Abstract
Networks are a natural and effective tool to study relational data, in which observations are collected on pairs of units. The units are represented by nodes and their relations by edges. In biology, for example, proteins and their interactions, and, in social science, people and inter-personal relations may be the nodes and the edges of the network. In this paper we address the question of clustering vertices in networks, as a way to uncover homogeneity patterns in data that enjoy a network representation. We use a mixture model for random graphs and propose a reversible jump Markov chain Monte Carlo algorithm to infer its parameters. Applications of the algorithm to one simulated data set and three real data sets, which describe friendships among members of a University karate club, social interactions of dolphins, and gap junctions in the C. Elegans, are given.
Disciplines
Bioinformatics | Computational Biology
Suggested Citation
Monni, Stefano and Li, Hongzhe, "Vertex Clustering in Random Graphs via Reversible Jump Markov Chain Monte Carlo" (December 2007). UPenn Biostatistics Working Papers. Working Paper 22.
https://biostats.bepress.com/upennbiostat/art22