Web-based Supplementary Materials for "Assessing Association for Bivariate Survival Data with Interval Sampling: A Copula Model Approach with Application to AIDS Study" by Hong Zhu and Mei-Cheng Wang

The following conditions are assumed throughout the paper. (1) Assume that standard regularity conditions for maximum likelihood es-

timate hold.

(2) Define functions

$$W_{\alpha}\{\alpha, S_{Y}(y), S_{Z}(z)\} = \frac{\partial \log l(\alpha, u, v)}{\partial \alpha}, \quad V_{\alpha}\{\alpha, S_{Y}(y), S_{Z}(z)\} = \frac{\partial^{2} \log l(\alpha, u, v)}{\partial \alpha^{2}}$$
$$V_{\alpha,1}\{\alpha, S_{Y}(y), S_{Z}(z)\} = \frac{\partial^{2} \log l(\alpha, u, v)}{\partial \alpha \partial u}, \quad V_{\alpha,2}\{\alpha, S_{Y}(y), S_{Z}(z)\} = \frac{\partial^{2} \log l(\alpha, u, v)}{\partial \alpha \partial v}$$
Assume that they are continuous and bounded for $(y, z) \in \mathcal{A} = [y_{-}, y_{+}] \times [z_{-}, z_{+}].$

Web Appendix: Proof of Theorem 1

Under the assumed conditions listed above, we derive the asymptotic properties of $\hat{\alpha}(\theta)$. For simplicity of discussion, we denote $\hat{\alpha}(\theta)$ by $\hat{\alpha}$ since θ is known. First, we show the consistency of $\hat{\alpha}$. The score function of α is $U_{\alpha}^{(c)}(\alpha, S_Y, S_Z) = \frac{\partial}{\partial \alpha} \sum_{i=1}^n \log l(\alpha, S_Y, S_Z)$ and pseudo score function is $U_{\alpha}^{(p)}(\alpha, \hat{S}_Y, \hat{S}_Z) = \frac{\partial}{\partial \alpha} \sum_{i=1}^n \log l(\alpha, \hat{S}_Y, \hat{S}_Z)$ by substituting $S_Y(y, \theta)$ and $S_Z(y, \theta)$ in score function by \hat{S}_Y and \hat{S}_Z . We have $\hat{S}_Y(\cdot)$ converges in probability to $S_Y(\cdot)$ uniformly in $[y_-, y_+], \hat{S}_Z(\cdot)$ converges to $S_Z(\cdot)$ uniformly in $[z_-, z_+]$, and $U_{\alpha}^{(c)}(\alpha, \hat{S}_Y, \hat{S}_Z)$ converge to $U_{\alpha}^{(c)}(\alpha, S_Y, S_Z)$ in probability. This

pointwise convergence implies that the solution to $U^{(p)}_{\alpha}(\alpha, \hat{S}_Y, \hat{S}_Z), \hat{\alpha}$, is consistent by the similar arguments to those in Samuelsen (1997).

Next, we show the asymptotic normality of $\hat{\alpha}$. By Taylor expansion on the pseudo score function $U_{\alpha}^{(p)}(\alpha, \hat{S}_Y, \hat{S}_Z)$ around α_0 , rearranging and evaluating it at $\alpha = \hat{\alpha}$, we get

$$n^{1/2}(\hat{\alpha} - \alpha_0) \cong \frac{-U_{\alpha}^{(p)}\{\alpha_0, \hat{S}_Y(Y_i), \hat{S}_Z(X_i)\}/\sqrt{n}}{\sum_{i=1}^n V_{\alpha}\{\alpha_0, \hat{S}_Y(Y_i), \hat{S}_Z(X_i)\}/n}$$

