli et al. 2005; Gryparis et al. 2007; Szpiro

et al. 2009).
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Other environmental applications that do not involve human health effects are analogous from a statis-

tical perspective. An example that we will return to later in this paper involves assessing the relationship

between chloride levels in streams and nearby watershed land cover (Madsen et al. 2008; Herlihy et al.

1998). Another application involves assessing the relationship between changes in annual rainfall and

vegetation cover. This has been studied in the African Sahel, where remotely sensed vegetation levels are

available everywhere but rainfall levels are only monitored at a limited number of locations (Los et al.

2006; Lindström and Lindgren 2008).

Various methods have been employed for predicting exposures, including nearest neighbor interpo-

lation (Miller et al. 2007), regression based on GIS covariates (Brauer et al. 2003; Jerrett et al. 2005a),

interpolation by a geostatistical method such as kriging (Jerrett et al. 2005b; Kunzli et al. 2005), and

semi-parametric smoothing (Gryparis et al. 2007; Kunzli et al. 2005). All of these methods result in

measurement error that does not fit into the standard categories of classical or Berkson error (Carroll et al.

2006). In this paper, we focus on characterizing and correcting measurement error for exposures predicted

by universal kriging.

In a recent paper, Kim et al. (2009) have shown that using predicted exposures from kriging performs

better than nearest neighbor interpolation, but depending on the range of spatial correlation in the expo-

sure surface, significant errors may remain resulting in confidence intervals that do not provide correct

coverage. Gryparis et al. (2009) review the relevant measurement error literature and compare several

correction strategies in a simulation study, and Madsen et al. (2008) apply a version of the parametric

bootstrap to obtain corrected standard errors.

The parametric bootstrap is effective, but it is computationally intensive since it requires solving a

nonlinear optimization problem to estimate the exposure model parameters in each bootstrap sample. We
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describe a new method termed the “parameter bootstrap” that can be viewed as a much less computa-

tionally demanding approximation to the parametric bootstrap. The parameter bootstrap is motivated by a

decomposition of the measurement error into two approximately independent components, one of which

is similar to Berkson error (“Berkson-like”) and the other of which is similar to classical measurement

error (“classical-like”). We develop our methodology in a setting where we use universal kriging to pre-

dict the exposure and where we model the association of interest with linear regression, including the

possibility of spatially correlated residuals. While our primary focus is on calculating standard errors, the

classical-like component of measurement error can also result in biased effect estimates. The bias is small

in the examples we consider, but it is important to note that it can be away from the null, rather than

toward the null as in classical measurement error. We discuss the origin and properties of the bias further

in Appendix A.

The remainder of this paper is organized as follows. We begin in Section 2 by introducing notation and

formally setting out the problem. In Section 3 we characterize the measurement error by decomposing it

into Berkson-like and classical-like components, and in Section 4 we define the parametric and parameter

bootstraps and give some details on implementation. In Section 5 we illustrate our methodology in a

simulation study, and in Section 6 we consider an example with publicly available forestry data from the

Environmental Protection Agency. We conclude in Section 7 with a discussion.

2. NOTATION AND PROBLEM SETUP

We consider an association study with theN×1 vector of observed outcomes Y ,N×1 vector of exposures

X , and N ×m matrix of covariates Z. Assume a linear regression model

Y = β0 +XβX + ZβZ + ε, (2.1)
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with intercept β0, regression coefficient βX for the exposure, and m× 1 vector of coefficients βZ for the

covariates. Assume that ε is an N × 1 random vector distributed as N(0,Σε(θε)), for a positive definite

matrix function Σε(·) and unknown parameter θε.

The goal is inference for βX , which would be straightforward if X , Y , and Z were all observed. In

that case, we could estimate β̂X by ordinary least squares (OLS) and then estimate θ̂ε from the residuals

and use a sandwich-based standard error (Liang and Zeger 1986). If the ε are independent and we estimate

θ̂ε by the method-of-moments, the sandwich form reduces to the classical standard error estimate.

We are interested in the situation where Y and Z are observed, but instead ofX we observe theN∗×1

vectorX∗ of exposures at different locations. We refer toN∗ as the number of exposure monitors. Assume

that X and X∗ are jointly distributed as

(
X
X∗

)
=

(
S
S∗

)
α+

(
η
η∗

)
. (2.2)

In this expression, S and S∗ are known N × k and N∗ × k dimensional matrices of GIS covariates, α is

an unknown k × 1 vector of coefficients, and

(
η
η∗

)
∼ N

(
0,Σ(ηη∗)(θη)

)
, (2.3)

independent of ε, for a positive definite matrix function Σ(ηη∗)(·) and unknown parameter θη. It is useful

to introduce the decomposition

Σ(ηη∗)(·) =
(

Ση(·) Σηη∗(·)
Ση∗η(·) Ση∗(·)

)
.

