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A graph theoretic approach to testing
associations between disparate sources of
functional genomic data

Raji Balasubramanian, Thomas LaFramboise, Denise Scholtens, and Robert
Gentleman

Abstract

The last few years have seen the advent of high-throughput technologies to an-
alyze various properties of the transcriptome and proteome of several organisms.
The congruency of these different data sources, or lack thereof, can shed light on
the mechanisms that govern cellular function. A central challenge for bioinformat-
ics research is to develop a unified framework for combining the multiple sources
of functional genomics information and testing associations between them, thus
obtaining a robust and integrated view of the underlying biology.

We present a graph theoretic approach to test the significance of the association
between multiple disparate sources of functional genomics data by proposing two
statistical tests, namely edge permutation and node label permutation tests. We
demonstrate the use of the proposed tests by finding significant association be-
tween a Gene Ontology-derived “predictome” and data obtained from mRNA ex-
pression and phenotypic experiments for Saccharomyces cerevisiae. Moreover,
we employ the graph theoretic framework to recast a surprising discrepancy pre-
sented in Giaever et al. (2002) between gene expression and knockout phenotype,
using expression data from a different set of experiments.
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Abstract

Motivation: The last few years have seen
the advent of high-throughput technologies to
analyze various properties of the transcriptome
and proteome of several organisms. The con-
gruency of these different data sources, or lack
thereof, can shed light on the mechanisms that
govern cellular function. A central challenge for
bioinformatics research is to develop a unified
framework for combining the multiple sources
of functional genomics information and testing
associations between them, thus obtaining a
robust and integrated view of the underlying
biology.

Results: We present a graph theoretic
approach to test the significance of the as-
sociation between multiple disparate sources
of functional genomics data by proposing
two statistical tests, namely edge permuta-
tion and node label permutation tests. We
demonstrate the use of the proposed tests by
finding significant association between a Gene
Ontology-derived predictome and data obtained
from mRNA expression and phenotypic experi-
ments for Saccharomyces cerevisiae. Moreover,
we employ the graph theoretic framework to
recast a surprising discrepancy presented in
Giaever et al., (2002) between gene expression
(Causton et al., 2001) and knockout phenotype,
using expression data from a different set of
experiments (Cho et al., 1998).

Availability: An R software package,
GraphAT, containing the data and statistical
procedures is available from Bioconductor:
http://www.bioconductor.org

Contact: tlaframb@hsph.harvard.edu
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Introduction

High-throughput technologies are able to
generate functional genomics data at an un-
precedented rate. For example, microarray
technology is used to provide quantitative
information on expression levels for thousands
of genes across time (Cho et al., 1998) or
multiple experimental conditions (Causton
et al., 2001). Other experiments focus on
phenotypic outcomes, for example the work by
Giaever et al., (2002), in which a systematically
constructed collection of gene-deletion mutants
is analyzed with respect to the growth rate
(fitness) of each knockout strain under varying
growth conditions. Results from these types
of gene expression and phenotypic outcome
experiments are often clustered using standard
algorithms such as kmeans or represented
in more general expression networks (Butte
et al., 2000) to yield connections between
genes that have similar mRNA transcript or
phenotypic profiles across various experimental
conditions or time points. Other functional
genomics experiments target protein-protein
interactions, for example yeast two-hybrid
(Y2H) experiments aimed at detecting binary
physical interactions ((Uetz et al., 2000); (Ito
et al., 2001)) and affinity purification-mass
spectrometry experiments involving large scale
analysis of purified protein complexes ((Gavin
et al., 2002); (Ho et al, 2002)). Putative
interactions found by such experiments can
generate hypotheses regarding proteins that
belong to a common protein complex and/or
physically interact together in a metabolic
pathway.

In addition to data from individual experi-
ments, there exist several sources of meta-data,
here defined as information compiled from
different sources, including annotations pro-
cured by manual review of published research
by expert biologists. Examples of meta-data
include the Biological Process (BP), Molecular
Function (MF) and Cellular Component (CC)
networks of the Gene Ontology (GO) database
(Ashburner et al., 2000). In these GO networks,
genes that share highly specific annotations can
be inferred to perform closely related functions
in similar metabolic processes (Zhou et al.,
2002). Additional sources of meta-data include
Munich Information for Protein Sequences
(MIPS) (Mewes et al., 2004), Saccharomyces

Genome Database (SGD) (Chervitz et al.,
1999), Yeast Proteome Database (YPD)
(Hodges et al., 1999), Biomolecular Interaction
Network Database (BIND) (Bader et al., 2001)
and Database of Interacting Proteins (DIP)
(Xenarios et al., 2000).