Since $\hat{S}_Y(\cdot)$ converges in probability to $S_Y(\cdot)$ uniformly in $[y_-, y_+]$, $\hat{S}_Z(\cdot)$ converges to $S_Z(\cdot)$ uniformly in $[z_-, z_+]$, and $V_\alpha(\alpha, u, v)$ is a continous function of u and v, $|V_\alpha\{\alpha_0, \hat{S}_Y(y), \hat{S}_Z(z)\} - V_\alpha\{\alpha_0, S_Y(y), S_Z(z)\}|$ converges in probability to zero for $(y, z) \in \mathcal{A} = [y_-, y_+] \times [z_-, z_+]$. Thus $\sum_{i=1}^n -V_\alpha\{\alpha_0, \hat{S}_Y(Y_i), \hat{S}_Z(X_i)\}/n$ and $\sum_{i=1}^n -V_\alpha\{\alpha_0, S_Y(Y_i), S_Z(X_i)\}/n$ are asymptotically equivalent, which by the law of large numbers converges to ρ_1^2 , specified as

$$\rho_1^2 = E[-V_{\alpha}\{\alpha_0, S_Y(Y_i), S_Z(X_i)\}] = \int_{\mathcal{A}} -V_{\alpha}\{\alpha_0, S_Y(y), S_Z(z)\} dJ_{\alpha_0}(y, z, \delta)$$

where J_{α_0} is the joint distribution of (Y, X, δ) . Next, we have

$$n^{-1/2}U^{p}_{\alpha}(\alpha_{0},\hat{S}_{Y},\hat{S}_{Z}) = n^{1/2}\int_{\mathcal{A}}W_{\alpha}\{\alpha_{0},\hat{S}_{Y}(y),\hat{S}_{Z}(z)\}dJ_{n}(y,z,\delta)$$

$$= n^{1/2}\int_{\mathcal{A}}W_{\alpha}\{\alpha_{0},\hat{S}_{Y}(y),\hat{S}_{Z}(z)\}dJ_{\alpha_{0}}(y,z,\delta)$$

$$+ n^{1/2}\int_{\mathcal{A}}W_{\alpha}\{\alpha_{0},\hat{S}_{Y}(y),\hat{S}_{Z}(z)\}(dJ_{n}-dJ_{\alpha_{0}})(y,z,\delta)$$

$$= \pi_{n}(\alpha_{0},\hat{S}_{Y},\hat{S}_{Z}) + \eta_{n}(\alpha_{0},\hat{S}_{Y},\hat{S}_{Z})$$

where J_n is the empirical distribution of J_{α_0} . We further decompose η_n into two terms,

$$\begin{split} \eta_n(\alpha_0, \hat{S}_Y, \hat{S}_Z) &= n^{1/2} \int_{\mathcal{A}} [W_{\alpha}\{\alpha_0, \hat{S}_Y(y), \hat{S}_Z(z)\} - W_{\alpha}\{\alpha_0, S_Y(y), S_Z(z)\}] \\ &\quad (dJ_n - dJ_{\alpha_0})(y, z, \delta) \\ &+ n^{1/2} \int_{\mathcal{A}} W_{\alpha}\{\alpha_0, S_Y(y), S_Z(z)\} (dJ_n - dJ_{\alpha_0})(y, z, \delta) \end{split}$$

Because $\hat{S}_Y \to S_Y$, $\hat{S}_Z \to S_Z$, $n^{1/2}(J_n - J) \to O_p(1)$, and W_α is continuous and bounded, by the dominated convergence theorem, the first term in η_n convergence to 0. The second term of η_n is a sum of n i.i.d. random variables of mean zero and variance ρ_1^2 , so it converges to normal with mean zero and variance ρ_1^2 by the central limit theorem. Using Von Mises expansion on $\pi_n(\alpha_0, \hat{S}_Y, \hat{S}_Z)$ around S_Y and S_Z , we get