Universal kriging is a special case if θη comprises the range, partial sill, and nugget parameters from a

geostatistical model (Cressie 1993). More general spatio-temporal correlation structures also fit naturally

in this framework (Banerjee et al. 2004; Szpiro et al. 2009).
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Although the exposure X is not observed directly, we can exploit the observed values X∗ and the spa-

tial model in equation (2.2) to estimate β̂X as follows. First, we estimate the exposure model parameters

α̂ and θ̂η based on X∗ by maximum likelihood or another nonlinear optimization approach, and then we

define the estimated exposure by

W = E(X|X∗; α̂, θ̂η)

= Φ(X∗, α̂, θ̂η) (2.4)

where

Φ(X∗, α̂, θ̂η) = Sα̂+ Σηη∗(θ̂η)Σ−1
η∗ (θ̂η)(X∗ − S∗α̂).

Since we are interested in frequentist sampling properties of an estimator for βX , we take care to

specify the assumed data-generating mechanism. All of the geographic locations are assumed to be fixed

and known, as are the corresponding GIS covariates S and S∗ and any covariates Z in the outcome model.

The regression coefficients β0, βX , βZ , and α and variance parameters θε and θη are all fixed but unknown.

A random realization from the data-generating mechanism is obtained by drawing a sample from the joint

distribution of ε, η, and η∗.

3. MEASUREMENT ERROR

If we ignore the measurement error from using W in place of X , we can derive naı̈ve standard errors by

the procedure described at the beginning of Section 2. However, these standard errors are based on the

assumption that all sampling variability in β̂X is induced by ε, and they ignore the additional sampling

variability from U = X −W that is in turn induced by η and η∗. Therefore, naı̈ve standard errors will

typically not estimate the true sampling variability of β̂X , and a correction procedure is needed in order
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make accurate inferential statements.

We decompose the measurement error into two components

U = X −W

= X − E(X|X∗; α̂, θ̂η)

=
(
X − E(X|X∗;α, θη)

)
+

(
E(X|X∗;α, θη)− E(X|X∗; α̂, θ̂η)

)
= UBL + UCL,

where the Berkson-like component is

UBL = X − E(X|X∗;α, θη), (3.1)

and the classical-like component is

UCL = E(X|X∗;α, θη)− E(X|X∗; α̂, θ̂η).

The Berkson-like component UBL accounts for variability from η and η∗, conditional on known exposure

model parameters, and the classical-like component UCL incorporates additional variability from η∗ in

estimating the exposure model parameters. Both of these components inflate the sampling variance of β̂X .

The classical-like component can also introduce bias, but we focus on the sampling variability since our

simulations in Section 5 indicate this is the dominant error in the scenarios we have considered.

3.1 Berkson-Like Component of the Error

In this subsection, we assume that the exposure model parameters α and θη are known so that UBL is the

only source of measurement error. A primary feature of Berkson error is that it has mean zero conditional

on the estimated exposure W (Carroll et al. 2006, page 9). With known exposure model parameters, it is
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easy to see that this holds for UBL

E(UBL|W ) = E
(
E

(
UBL|W

)
|X∗

)
= E

(
UBL|X∗

)
= E

(
X − E(X|X∗;α, θη)|X∗

)
= 0.

The second line holds since W is deterministic conditional on X∗, the third line is the definition of UBL,

and the final line holds since α and θη are the parameters in the data-generating mechanism for X .

Since we can rewrite equation (2.1) in the form

Y = β0 +WβX + ZβZ + UBLβX + ε,

it is easy to see that β̂X derived by OLS with W in place of X is unbiased for estimating βX . We verify

this by conditioning on W , exploiting the fact that

E(UBL|W ) = 0,

and then taking the expectation of β̂X over the sampling distribution of W . As in the case of Berkson

error, the effect of UBL is to make W less variable then the true exposure X , effectively adding to the

variance of the noise in the outcome model and resulting in increased variability of β̂X .

It is tempting to carry the Berkson analogy further and argue that we can derive valid standard errors

by accounting for the correlation in the new noise term

ε′ = UBLβX + ε, (3.2)

using either generalized least squares or the sandwich estimator, as would be appropriate for Berkson
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error with a non-diagonal covariance (Gryparis et al. 2009; Szpiro et al. 2008; Carroll et al. 2006, page

90). This reasoning is not completely correct for our scenario, however, because it is based on treating

W as fixed, which is equivalent to treating the monitoring data X∗ as fixed. While one could plausibly

posit such a data-generating mechanism, it is not suitable when we also want to consider the variability

that results from estimating the exposure model parameters. As an alternative, in Section 4 we describe a

bootstrap-based method that is consistent with our assumed data-generating mechanism and that includes

the pure Berkson-like error situation as a special case.

3.2 Classical-Like Component of the Error

A primary feature associated with classical measurement error is that it increases the variability of W

relative to X , introducing variation that is not correlated with the outcome Y (Carroll et al. 2006, page

28). It is easy to see that UCL is analogous since it comprises the error from estimating the exposure

model parameters, which introduces variability that is not informative for Y . Strictly speaking, UCL is

not independent of Y since α̂ and θ̂η are derived from X∗ which is correlated with X . It is also not

independent across locations. Therefore, we emphasize that UCL is similar to classical measurement error

but also distinct in important ways, so we cannot simply apply standard measurement error correction

techniques like regression calibration.