Several previous studies have integrated
multiple data sets from genomic experiments
in Saccharomyces cerevisiae. The earliest such
studies ((Grigoriev, 2001), (Ge et al,, 2001))
report significant association between data
obtained from mRNA expression experiments
and high-throughput experiments measuring
protein-protein interactions.  Similar results
involving protein-protein interaction data and
transcriptome data were also reported in other
studies ((Kemmeren et al., 2002), (Jansen et al.,
2003), (Deane et al., 2002)). A study by Bader
et al., (2001) presents an analysis of overlap
and biases comparing the four major sources
of high-throughput data for protein-protein
interactions (Gavin et al., 2002; Ho et al,
2002; Uetz et al., 2000; Ito et al., 2001) to
meta-data on protein-protein interactions (i.e.
gold standard interactions) compiled in the
MIPS and YPD databases.

In response to the multiplicity of functional
genomics data sources and previous interest
in studying their overlap and integration, the
goals of the present paper are: (a) To present
a unified graph theoretic approach for testing
the association between multiple sources of
functional genomics data by proposing two
tests, namely the edge permutation and node
label permutation tests ; (b) To illustrate the
proposed methods by integrating data from
gene expression and phenotypic fitness experi-
ments with the GO-derived data. We note that
the goal of the analyses presented in this paper
is not to present a comprehensive interaction
network for yeast but rather to illustrate our
proposed statistical methods using a few data
examples.

Data

In this section, we describe in detail the three
primary data sets used for demonstration of our
methods, namely (a) transcriptome data from
the study by Causton et al., (2001), (b) phe-
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notypic fitness data from the study by Giaever
et al., (2002), and (c) the GO-derived dataset.
These three data sets measure different aspects
of gene behavior in Saccharomyces cerevisiae. It
is of interest to elucidate the complementarity
of the different information sources for further
insight into their biological relatedness.

The transcriptome data are obtained from
experiments by Causton et al., (2001), in which
the authors measure the abundance of 6191
mRNA species in S. cerevisiae gathered under
a variety of experimental conditions. Only the
subset of the 3000 most variable (as measured
by the ratio of the standard deviation to the
mean expression) of these genes was considered.
Following a methodology similar to that of
Butte et al., (2000), we first computed Spear-
man correlations of the expression profiles for
all pairs of the 3000 genes. All expression values
were then permuted independently within each
gene 100 times. For each permutation, all
pairwise correlations were again computed,
resulting in a permutation distribution of over
440 million correlation values. Of these, there
were no values below -0.76 and only four above
0.76. We note that Spearman correlation was
used both to avoid parametric assumptions,
and because many correlations in the original
data were clearly outside of the range of values
of the permutation distribution. Thus, pairs of
genes whose expression profiles had correlations
above 0.76 or below -0.76 were considered to
be putatively functionally linked in the tran-
scriptome. The 108,352 pairs putatively linked
in this way have significantly correlated or
anti-correlated transcriptional behavior across
the experimental conditions of interest.

The phenotypic fitness data was obtained
from a study performed by Giaever et al.,
(2002). In this study the authors systematically
created a unique S. cerevisiae gene-deletion mu-
tant for each of nearly 6000 genes. Each strain
was then grown in a variety of media similar
to those in Causton et al., (2001). A fitness
score was computed for each gene-knockout
strain in each medium based on the decrease in
growth rate as compared to the wild-type strain
in the same medium. The authors compare
their results with the Causton et al, (2001)
data, and surprisingly find little correspondence
between genes crucial for growth in a given
medium and genes highly expressed in the

same medium. We applied to the fitness data
the same approach as described above for the
transcriptome data set. Again by using the
Spearman correlation as a statistic and com-
paring to the observed pairwise correlations to
permutation distribution, we obtained 133,828
significantly correlated or anti-correlated pairs
for our phenotype data.

We refer to each dataset derived from the
BP, MF and CC ontologies of the GO database
as a predictome, the nomenclature following
a previous study of a predictome of putative
functional links for pairs of genes (Mellor et al.,
2002). See Ashburner et al., (2000) for details
regarding the GO database. Previous studies
have implemented two broad classes of seman-
tic similarity measures based on information
content and distance respectively, to quantify
similarities between pairs of genes. Information
content measures are based on the belief that
terms that occur less frequently are more
informative. Several such semantic measures
have been explored in previous studies (Lord
et al., 2003). On the other hand, distance
based similarity measures are based on the
topological dissimilarity between shared terms
in a graph, such as GO. An example of this class
of measures is that implemented by Jansen et
al. (2003), where the similarity between pairs of
genes is based on the depth of the terms shared
in common in the GO graph. We implement
a similar measure to derive the predictome
datasets, which we then use to predict whether
pairs of genes are functionally linked and test
whether these functional links are reflected in
the transcriptional and/or phenotypic fitness
data.

