A fundamental goal in nano-toxicology is that of identifying particle physical and chemical properties, which are likely to explain biological hazard. The first line of screening for potentially adverse outcomes often consists of exposure escalation experiments, involving the exposure of micro-organisms or cell lines to a battery of nanomaterials. We discuss a modeling strategy, that relates the outcome of an exposure escalation experiment to nanoparticle properties. Our approach makes use of a hierarchical decision process, where we jointly identify particles that initiate adverse biological outcomes and explain the probability of this event in terms of the particle physico-chemical descriptors. The proposed inferential framework results in summaries that are easily interpretable as simple probability statements. We present the application of the proposed method to a data set on 24 metal oxides nanoparticles, characterized in relation to their electrical, crystal and dissolution properties.



POT_supplement.pdf (949 kB)
Supplementary Material

Included in

Biostatistics Commons