Our simulation results in Section 5 suggest that the dominant effect of UCL is to increase the sampling

variability of β̂X , so we focus on methods to derive corrected standard errors which are sufficient to ob-

tain valid confidence intervals for inference. Bias is typically also a concern with classical measurement

error, and in principle UCL has the potential to introduce bias in estimating β̂X . The bias in our examples

is relatively small, but it has some interesting features and for completeness we discuss it further in Ap-
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pendix A. One interesting finding is that the bias from this form of classical-like measurement error can

be away from the null, rather than toward the null as in the case of standard classical measurement error.

4. PARAMETER BOOTSTRAP

4.1 Parametric Bootstrap

A natural, but computationally intensive, approach to estimating standard errors that account for measure-

ment error in our scenario is the parametric bootstrap (Davison and Hinkley 1997; Madsen et al. 2008).

The parameter estimate of interest β̂X is calculated as in Section 2, and we wish to derive a standard error

that approximates the sampling distribution of β̂X under the assumed true data-generating mechanism.

We do this by simulating bootstrap samples under our best estimate of the data-generating mechanism

and calculating their empirical standard deviation.

Given a set of observations Y and X∗, the parametric bootstrap procedure is as follows. Let M be the

number of bootstrap samples.

1. Estimate the exposure model parameters α̂ and θ̂η by nonlinear optimization based on the model in

equation (2.2).

2. Derive W from equation (2.4) and use it in place of X in equation (2.1) to estimate the outcome

model parameters β̂0, β̂X , β̂Z , and θ̂ε.

3. Repeat the steps below for each j = 1, . . . ,M

(a) Simulate a new set of observations Yj andX∗
j based on the models in equations (2.1) and (2.2),

using α̂, θ̂η, β̂0, β̂X , β̂Z , and θ̂ε in place of the unknown true parameters.

(b) Estimate new exposure model parameters α̂j and θ̂η,j by nonlinear optimization based on the
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model in equation (2.2), using X∗
j in place of X∗.

(c) Plug α̂j ,θ̂η,j , and X∗
j into equation (2.4) to derive Wj .

(d) Calculate β̂X,j by OLS in equation (2.1), using Wj and Yj in place of X and Y .

4. Calculate the parametric bootstrap standard error

σ̂βX
=

√√√√√ 1
M − 1

M∑
j=1

β̂X,j −
1
M

M∑
j=1

β̂X,j

2

.

Note that in step (3a) we simulate Xj in order to obtain Yj , but we do not use Xj in the remainder of the

procedure. In step (3d) we treat β0 and βZ as unknown rather than using the estimated values β̂0 and β̂Z .

See Section 4.4 for some additional details about the implementation in steps (1), (2) and (3b).

Kriging is not a completely automated procedure since there are several standard parametric covari-

ance models from which to choose, and if a particular model does not fit the data well the typical approach

is to fit a different parametric covariance model (or combination of models) in order to obtain the best pre-

dictions (Laslett 1994; Zimmerman et al. 1999; Goovaerts 1997). It is not practical to follow this procedure

in the parametric bootstrap, but it is also not desirable to include realizations in step (3a) for which the

kriging model fits very poorly. As a pragmatic way to deal with this in our examples, we exclude any real-

ization that leads to an estimate of the nugget that is very near zero (< 0.05) and any realization where the

likelihood is extremely flat at the ML parameter estimates (any diagonal element of the inverse Hessian

> 9, with the Hessian based on ML estimation of log θη). If a realization is excluded from the parametric

bootstrap because of poor model fit, we simulate an additional realization in order to ensure that there are

still M samples to calculate the bootstrap standard error.

Our simulation results in Section 5 suggest that the parametric bootstrap gives valid standard errors,

but it is extremely computationally intensive since it requires solving a nonlinear optimization problem to
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estimate the exposure model parameters for each bootstrap sample.

4.2 Parameter Bootstrap

The idea of the parameter bootstrap is to decrease the computational burden by eliminating the nonlinear

optimization that is repeated M times in step (3b) above. This is feasible because we can typically obtain

an estimate of the sampling distribution for α̂ and θ̂η in step (1) without much additional computation

(assuming the parameter estimation is done using a standard procedure such as maximum likelihood or

Markov chain Monte Carlo). For completeness, we list in full below the steps of the parameter bootstrap.

The procedure differs from the parametric bootstrap only in the addition of step (1a) and the modification

of step (3b). The name “parameter bootstrap” refers to the separate bootstrap of exposure model parameter

estimates in step (3b).

1. Estimate the exposure model parameters α̂ and θ̂η by nonlinear optimization based on the model in

equation (2.2).

(a) Estimate a density function p̂(·, ·) corresponding to the sampling distribution of α̂ and θ̂η.

2. Derive W from equation (2.4) and use it in place of X in equation (2.1) to estimate the outcome

model parameters β̂0, β̂X , β̂Z , and θ̂ε.

3. Repeat the steps below for each j = 1, . . . ,M

(a) Simulate a new set of observations Yj andX∗
j based on the models in equations (2.1) and (2.2),

using α̂, θ̂η, β̂0, β̂X , β̂Z , and θ̂ε in place of the unknown true parameters.