The algorithm for constructing the GO-based
predictome is as follows. Suppose there are M
yeast genes under consideration. For each pair
of genes (G;,G;), i,j =1,...M and i # j and
for each of the three networks/ontologies, we as-
sign a unique measure of similarity, denoted D;;.

1. Find all the terms to which gene G; is an-
notated, and similarly for gene G;. These
are the GO graphs induced by G; and G},
respectively.

2. Find the set of terms that both genes G;
and G share in common. Denote this set
Sij.
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3. Define the depth of each term in S;; to
be the length of the shortest path between
the term and the root node of the ontol-
ogy (here length refers to number of edges
transversed).

4. Find the maximum depth of terms in the
set S;;. We refer to this value as D;;.

We now choose a threshold C, based on
quantiles of D;; values for all pairs of genes
i and j, for each ontology. The choice of
quantile cutoff depends on the desired num-
ber of predicted functional links, with less
stringent thresholds yielding a higher number
of predicted relationships. From the three
thresholds, we derive two groups of predictome
data sets, based on integrating the BP and CC
dissimilarities and the MF and CC respectively.
That is, pairs of genes are predicted to be
functionally linked if they share highly specific
BP or MF annotations, respectively, and their
products are localized in close proximity in the
cell, where the level of specificity is determined
by the chosen threshold C'. The rationale for
including the CC ontology in both predictomes
is that the opportunity for two gene prod-
ucts to have coordinated activity is severely
restricted by their physical proximity in the cell.

Table 1 presents the sizes of different predic-
tome data sets obtained by choosing different
values of the threshold C for each of the three
GO ontologies. We considered only the yeast
genes analyzed in Causton et al., (2001) and
Giaever et al., (2002), where genes showing
little variability in both mRNA expression and
fitness over different conditions are excluded.
Genes with unknown BP (MF) or CC functions
are excluded in the BP-CC (MF-CC) derived
predictome data sets.

In the following section, we discuss testing
the association between multiple datasets, such
as those described in this section, using a graph
theoretic framework. In subsequent sections,
we apply these ideas to the transcriptional
data, phenotypic fitness data, and GO-based
predictomes and discuss the biological inter-
pretability of the results.

Graph theoretic framework
and statistical tests

In this section, we demonstrate how to use
graphs for statistical inference on the level of as-
sociation between disparate data sources. Each
data source is represented by a single graph. A
graph in this context is a set of nodes, each rep-
resenting a gene or its protein product, along
with edges connecting some pairs of these nodes.
Each edge represents a functional link, as as-
serted by or inferred from the data source, be-
tween the nodes/genes it connects.

Figure 1 outlines both of our proposed
algorithms using a simple example of one
cluster graph and one non-cluster graph. By
cluster graph, we mean here a graph derived
from a clustered data set (for example, from
hierarchical or k-means clustering of expression
data). We demonstrate how the common
features of multiple graphs can be recorded in a
separate intersection graph. Various features of
the intersection graph can be used to measure
association between multiple data sets, and we
describe how to assess their statistical signifi-
cance using an edge permutation scheme. We
also discuss an alternate node label permutation
test, which may be more biologically valid.
Both the edge and node label permutation
schemes can be applied to any collection of
graphs with a common set of nodes, but one
test may be more appropriate than the other
depending on the topology of the graphs under
consideration. This question warrants further
investigation.

First consider a clustered data set with
clusters of sizes 1, 2, 3, and 4. In a graph of
such clustered data, each pair of nodes (often
representing genes) that shares common cluster
membership is connected by an edge. The
cluster graph is then a disjoint collection of
completely connected subgraphs, representing
the partition of the data induced by cluster
membership. For our simple illustrative ex-
ample, the cluster graph contains ten nodes
and ten edges with the edges organized as in
observed graph A in Figure 1.

For the non-cluster graph, we retain the same
set of nodes, but now two nodes are connected
by an edge based on some other criterion. For
our illustrative example, the edge criterion
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is not specifically defined, but they could be
GO-based predictome edges, for example. In
observed graph B in Figure 1, the ten nodes are
connected by ten edges in a fairly unstructured
fashion. Data from a real biological experi-
ment could very well result in a more highly
organized set of relationships between the genes.