$$\begin{aligned} \pi_n(\alpha_0, \hat{S}_Y, \hat{S}_Z) &\cong & \pi_n(\alpha_0, S_Y, S_Z) + n^{1/2} \int IC_Y(y) d(\hat{S}_Y - S_Y)(y) \\ &+ & n^{1/2} \int IC_Z(z) d(\hat{S}_Z - S_Z)(z) \\ &= & 0 + n^{1/2} \int IC_Y(y) d(\hat{S}_Y - S_Y)(y) \\ &+ & n^{1/2} \int IC_Z(z) d(\hat{S}_Z - S_Z)(z) \end{aligned}$$

where IC_Y and IC_Z are obtained by differentiating $\pi\{\alpha_0, (1-\varepsilon_1)S_Y + \varepsilon_1\hat{S}_Y, (1-\varepsilon_2)S_Z + \varepsilon_2\hat{S}_Z\}$ with respect to ε_1 and ε_2 and evaluating at $\varepsilon_1 = \varepsilon_2 = 0$, and $IC_Y(y) = -\int_0^y \int_0^{z_0} V_{\alpha,1}\{\alpha_0, S_Y(u), S_Z(z)\}j_{\alpha_0}(u, z, \delta)dzdu$ and $IC_Z(z) = -\int_0^z \int_0^{y_0} V_{\alpha,2}\{\alpha_0, S_Y(y), S_Z(u)\}j_{\alpha_0}(y, u, \delta)dydu$. By the counting process asymptotic techniques, $n^{1/2}\{\hat{S}_Y(y) - S_Y(y)\}$ is asymptotically equivalent to a sum of n i.i.d. random variables as $\sum_i n^{-1/2} I_1^0(Y_i)(y)$, and $n^{1/2}\{\hat{S}_Z(z) - S_Z(z)\}$ is asymptotically equivalent to a sum of n i.i.d. random variables as $\sum_i n^{-1/2} I_1^0(Y_i)(y)$, and $n^{1/2}\{\hat{S}_Z(z) - S_Z(z)\}$ is asymptotically equivalent to a sum of n i.i.d. random variables as $\sum_i n^{-1/2} I_2^0(X_i, \delta_i)(z)$. I_1^0 and I_2^0 are martingales, defined as $I_1^0(Y_i)(y) = -S_Y(y)\{\int_0^y \frac{dN_{1i}(u)}{p(Y \ge u)} - \int_0^y \frac{I(Y_i \ge u)d\Lambda_1(u)}{p(Y \ge u)}\}$ and $I_2^0(X_i, \delta_i)(z) = -S_Z(z)\{\int_0^z \frac{dN_{2i}(u)}{p(Z \ge u, C_2 \ge u)} - \int_0^z \frac{I(X_i \ge u)d\Lambda_2(u)}{p(Z \ge u, C_2 \ge u)}\}$ where $C_2 = C - T - Y$, $N_{1i}(u) = I(Y_i \le u)$, $N_{2i}(u) = I(Z_i \le u, \delta_i = 1)$, and Λ_1 and Λ_2 are the cumulative hazard functions for Y and Z. Then we have

$$\pi_{n}(\alpha_{0}, \hat{S}_{Y}, \hat{S}_{Z}) \cong n^{-1/2} \Big[\sum_{i} \int_{\mathcal{A}} V_{\alpha,1} \{ \alpha_{0}, S_{Y}(y), S_{Z}(z) \} I_{1}^{0}(Y_{i})(y) dJ_{\alpha_{0}}(y, z, \delta)$$

+
$$\int_{\mathcal{A}} V_{\alpha,2} \{ \alpha_{0}, S_{Y}(y), S_{Z}(z) \} I_{2}^{0}(X_{i}, \delta_{i})(z) dJ_{\alpha_{0}}(y, z, \delta) \Big]$$