(b) Sample α̂j and θ̂η,j from the probability distribution defined by p̂(·, ·).

(c) Plug α̂j ,θ̂η,j , and X∗
j into equation (2.4) to derive Wj .
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(d) Calculate β̂X,j by OLS in equation (2.1), using Wj and Yj in place of X and Y .

4. Calculate the parameter bootstrap standard error using the same formula as the parametric bootstrap.

In the supplementary material (see below) we describe the assumptions that underlie validity of the

parameter bootstrap as an approximation to the parametric bootstrap, and we give evidence from our

simulation examples to support these assumptions.

4.3 Partial Parametric Bootstrap

If we are willing to neglect the classical-like component of the error UCL, another alternative procedure

is to modify the parameter bootstrap by using α̂ and θ̂η in each bootstrap sample instead of drawing

new values from the estimated sampling distribution as in step (3b). We call this procedure the partial

parametric bootstrap.

4.4 Implementation Details

We describe here our approach to implementing the individual estimations required for the parametric

and parameter bootstraps. Steps (1) and (3b) in the parametric bootstrap require estimating the exposure

model parameters α̂ and θ̂η based on the model in equation (2.2). We estimate the maximum likelihood

parameter values by using the constrained L-BFGS-B algorithm implemented in the optim() function in

R (Byrd et al. 1995; R Development Core Team 2008), first log-transforming the variance parameters

to make the optimization easier. In the parameter bootstrap we also need an estimate of the sampling

distribution for α̂ and θ̂η. We use a Gaussian approximation centered at the maximum likelihood value

with covariance based on the estimated Hessian produced by the optim() function.

Sometimes the L-BFGS-B algorithm finds a solution on the boundary that is not the actual maximum,
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so to guard against this we repeat the numerical optimization five times and pick the parameter values

corresponding to the largest value of the likelihood. In addition, for each of the five candidate maxima, if

the estimated range or nugget parameters are very close to zero or if they are extremely large we perturb the

initial values and repeat the optimization. This somewhat ad-hoc procedure provides a practical approach

to ensuring that we find the actual maximum without more calls to optim() than is necessary, as this step

is very computationally intensive.

The other nonlinear optimization is contained in step (2), where we estimate the parameters θε in the

outcome model (2.1). If we knew X without error, this could be accomplished in a relatively straight-

forward manner by fitting model (2.1) using OLS and then estimating the variance parameters θε from

the residuals. The complicating factor is that the Berkson-like component of the measurement error in-

troduces an additional covariance contribution into the residual distribution, as in the definition of ε′ in

equation (3.2). If we condition on X∗, the covariance for the residuals is

Σε′ = ΣUBL
βX + Σε(θε) (4.1)

where ΣUBL
can be computed based on equation (3.1) if we treat the estimated exposure model parameters

as known.

In order to estimate θε we fit the model in equation (4.1) to the residuals from the OLS fit to equa-

tion (2.1), optimizing over the nuisance parameter βX . Maximum likelihood optimization turns out to

be unstable, so instead we find the least-squares fit to the empirical binned variogram. We again use the

L-BFGS-B algorithm implemented in the optim() function in R (Byrd et al. 1995; R Development Core

Team 2008), repeating the numerical optimization 20 times with random initial conditions and picking

the parameters estimates based on the best fit from these 20 iterations.
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5. SIMULATIONS

An example application is the problem considered by (Madsen et al. 2008; Herlihy et al. 1998) of esti-

mating the association between the log of chloride levels in streams

Y = log cl

and the logit of the fraction of forestation in the local watershed

X = logit for.

The following simulations are based on data collected by the Environmental Protection Agency in the

Mid-Atlantic Highlands region of the eastern United States during the years 1993-1996 (U.S EPA Envi-

ronmental Monitoring and Assessment Program 1999). In a 400× 500 box we randomly select locations

for N∗ = 200 exposure monitors and N = 300 or 2000 outcome measurements the universal kriging

exposure model is (
X
X∗

)
=

(
S
S∗

)
α+

(
η
η∗

)
(5.1)

where each row of S and S∗ is of the form (1, x, y), x and y are the coordinates, and the regression coef-

ficients are α = (−25.95,−0.0035, 0.00084)t. The residual term (ηt, η∗t)t has an exponential variogram

structure with parameters

θη = (φη, ψη, τη),

where φη = 24.13 is the range, ψη = 3.76 is the partial sill, and τη = 1.34 is the nugget (Cressie 1993).

We also consider a modified version of this model with a longer range φη = 90.0. Example realizations of

the exposure surface for the two different ranges are shown in Figure 1. As in the parametric bootstrap, we

exclude realizations that exhibit very poor fit with the assumed universal kriging model since in practice
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an analyst would attempt to identify a different parametric correlation structure that is more consistent

with the observed data.