The common features of the observed graphs
A and B can be recorded in an intersection
graph containing the same nodes, but only those
edges common to both graphs A and B (see
the observed intersection graph in Figure 1).
The intersection graph is used for quantifying
the association between the two data types. In
our examples, we count the number of edges in
the intersection graph to measure association,
but we could also use other features of the
intersection graph, for example the number of
connected components, the number of triads
(three nodes all connected to one another), and
any other biologically relevant characteristics.

The two tests proposed in this paper statis-
tically analyze whether the edges in observed
graph A are over-represented in observed graph
B; that is, whether there is an association
between the different observations recorded in
the two graphs. The edge permutation test
is constructed as follows: Let X denote the
number of edges in the intersection graph. To
obtain realizations of intersection graphs under
the null hypothesis of no association between
the graphs A and B, we randomly permute
cluster graph A’s edges multiple times, say
N. For each permutation, we intersect the
permuted graph A with the observed graph
B and count the number of edges in the
new intersection graph. The proportion of
permutations for which the number of edges
in the intersection graph is at least as large
as the observed value of X is an approximate
P value for testing the null hypothesis of
no association between the two graphs. In
this edge permutation scheme, each count of
intersection graph edges (i.e. X) is a realization
of a Hypergeometric(m,n, k) random variable,
where m is the number of edges in observed
graph A, n = [N(N — 1)/2] — m is the number
of missing edges in observed graph A, and k
is the number of edges in observed graph B
(in our case, m = 10, n = 35, and k = 10, see
Appendix for details). Thus, for the special
case of 2 datasets, our edge permutation scheme

is actually a simulation of Fisher’s exact test
(Fisher, 1925) obtained by conditioning on
the total number of edges in the two observed
graphs. The first column of Figure 1 depicts
three iterations of the edge permutation test for
observed graphs A and B. It is recommended
that several thousand iterations be used for P
value calculation.

As suggested previously, some functional
genomics data may result in highly structured
graphs.  Given a collection of graphs with
apparent non-random connectivity, it may be
argued that conditioning only on the number of
edges in the observed graphs for a permutation
test may not provide the correct reference dis-
tribution for assessing statistical significance.
An alternative approach is to condition on the
entire structure of both graphs and permute the
node labels rather than the edges, yielding the
node label permutation test. In this case, the P
value represents the probability of observing at
least the observed number of intersecting edges
given no association between graphs A and
B, conditional on the edge structures of both
graphs. Among other things, the node degree
distribution — the degree of a node being the
number of nodes to which it is connected —
present in both graphs is preserved through
node label permutation. If we consider the
graphical structure in the observed data to
be our best approximation of the underlying
biology of the relationships under investigation,
then the node label permutation test may be
more appropriate than the edge permutation
test. The second column of Figure 1 depicts
three iterations of the node label permutation
scheme for testing association between graphs
A and B.

Thus far we have considered the setting where
there is a single clustered data set to be inte-
grated with a non-cluster data set. In the more
general setting, we consider the integration of
K data sets, where each can be represented
as a graph, with nodes representing genes and
edges representing any of several functional
genomics relationships. The K graphs may
have varying degrees of structure among the
edges. We denote the K graphs by G1,--- ,Gk.
The intersection of the K graphs results in
a graph where a pair of nodes is connected
by an edge if and only if the pair of nodes is
connected in all the graphs Gy, -+ ,Gg. If X
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denotes the number of edges in the intersection
graph, the null hypothesis corresponds to the
statement: the probability that a pair of nodes
in graph G is connected is independent of
the set of graphs {G; : i # k,i = 1,--- K},
for all kK = 1,--- K. The edge permutation
test described earlier easily generalizes to this
setting, where realizations under the null hy-
pothesis are generated by randomly permuting
the edges of each of the graphs Gi,---,Ggk
multiple times. As before, the proportion of
permutations for which the number of edges
in the intersection graph is at least as large
as observed value of X is an approximate
P value for testing the null hypothesis. In
this general case, the number of edges in the
intersection now follows a multidimensional
Hypergeometric distribution. We note that the
null distribution of the number of edges in the
intersection graph after random permutation
of edges in the graphs Gi,---,G is identical
to that resulting from random permutation of
edges in any subset of K — 1 out of the original
K graphs. The node label permutation test
can also be generalized in a similar manner,
based on random permutations of the gene
node labels in each of K graphs, G1,--- ,Gk.

Simulation study

In this section, we present the results of a
simulation study to compare the behavior of
the edge and node label permutation tests
under a range of alternative hypotheses. We
use the same simple cluster membership data
set discussed in Figure 1 and integrate it with
a non-cluster data set on the same ten nodes
with ten edges obtained through simulation
(similar to graph B in Figure 1). The results
of our simulation study indicate a difference
in the computed probabilities of the observed
number of intersecting edges between the edge
and node label permutation schemes.

