Abstract
In population studies on the etiology of disease, one goal is the estimation of the fraction of cases attributable to each of several causes. For example, pneumonia is a clinical diagnosis of lung infection that may be caused by viral, bacterial, fungal, or other pathogens. The study of pneumonia etiology is challenging because directly sampling from the lung to identify the etiologic pathogen is not standard clinical practice in most settings. Instead, measurements from multiple peripheral specimens are made. This paper considers the problem of estimating the population etiology distribution and the individual etiology probabilities. We formulate the scientific problem in statistical terms as estimating the posterior distribution of mixing weights and latent class indicators under a partially-latent class model (pLCM) that combines heterogeneous measurements with different error rates obtained from a case-control study. We introduce the pLCM as an extension of the latent class model. We also introduce graphical displays of the population data and inferred latent-class frequencies. The methods are illustrated with simulated and real data sets. The paper closes with a brief description of extensions of the pLCM to the regression setting and to the case where conditional independence among the measures is relaxed.
Disciplines
Biostatistics | Infectious Disease | International Public Health | Pediatrics
Suggested Citation
Wu, Zhenke; Deloria-Knoll, Maria; Hammitt, Laura L.; and Zeger, Scott L., "Partially-Latent Class Models (pLCM) for Case-Control Studies of Childhood Pneumonia Etiology" (May 2014). Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 267.
https://biostats.bepress.com/jhubiostat/paper267
Media Format
flash_audio
Included in
Biostatistics Commons, Infectious Disease Commons, International Public Health Commons, Pediatrics Commons