The linear regression model for the outcome conditional on X is

Y = β0 +XβX + ε

where β0 = 5.06 and β1 = −0.322. We consider the case of uncorrelated residuals ε with variance

θε = (σ2
ε),

where σ2
ε = 0.76, and we also consider the case of correlated residuals ε following an exponential vari-

ogram structure with parameters

θε = (φε, ψε, τε),

where φε = 80.39 is the range, ψε = 0.26 is the partial sill, and τε = 0.50 is the nugget.

In Table 1, we summarize the results for 2000 Monte Carlo runs based on a universal kriging exposure

model with range φη = 24.13. Due to the computational intensity of the full parametric bootstrap, we

restricted to 100 Monte Carlo runs for these results. The bias in β̂X is a very small component of the

total estimation error in all scenarios. In the model with uncorrelated residuals, naı̈ve standard errors that

do not correct for measurement error are too small compared to the observed sampling distribution of

β̂X , resulting in significantly less than nominal coverage for 95% confidence intervals. In the correlated

outcome model, where the uncorrected standard errors account for correlated residuals using a sandwich

form, the coverage is closer to nominal. This is presumably because much of the Berkson-like error

appears as additional correlated variability in the residuals and is accounted for by the sandwich form.

Both the parameter bootstrap and the parametric bootstrap give corrected standard errors that result in

some over-coverage, with coverage probabilities of 97%−98%. The expected value of the standard errors
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from parameter simulation tends to be larger than the sampling standard deviation of β̂X , but the mode of

the standard errors tends to align well with the observed standard deviation. This suggests that there are

some large outliers, which can be confirmed by examining scatterplots of the estimated standard errors

(results not shown). If we replace the estimated sampling distribution of α̂ and θ̂η used in the parameter

bootstrap with the true sampling distribution, then the outliers go away and the coverage probabilities are

much closer to 95% (results not shown).

In addition to results for the parametric bootstrap and the parameter bootstrap, we show standard errors

calculated with the partial parametric bootstrap. The partial parametric bootstrap accounts only for the

Berkson-like component of the measurement error, neglecting the classical-like component. In scenarios

with only 300 measured outcomes (N = 300), the partial parametric bootstrap gives similar results to the

parameter bootstrap and results in nearly nominal coverage probabilities. This suggests that the Berkson-

like component of measurement error dominates in this situation. For N = 2000, however, the partial

parametric bootstrap standard errors are significantly smaller than those from the parameter bootstrap and

result in less than nominal coverage probabilities, indicating that the classical-like component of the error

is more important relative to the Berkson-like component. This is consistent with our expectations, since

the magnitude of the classical-like component does not change for largeN , but the first-order contribution

of the Berkson-like component diminishes since its effect is analogous to increasing the random noise in

the outcome model.

We report an analogous set of results in Table 2 for scenarios with a longer correlation range (φη =

90.0) in the exposure model. The same general patterns are observed as for φη = 24.13, with the one

difference being that the partial parametric bootstrap provides adequate measurement error correction

even for N = 2000. This may be because introducing additional spatial correlation in the exposure
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surface makes it easier to estimate some of the exposure model parameters, decreasing the contribution of

the classical-like component of measurement error.

Based on our simulation results, we can directly evaluate the assumptions that are required for validity

of the parameter bootstrap as an approximation to the parametric bootstrap. These validation results are

given in the supplementary material (see below).

6. EXAMPLE

We conclude by applying our methodology to the EPA data that formed the basis for our simulation study

in the previous section (Madsen et al. 2008; Herlihy et al. 1998; U.S EPA Environmental Monitoring and

Assessment Program 1999). We use the universal kriging exposure model described above and allow for

correlation in the outcome residuals.

The outcome (log of chloride level) and the exposure (logit of percent forestation) are both available

at a total 422 of these locations (we have restricted to streams with percent forestation strictly between 0%

and 100% in order to allow for the logit transformation). Where multiple measurements are available from

different times, we use the earliest time. In the remainder of the example, we assume that the exposure is

only available atN∗ = 200 randomly selected locations and that the outcome is available at the remaining

N = 222 locations. A map of the respective locations is shown in Figure 2. Distances are calculated using

a flat-earth approximation, with one degree of latitude equal to 111.3 km and one degree of longitude

equal to 85.9 km.

In Figure 3 we show the empirical binned variogram and the fitted variogram model for the exposure

monitoring data, after detrending by a linear model in latitude and longitude. This figure is consistent with

a good fit between the data and the assumed exposure model. The estimated values for the exposure model
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parameters based on X∗ are α̂ = (−42.56,−0.0049, 0.0026), range φ̂η = 11.00, partial sill ψ̂η = 2.35,

and nugget τ̂η = 2.08. We show scatterplots and the linear regressions of the outcome against the true and

predicted exposures in Figure 4.

The results of estimating β̂X and its standard error based on W and X are shown in Table 3. The

estimated effect size based on the predicted exposure W is −0.460, while the value obtained by using

the true exposure X is −0.322. The standard error estimate based on using W without correcting for

measurement error is 0.252. The partial parametric bootstrap gives a similar value, but the standard error

estimates from the parameter bootstrap and the parametric bootstrap are both larger, taking values of 0.305

and 0.337, respectively. This suggests that the parameter bootstrap is a reasonable approximation to the

more computationally intensive parametric bootstrap for accounting for measurement error in estimating

the standard error for β̂X in this dataset.