The simulation study was carried out as
follows: Given the cluster graph A, we ran-
domly select ten edges to appear in graph B,
with X of the ten taken from graph A. The
intersection graph for graphs A and B would
then have ten nodes and X edges. We take X
to be distributed according to a non-central
Hypergeometric distribution with parameters

(m = 10,n = 35,k = 10,%), where ¢ is equal
to the ratio of the odds of a random edge
connecting intracluster nodes from graph A to
that of it connecting intercluster nodes (see
Appendix for details). Thus, ¢ > 1 indicates
preferential connection of intracluster nodes
in graph B using the cluster information in
graph A. For each of v = 1,2,3,4,5, we
generated 1000 realizations of X drawn from
the non-central Hypergeometric distribution
with parameters (m = 10,n = 35,k = 10,%).
For each realization of X, we created graph B
connecting X intracluster edges and 10 — X
intercluster edges with no particular structure
for the observed edges. Both permutation tests
were performed, with 10,000 permutations
each. For each value of ¢ and each statistical
test, we computed the proportion of the 1000
graphs for which the P value was less than
0.05. As Figure 2 demonstrates, the node label
permutation approach results in a consistently
lower probability of detecting preferential con-
nection of intracluster nodes compared to the
edge label permutation approach in this setting.
This difference in probability is reduced as the
graphs become larger and richer in structure,
as will be seen in the real data examples.

Given the fact that the edge permutation
scheme more readily detects preferential con-
nection in the above example, it might be
tempting to conclude that the edge permuta-
tion test is more powerful than the node label
permutation test. Rather than power, what
is really of interest is the ability of these two
permutation schemes to cover the sample space
of the correct reference distribution for use in
statistical inference. In the above simulation
study, graph B followed a random edge allo-
cation pattern with preferential connection of
intracluster edges under the alternative hypoth-
esis. In this case, the edge permutation scheme
quickly covers the correct null sample space,
and is a suitable algorithm. In other cases
where the graphs are more highly structured,
the edge permutation scheme includes samples
in the reference distribution that may be out-
side of the sample space of the graphs of interest.

Several papers (Maslov & Sneppen, 2002),
(Jeong et al., 2001) have demonstrated that
protein-interaction networks do not have the
structure of a random edge graph, but rather
have a scale-free, small-world structure. In a
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scale-free graph, the number of nodes of degree
d is inversely proportional to a positive power
of d. Small-world networks are characterized by
hub nodes having very high degree, giving the
graph a local order but a global disorder. If one
of our graphs represented a protein network,
the node label permutation approach seems
to be more appropriate since it preserves the
appropriate structure of all graphs involved
when sampling the reference distribution.

We note here that when using the number
of edges as the feature of interest of the
intersection graph, the edge and node label
permutation schemes frequently yield very
similar results for graphs with a large number
of nodes and a relatively low proportion of node
pairs connected by edges. This will be evident
in the examples we discuss in the next section.
When other features, such as the number of
connected components or the number of triads
of the intersection graph are considered, the
two permutation algorithms typically yield very
different results (unpublished data). Investiga-
tors are encouraged to examine several features
of intersection graphs to completely explore all
relevant biology, and then carefully select the
edge or node label permutation scheme based
on the structure of the graphs involved.

Data analysis

Association  between  transcriptome
(Causton et al., 2001) and GO-derived

predictome

As previously discussed, GO annotation is the
result of manual review by expert biologists
of current research on MF, BP and CC for
genes and their products. Given the availability
of high-throughput microarray gene expression
data, it is of interest to know whether pairs of
genes with similar known annotations also share
gene expression profiles. If such a relation does
exist, this sheds light on at least one of the mech-
anisms by which the cell coordinates genes with
similar functions.

Table 2 presents the number of nodes with
positive degree and the number of edges in
the intersection graphs obtained by integrating
each GO-derived predictome graph with the
transcriptome graph. The nodes with positive

degree in Table 2 refer to genes connected to
at least one other gene in these intersections
of the transcriptome graph and the GO-based
predictome graphs. The P values for the
number of edges in the intersection graph
resulting from edge and node label permutation
tests were highly significant (P < 0.007) for the
association between transcriptome and each
predictome derived using a combination of BP
and CC ontologies as well as a combination
of MF and CC ontologies respectively. This
suggests that there is a significant relation-
ship between gene expression and functional
annotation, confirming previous suggestions
that transcription is one way in which the cell
regulates cofunctioning genes. We note that in
all but the smallest graphs, both the edge and
node label permutation tests yield similar P
values. A secondary analysis done by excluding
annotations that were inferred from expression
profile data also yielded similar results. Details
are available upon request.

