Title
Robust Inferences For Covariate Effects On Survival Time With Censored Linear Regression Models
Abstract
Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are illustrated with two examples and their validity for cases with practical sample sizes is demonstrated via a simulation study.
Disciplines
Numerical Analysis and Computation | Statistical Methodology | Statistical Models | Statistical Theory | Survival Analysis
Suggested Citation
Leon, Larry; Cai, Tianxi; and Wei, L. J., "Robust Inferences For Covariate Effects On Survival Time With Censored Linear Regression Models" (January 2005). Harvard University Biostatistics Working Paper Series. Working Paper 20.
https://biostats.bepress.com/harvardbiostat/paper20
Included in
Numerical Analysis and Computation Commons, Statistical Methodology Commons, Statistical Models Commons, Statistical Theory Commons, Survival Analysis Commons