7. DISCUSSION

We have characterized the measurement error that results from using smoothing to predict exposures

in an environmental statistics association study when the exposure and outcome data are misaligned in

space. The resulting measurement error has a Berkson-like component that results from information lost

in smoothing and a classical-like component that is related to uncertainty associated with estimating the

smoothing parameters.

The measurement error structure we have identified is complex because it is a mixture of two types

of error, neither one of which fits exactly into the traditional categories of Berkson or classical. There-

fore, standard measurement error correction methods are not appropriate. If we are willing to assume that

the exposure and outcome models are correctly specified, we can use a parametric bootstrap to estimate
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corrected standard errors. This approach requires that we be precise about the assumed data-generating

mechanism since the idea is to draw multiple samples from an approximation to the data-generating

mechanism, with the model parameters estimated based on observed data. We have chosen to define a

data-generating mechanism that is consistent with the geostatistical kriging model we use for smoothing.

Although it is well known that geostatistical methods are useful for interpolating the kinds of physical

processes that arise as exposure variables in environmental statistics, it is not clear what real-world phe-

nomenon the correlated variance in this model represents. A promising direction for future research is to

investigate the scientific validity of this and other assumed data-generating mechanisms, and to character-

ize the implications for measurement error correction.

Our decomposition of the measurement error into Berkson-like and classical-like components enables

us to propose the parameter bootstrap as a less computationally intensive approximation to the parametric

bootstrap. The parameter bootstrap is valid under assumptions that appear to hold in our simulation sce-

narios, but care should be taken in applying this method in other settings where the assumptions have not

been verified. In particular, it is important that the estimated sampling distribution for the exposure model

parameter estimates be a valid approximation to the true sampling distribution. In general, this should be

true for sufficiently rich exposure monitoring data, but in many applications the available monitoring data

are limited. As a computational tool, the parameter bootstrap is only necessary when estimating the expo-

sure model parameters is computationally intensive, and this is only the case if there is a relatively large

amount of exposure data. Therefore, the decision of whether to use the parametric bootstrap or the param-

eter bootstrap should be informed by the amount of exposure data available, considering the implications

for the computational burden of the parametric bootstrap and the validity of the parameter bootstrap. One

practical compromise is to use the parameter bootstrap with a larger number of bootstrap samples as the
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primary correction and to validate it by comparing with results of the parametric bootstrap based on a

limited number of samples.
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APPENDIX

A. BIAS FROM CLASSICAL-LIKE MEASUREMENT ERROR

Consider a simplified version of the model from Section 2. In particular, assume

Y = XβX + ε

and

X = Sα+ η,

where Y , X , and S are N -vectors and ε and ν are independent Normally distributed N -vectors with zero

means and variances σ2
ε and σ2

ν . We regard βX and α as fixed but unknown, S as fixed and known, and Y

and X as drawn at random. Only Y is observed so we need to estimate X in order to estimate βX .

Notice that we have assumed a scalar exposure without an intercept in the outcome model and uncor-

related residuals for both the exposure and the outcome. These assumptions simplify the calculations that

follow and allow us to clearly illustrate the origin of any bias that may result from estimating parameters

in the exposure model.

Since we do not directly observe X , we want to make inference about βX based on the observations

Y and an approximation to X denoted by W . Specifically, we will use

W = Sα̂

where α̂ is an estimate of α. Assume that in the sampling distribution

α̂ = α+ δ,

where δ is Normally distributed with mean zero and variance σ2
δ . In practice, α̂ could be an estimate of
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α based on monitoring data X∗ at different locations which satisfy the same linear model as X and for

which the corresponding geographic covariates S∗ are also known.

If we knew X without error, the OLS fit for βX would be

β̂X,true = (XtX)−1XtY .

Since we do not know X directly, we approximate X by plugging in W as defined above and find the

corresponding OLS fit for βX

β̂X = (W tW )−1W tY

= (α+ δ)−1(StS)−1StY .

We are interested in the direction of the bias

π = E
[
β̂X − βX

]
.

To analyze this quantity, it is useful first to recall that if we knew α without error, then we could define

Wberkson = Sα

and the corresponding estimator

β̂X,berkson = (W t
berksonWberkson)−1W t

berksonY

= α−1(StS)−1StY .

Since the measurement error in Wberkson is purely Berkson, this estimator would be unbiased for βX .
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Therefore, we can re-write the bias for β̂X

π = E
[
β̂X − β̂X,berkson

]
= E

[(
(α+ δ)−1 − α−1

)
(StS)−1StY

]
.

Now, since the mean of δ is zero, Taylor series expansion of (α+ δ)−1 around α−1 gives

π ≈ E
[(
−δα−2 + δ2α−3

)
(StS)−1StY

]
= σ2

δα
−3E

[
(StS)−1StY

]
= σ2

δα
−2E

[
β̂X,berkson

]
= σ2

δα
−2βX .