Association between phenotypic fitness
data (Giaever et al., 2002) and GO-
derived predictome

In addition to gene expression data, it is also
of interest to know whether the phenotypic fit-
ness data significantly overlaps with the GO-
based predictomes. If genes with similar phe-
notypic fitness outcomes share functional anno-
tation, this could suggest future experiments for
testing and constructing specific gene networks
that govern cellular fitness.

Table 3 presents the number of nodes with
positive degree and the number of edges in
the intersection graphs of each GO-derived
predictome graph with the phenotypic fitness
graph. For each test of association of pheno-
typic fitness data with the predictome derived
from the MF-CC ontologies, the P values for
the number of intersecting edges were highly
significant (P < 0.001). This suggests that
phenotypic fitness and molecular function
are indicative of one another, and further
investigations along these lines may prove
fruitful. The associations between phenotypic
fitness data and predictomes derived from the
BP-CC ontologies were weaker, especially for
the predictomes derived using a CC cut-off
equal to the 99th percentile of D;; values. It is
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somewhat surprising to find a correspondence
between phenotypic fitness data and MF yet
not between phenotypic fitness data and BP.
This may be explained to some degree by the
fact that the phenotypic fitness data in Giaever
et al., (2002) were collected from yeast grown
in suboptimal conditions. Alternatively, this
result may simply be an artifact of incom-
pleteness of the MF ontology due to lack of
data sources. Under such conditions, normal
biological processes may have been repressed,
and genes may have been more involved in
stress response. A secondary analysis done
by excluding annotations that were inferred
from expression profile data (GO evidence code
IEP) also yielded similar results. Details are
available upon request.

Assocation between transcriptome
(Causton et al., 2001) and phenotypic
fitness data (Giaever et al., 2002)

We also tested the association between the
transcriptional data and phenotypic fitness
data to see whether genes that affect cellular
fitness under similar experimental conditions
are also transcriptionally coregulated.  We
obtained non-significant P values of 0.96 and
0.74 for the association between transcriptome
data from Causton et al., (2001) and the
phenotypic fitness data from the gene knock
out experiments (Giaever et al., 2002) using
the edge and node label permutation tests,
respectively. This result is in accordance with
the findings reported in the Giaever et al.,
(2002) paper. It is interesting to note that we
obtained highly significant P values (< 0.001)
for testing a similar association using the
k-means transcriptome clusters generated by
Tavazoie et al., (1999) from a different set of
mRNA expression experiments (Cho et al.,
1998). The data used for clustering in the
Tavazoie study involved profiling the mRNA
expression of the yeast genome at multiple time
points across the duration of two cell cycles.
The phenotypic data’s strong association with
one gene expression data set but not another
is curious. A potential explanation for this
phenomenon could be that a gene’s role in
phenotypic fitness has (at least) two compo-
nents — stress response and cell cycle — and
that these components roughly correspond to

the expression data in Causton et al., (2001)
and Cho et al., (1998), respectively. Given the
strong association between phenotypic fitness
and the cell cycle expression data set but
weak association between phenotypic fitness
and the stress response expression data set,
we hypothesize that the signal due to the cell
cycle role , in the phenotypic fitness data,
overwhelmed their stress response role signals.
Clearly, this idea merits closer examination.

Association between transcriptome
(Causton et al., 2001), phenotypic fit-
ness data (Giaever et al., 2002) and
G O-derived predictome

All three data sets can also be combined to as-
sess the joint correspondence of transcriptional
and phenotypic profiles with functional annota-
tion. Pairs of genes sharing all three features
may be members of transcriptionally regulated
functional pathways that contribute to cellular
fitness under certain conditions.

Table 4 presents the number of nodes with
positive degree and the number of edges in
the intersection graphs obtained by integrating
each GO-derived predictome graph with the
transcriptional and phenotypic fitness graphs.
In order to obtain rich graphs for the intersec-
tion of all three datasets, we used less stringent
cut-offs for creating the predictomes. All four
three-way associations yielded statistically sig-
nificant P values from both edge and node label
permutation tests, confirming the significant
overlap of transcriptionally and phenotypically
similar genes that are also known to be func-
tionally related. A secondary analysis done
by excluding annotations that were inferred
from expression profile data also yielded similar
results. Details are available upon request.

