Comments

Published 2006 in Biometrika 93(2), pp. 303-313.

Abstract

Life expectancy, i.e., mean residual life function, has been of important practical and scientific interests to characterise the distribution of residual life. Regression models are often needed to model the association between life expectancy and its covariates. In this article, we consider a linear mean residual life model and further developed some inference procedures in presence of censoring. The new model and proposed inference procedure will be demonstrated by numerical examples and application to the well-known Stanford heart transplant data. Additional semiparametric efficiency calculation and information bound are also considered.

Disciplines

Statistical Methodology | Statistical Models | Statistical Theory | Survival Analysis

Share

COinS