Thus, we have shown that the direction of bias is away from the null, at least in the limit for small δ. The

magnitude of the bias is proportional to the squared coefficient of variation for α. In our simulations the

bias is a relatively small component of the overall error, but it tends to be away from zero as predicted by

this analysis. This calculation also clearly exposes the source of bias in β̂X , since even ifW is an unbiased

estimate of X , nonlinearity in the OLS solution operator results in bias for the parameter estimate.
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N = 300 N = 2000

Bias SD E(SE) Mode(SE) Cov Bias SD E(SE) Mode(SE) Cov

Independent Outcomes
No correction −0.009 0.068 0.053 0.049 89% −0.006 0.049 0.021 0.019 65%

Partial parametric bootstrap −0.009 0.068 0.065 0.058 95% −0.006 0.049 0.037 0.031 88%

Parameter bootstrap −0.009 0.068 0.083 0.073 98% −0.009 0.049 0.058 0.046 96%

Parametric bootstrap −0.010 0.069 0.081 0.073 98% 0.000 0.045 0.053 0.042 93%

Correlated Outcomes
No correction −0.009 0.099 0.099 0.082 94% −0.004 0.090 0.087 0.067 92%

Partial parametric bootstrap −0.009 0.099 0.102 0.079 94% −0.004 0.090 0.090 0.075 92%

Parameter bootstrap −0.009 0.099 0.124 0.106 97% −0.004 0.090 0.112 0.092 96%

Parametric bootstrap −0.003 0.101 0.122 0.102 99% −0.005 0.081 0.115 0.120 98%

Table 1. Simulation results for universal kriging exposure surface with range φη = 24.13. The columns give the bias

and standard deviation of the estimates, the mean and mode of the estimated standard errors, and the coverage for 95%

Wald confidence intervals. Results are based on 2000 Monte Carlo simulations, except for the parametric bootstrap

results which are based on 100 Monte Carlo simulations.

N = 300 N = 2000

Bias SD E(SE) Mode(SE) Cov Bias SD E(SE) Mode(SE) Cov

Independent Outcomes
No correction −0.003 0.048 0.040 0.036 90% −0.003 0.032 0.016 0.014 69%

Partial parametric bootstrap −0.003 0.048 0.050 0.046 96% −0.002 0.032 0.029 0.026 93%

Parameter bootstrap −0.003 0.048 0.055 0.049 98% −0.003 0.032 0.036 0.030 97%

Parametric bootstrap −0.005 0.053 0.062 0.054 98% 0.004 0.031 0.035 0.035 94%

Correlated Outcomes
No correction −0.002 0.082 0.083 0.068 93% −0.001 0.077 0.076 0.057 93%

Partial parametric bootstrap −0.002 0.082 0.085 0.072 92% −0.001 0.077 0.079 0.066 91%

Parameter bootstrap −0.002 0.082 0.091 0.076 94% −0.001 0.077 0.084 0.070 93%

Parametric bootstrap 0.002 0.084 0.100 0.089 96% 0.001 0.073 0.094 0.082 98%

Table 2. Simulation results for universal kriging exposure surface with range φη = 90.0. The columns give the bias

and standard deviation of the estimates, the mean and mode of the estimated standard errors, and the coverage for 95%

Wald confidence intervals. Results are based on 2000 Monte Carlo simulations, except for the parametric bootstrap

results which are based on 100 Monte Carlo simulations.
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β̂X SE

True exposure −0.322 0.034

Predicted exposure, no correction −0.460 0.252

Predicted exposure, partial parametric bootstrap −0.460 0.263

Predicted exposure, parameter bootstrap −0.460 0.305

Predicted exposure, parametric bootstrap −0.460 0.337

Table 3. Results of estimating the relationship between chloride levels in streams (log-transformed) and local foresta-

tion levels (logit-transformed percent forestation) based on EPA data from the Mid-Atlantic Highlands region of the

eastern United States during the years 1993-1996. The exposure is assumed to be available at N∗ = 200 randomly

selected locations, and the outcome is available at the remaining N = 222 locations.

Fig. 1. Examples of simulated spatially correlated exposure surfaces.
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Fig. 2. Partitioning of EPA stream locations for example data analysis (N∗ = 200 monitors and N = 222 outcomes).
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Fig. 3. Empirical binned variogram and fitted variogram based on the logit-transformed percent forestation mea-

surements in the EPA data from the Mid-Atlantic Highlands region of the eastern United States during the years

1993-1996 (200 locations).