Discussion

In this paper, we have demonstrated that the
congruency of disparate data types can be
assessed using a graph theoretic framework.
For a more general setting involving the as-
sociation of an arbitrary number of data sets,
this framework allows for easy representation
of the intersection graph and facilitates the
development of statistical tests of association.
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We also saw that the edge and node label
permutation tests may yield different results,
and that the appropriate algorithm should be
chosen based on the structure of the graphs
being used. We then explored the use of the
Gene Ontology database as a source for deriving
predictome data sets, based on the fact that
genes with closely related biological process
or molecular function annotation should be
more likely to generate protein products that
are functionally linked. Our permutation tests
resulted in highly significant P values for the
association between transcriptome and GO-
derived predictome data sets, as well as for the
association between phenotypic fitness profiles
in gene-deletion mutants and the GO-derived
predictomes. These integrated data sets could
be used to investigate high-throughput data
sets exploring protein-protein interactions, such
as Gavin et al., (2002), Ho et al., (2002), Uetz
et al., (2000) and Ito et al, (2001), and can
also be used to suggest targets for further
investigation via direct experiments assessing
protein interactions.

We see many directions for extending the
approach we have explored in this paper. While
we have emphasized tests of association for
multiple data types, these methods could be
extended to combine imperfect predictors of
functional links from multiple independent
sources of data to form a stronger predictor.
In a recent paper by (Jansen et al., 2003), the
authors propose a Bayesian networks approach
to the integration of several sources of data. In
our graph theoretic setting, we could weight
the edges connecting the nodes to account for
the false positive and/or false negative rates in
the original data set. The graphs developed in
this paper are a special case where the weights
are either 0 or 1 (i.e. an edge is either present
of absent between any two nodes). Moreover,
graphs with weighted edges could be used to
represent putative functional links obtained
from several GO-derived predictome graphs
using a range of cut-off values. In this case,
putative links present in predictome datasets
obtained using high cut-off values can be
represented by edges having proportionately
higher weights compared to putative links only
present in less stringent predictome datasets.
Finally, by statistically combining several
weighted graphs, one could propose a more
general method to both integrate information

from multiple experimental sources and assess
their correspondence. Such an approach would
not only be useful in generating more robust
hypotheses regarding functional relationships
between genes, but could also serve to probe
and possibly validate new experimental data
sets.

Appendix

The Hypergeometric distribution arises natu-
rally in the context of a 2 x 2 contingency table.
In our setting, the observations represented in
the table are pairs of nodes present in the graph.
The rows of the table classify each pair as either
connected by an edge in graph A or not, and the
columns classify pairs as connected in graph B
or not. The situation with N nodes, m edges in
graph A, n = N(N — 1)/2 — m missing edges
in graph A, and k edges in graph B is shown in
Table 5. The odds ratio here is defined as

_ mja(l — 7Bac)
WB‘Ac(l - 7rB|A),

where |5 denotes the probability that a pair of
nodes will be connected in graph B conditional
on being connected in graph A, and mg|a- de-
notes the probability that a pair of nodes will
be connected in graph B conditional on not be-
ing connected in graph A. If we condition only
on the number of edges in each graph, we may
think of X, the number of edges in the intersec-
tion of graphs A and B, as a random variable
with distribution given by

k\ (m+n—k\, .z
P(X = x|m,n’k,,¢}) — (z)( m—z )1/}

) ()
This is a noncentral Hypergeometric distri-
bution with noncentrality parameter . The
hypothesis of no association between edge
connections in the two graphs is equivalent to
1 = 1, resulting in the standard Hypergeomet-
ric distribution. Each permutation in the edge
permutation test then yields a realization of X
under this distribution, and thus this test may
be thought of as a simulation of Fisher’s exact
test (Fisher, 1925). In order to simulate graphs,
for power calculations, from the alternative
hypothesis of preferential connection in graph B
of nodes connected in graph A, we generate re-
alizations z; (¢ = 1,...,number of realizations)
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of a noncentral Hypergeometric variable X
with v > 1 and connect z; edges in graph B
that are also in graph A and k — x; edges in
graph B that are not in graph A. The results
of these simulations are presented in Section 4.
Integrating three or more, say K, graphs would
generalize the above 2 x 2 contingency table to a
2K contingency table, with the Hypergeometric
distribution becoming the multidimensional
Hypergeometric distribution. The node label
permutation test, on the other hand, conditions
on the topological structure of all graphs under
consideration, and thus the null distribution of
the number of common edges is more challeng-
ing to determine analytically.
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Edge permutation and node label permutation algorithms

1) Intersect graph A and graph B. Count number of intersecting edges.

(Or calculate alternative test statistic, possibly using edge weights.)

2) Permute node labels or edges on graph A, depending on algorithm.

3) Intersect permuted graph A with graph B. Count number of intersecting edges

4) Repeat N times.