=
$$n^{-1/2} \{ \sum_{i} I_{1}(Y_{i}, \alpha_{0}) + I_{2}(X_{i}, \delta_{i}, \alpha_{0}) \}$$

which is a sum of n i.i.d. random variables. Since IC_Y and IC_Z are deterministic functions, the expectations of I_1 and I_2 are 0. By the central limit theorem, $\pi_n(\alpha_0, \hat{S}_Y, \hat{S}_Z)$ converges to normal with mean 0 and variance ρ_2^2 , specified as

$$\rho_2^2 = E[\{I_1(Y,\alpha_0) + I_2(X,\delta,\alpha_0)\}^2] = \int_{\mathcal{A}} \{I_1(y,\alpha_0) + I_2(z,\delta,\alpha_0)\}^2 dJ_{\alpha_0}(y,z,\delta)$$

Note that we have proved that $\pi_n(\alpha_0, \hat{S}_Y, \hat{S}_Z)$ is asymptotically equivalent to $n^{1/2} \{ \sum_i I_1(Y_i, \alpha_0) + I_2(X_i, \delta_i, \alpha_0) \}$, and $\eta_n(\alpha_0, \hat{S}_Y, \hat{S}_Z)$ is asymptotically

equivalent to $n^{1/2} \sum_i W_{\alpha} \{\alpha_0, S_Y(Y_i), S_Z(X_i)\}$. Since π_n and η_n are asymptotically independent by the similar arguments in the proof of Theorem 1 in Shih and Louis (1995), $n^{1/2}(\hat{\alpha} - \alpha_0)$ converges to normal with mean zero and variance $\sigma^2 = (\rho_1^2 + \rho_2^2)/\rho_1^4$.

The variance estimator $\hat{\sigma}^2$ can be obtained by replacing J by its empirical distribution function J_n , and S_Y , S_Z , α by \hat{S}_Y , \hat{S}_Z , $\hat{\alpha}$. Specifically,

$$\hat{\rho}_1^2 = \int_{\mathcal{A}} -V_{\alpha}\{\alpha_0, S_Y(y), S_Z(z)\} dJ_n(y, z, \delta) = \frac{1}{n} \sum_{i=1}^n -V_{\alpha}\{\hat{\alpha}, \hat{S}_Y(Y_i), \hat{S}_Z(X_i)\}.$$

$$\begin{aligned} \hat{\rho}_2^2 &= \int_{\mathcal{A}} \{ \hat{I}_1(y, \hat{\alpha}) + \hat{I}_2(z, \delta, \hat{\alpha}) \}^2 dJ_n(y, z, \delta) = \frac{1}{n} \sum_{i=1}^n \{ \hat{I}_1(Y_i, \hat{\alpha}) + \hat{I}_2(X_i, \delta_i, \hat{\alpha}) \}^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left[\frac{1}{n} \sum_{j=1}^n V_{\alpha, 1} \{ \hat{\alpha}, \hat{S}_Y(Y_j), \hat{S}_Z(X_j) \} \hat{I}_1^0(Y_i)(Y_j) \right. \\ &+ \left. \frac{1}{n} \sum_{j=1}^n V_{\alpha, 2} \{ \hat{\alpha}, \hat{S}_Y(Y_j), \hat{S}_Z(X_j) \} \hat{I}_2^0(X_i, \delta_i)(X_j) \right]^2 \end{aligned}$$

where $\hat{I}_1^0(Y_i)(Y_j)$ and $\hat{I}_2^0(X_i, \delta_i)(X_j)$ are the corresponding empirical estimators. Since $\hat{\alpha} \to \alpha_0$, $\hat{S}_Y \to S_Y$, $\hat{S}_Z \to S_Z$, and V_{α} , $V_{\alpha,1}$, $V_{\alpha,2}$ are continuous functions, $\hat{\rho}_1^2$ converges to ρ_1^2 , $\hat{\rho}_2^2$ converges to ρ_2^2 , and $\hat{\sigma}^2$ converges to σ^2 in probability respectively.

References

- Samuelsen, S. O. (1997). A pseudolikelihood approach to analysis of nested case-control studies. *Biometrika* 84, 379–394.
- [2] Shih, J. H. and Louis, T. A. (1995). Inferences on the association parameters in copula models for bivariate survival data. *Biometrics* 51, 1384–1399.