Fig. 4. Scatterplots and the linear regressions of the outcome (log-transformed chloride concentration) against the true

and predicted exposures (logit-transformed percent forestation) based on EPA data from the Mid-Atlantic Highlands

region of the eastern United States during the years 1993-1996. The black points and line show the true exposure

while the red points and line are for the predicted exposures.
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ONLINE SUPPLEMENT: THEORETICAL BASIS FOR PARAMETER BOOTSTRAP

The parameter bootstrap is valid insofar as it approximates the true sampling distribution of β̂X , which

requires three main assumptions. The first assumption, as in the more standard parametric bootstrap, is

that the model in equations (2.1) and (2.2) is a valid representation of the true data-generating mecha-

nism. The second assumption is also relatively straightforward to state, namely that the density function

p̂(·, ·) provides a good approximation to the sampling distribution of α̂ and θ̂η. This can generally be

expected to hold for a large number of exposure monitors N∗. In our simulation scenarios in Section 5

where we use a Gaussian approximation for p̂(·, ·), we find that the assumption holds reasonably well

under practical assumptions about how the exposure model will be fit to monitoring data. In Figures S1

and S2, we compare the estimated sampling distributions to the true sampling distributions for each pa-

rameter. The density plots for the estimated distributions are a composite of the individual distributions

estimated in each Monte Carlo simulation, with each of these distributions centered at the average of the

estimated means before constructing the composite. The agreement is reasonably good, although we note

that there is significant variation between the estimated sampling distributions in the individual Monte

Carlo simulations (results not shown).

The third and final assumption is more subtle to state. In the parameter bootstrap, we have replaced the

derivation of α̂j and θ̂η,j by nonlinear optimization with a draw from the estimated marginal distribution

of α̂ and θ̂η. Therefore, it seems that the validity of the parameter bootstrap requires assuming in the true

data-generating mechanism that α̂ and θ̂η are independent of the data Y and X∗, which is obviously false

since α̂ and θ̂η are defined as nonlinear functions of X∗. However, we only need to be able to treat α̂ and

θ̂η as if they were independent of the data Y and X∗ for the purpose of evaluating the marginal sampling

distribution of β̂X .
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In order to make this statement precise, we introduce some additional notation. We write

β̂X = Ψ(Y,W )

= Ψ
(
Y,Φ(X∗, α̂, θ̂η)

)
where Ψ(·, ·) is defined to be the ordinary least squares solution for βX from equation (2.1) (suppressing

additional covariates Z in this notation), and Φ(·, ·, ·) is given by equation (2.4). Let q1(·, ·) be the density

function corresponding to the distribution of Y and X∗. Then we can define a density function q(·, ·, ·, ·)

for the joint sampling distribution of Y , X∗, α̂, and θ̂η by

q(Y,X∗, α̂, θ̂η) =

 q1(Y,X∗) ϕ(X∗) = α̂, θ̂η

0 otherwise

where ϕ(·) is the nonlinear solution operator for estimating α̂ and θ̂η based on equation (2.2). Finally,

let q2(·, ·) correspond to the marginal sampling distribution of α̂ and θ̂η. Now we can formally state the

assumption that underlies the parameter bootstrap.

ASSUMPTION A.1 Sampling from distributions with the following two densities induces a common dis-

tribution for β̂X = Ψ
(
Y,Φ(X∗, α̂, θ̂η)

)
q(Y,X∗, α̂, θ̂η)

and

q′(Y,X∗, α̂, θ̂η) = q1(Y,X∗)q2(α̂, θ̂η).

This assumption is plausible because X∗ contributes variability to W in two fundamentally different

ways. Its contribution through the parameter estimates α̂ and θ̂η can be viewed as an overall character-

ization of the structure of the exposure surface, while its direct contribution as the object of smoothing



3

incorporates local information based on the assumption that exposures at nearby locations are similar. We

are able to test Assumption A.1 in our simulation examples by drawing samples directly from the distri-

butions corresponding to q(Y,X∗, α̂, θ̂η) and q′(Y,X∗, α̂, θ̂η) and comparing the empirical distributions

induced for β̂X .

We test the validity of Assumption A.1 in our simulation examples by sampling β̂X under each of the

densities q(Y,X∗, α̂, θ̂η) and q′(Y,X∗, α̂, θ̂η). We use the empirical distribution of α̂ and θ̂η in order to

draw samples from q′(Y,X∗, α̂, θ̂η). The density functions for β̂X are compared in Figures S3 and S4.

While there appears to be slightly more spread in the distributions under q′(Y,X∗, α̂, θ̂η), the densities

for β̂X are very similar, which is consistent with the fact that the parameter bootstrap and the parametric

bootstrap agree very well.
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Fig. S1. Estimated and true sampling distributions for exposure model parameters with universal kriging. The density

shown for the estimated sampling distribution is a composite of the estimated distributions from 2000 Monte Carlo

simulations, with each distribution centered at the average of the estimated means. (Exposure model range φη =

24.13.)
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Fig. S2. Estimated and true sampling distributions for exposure model parameters with universal kriging. The density

shown for the estimated sampling distribution is a composite of the estimated distributions from 2000 Monte Carlo

simulations, with each distribution centered at the average of the estimated means. (Exposure model range φη =

90.0.)
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Fig. S3. Comparison of the sampling distributions of β̂X under the true density q(Y, X∗, α̂, θ̂η) and the approximate

density q′(Y, X∗, α̂, θ̂η) defined in Assumption A.1. (Universal kriging with exposure model range φη = 24.13.)
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Fig. S4. Comparison of the sampling distributions of β̂X under the true density q(Y, X∗, α̂, θ̂η) and the approximate

density q′(Y, X∗, α̂, θ̂η) defined in Assumption A.1. (Universal kriging with exposure model range φη = 90.0.)