5) Calculate p-value equal to (# of permutations resulting in at least as many
intersecting edges as observed intersection graph)/N.

observed graph A observed graph B observed intersection graph
Gl Gl
G10 G2 G10 G2 GlOn ) Py G2
G3 G9 G3 Goe@ 9 C3
G4 G8 G4 G @ | XVl
N r
% G7 G5 c7® €95 [6]
G6 G6 G6 intersecting
edges
ng _ nB
graph A:edge —>» intersection graph graph A:node label = intersection graph
permutation permutation
permutation 1. permutatlon 1
G1 Gl Gl
G10 G2 Gl @ Py G2 ‘ 9 Py G2
G9 G3 NB Gog 9 C3 GG nB 69‘ 9 G3
G8 G4 G8 @ . Je¥i 70 GlO ey J ® G4
G7 G5 c7® ® s c7® ® s
G6 G6 3 G6 2
permutation 2: permutatlon 2:
Gl Gl
. Gl0g @ g G2 ) 10g ® @ G2
G9 Gs 18 GYg 9 G3 G4 B Gg,, 9 G3
G8 G4 Ge @ ® G4 ; Gs @ . Jet!
G7‘ ® ‘GS (37‘ o ‘(35
G6 1 G6 4
permutatlon 3 permutatlon 3
Gl G1 G1
G10 G2 G0, @ a G2 10g 9 g C2
G9 G3 NB GY9¢g @ C3 G9 nB G9‘ 9 C3
G8 G4 G @ | XVl e 9G4
G7 G5 7% ® 95 % 7% ® O
G6 G6 4 G6 4

Repeat for N permutations. Then calculate p—value.

Figure 1:
schemes.

Edge and node label permutation
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Figure 2: Estimated probability of detecting en-
richment of intracluster edges for node label per-
mutation and edge permutation tests (with 95%
confidence intervals) as a function of the non-
centrality parameter ¢ of the non-central Hy-
pergeometric distribution. As ¢ increases away
from 1, the simulated data is more likely to have
preferential connection of nodes from the same
cluster.
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Table 1: Predictomes obtained by combining
BP with CC and MF with CC networks respec-

tively

Biological Process: Cut-off Percentile (value)

Cellular Component:
Cut-off Percentile (value)

95 % (6) 99 % (7)

95 % (5)

99 % (6)

No. of nodes (edges): 363 (2070) No. of nodes (edges): 220 (1163)
(predicted interactions) (predicted interactions)

No. of nodes (edges): 151 (664)  No. of nodes (edges): 106 (444)
(predicted interactions) (predicted interactions)

Molecular Function: Cut-off Percentile (value)

Cellular Component:
Cut-off Percentile (value)

95% (6) 99 % (7)

95% (5)

99% (6)

No. of nodes (edges): 268 (743) No. of nodes (edges): 110 (210)
(predicted interactions) (predicted interactions)

No. of nodes (edges): 107 (176)  No. of nodes (edges): 42 (64)
(predicted interactions) (predicted interactions)

Note: Only nodes with at least one predicted

interaction are included.
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Table 2: Intersection graph between transcrip-
tome and each predictome derived by combining
the GO ontologies — BP with CC and MF with
CC networks respectively. P values are reported
from edge and node label permutation tests re-
spectively

Biological Process: Cut-off Percentile (value)

Cellular Component: 95% (6)

Cut-off Percentile (value)

99 % (7)

95% (5) No. of nodes (edges): 148 (204)
P values: < 0.001, < 0.001

99% (6) No. of nodes (edges): 60 (63)
P values: < 0.001, < 0.001

No. of nodes (edges): 79 (99)
P values:< 0.001, < 0.001

No. of nodes (edges): 35 (39)
P values: < 0.001, 0.005

Molecular Function: Cut-off Percentile (value)

Cellular Component 95% (3)

Cut-off Percentile (value)

99 % (5)

95% (5) No. of nodes (edges) : 95 (114)
P values: < 0.001, < 0.001

99% (6) No. of nodes (edges) : 36 (128)
P values: < 0.001, < 0.001

No. of nodes (edges): 49 (57)
P values: < 0.001, < 0.001

No. of nodes (edges): 12 (8)
P values: < 0.001, 0.007

Note: Only nodes with degree > 0 are included.
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Table 3: Intersection graph between phenotypic
fitness data and each predictome derived by
combining the GO ontologies — BP with CC
and MF with CC networks respectively. P val-
ues are reported from edge and node label per-
mutation tests respectively

Biological Process: Cut-off Percentile (value)

Cellular Component 95% (6)

Cut-off Percentile (value)

99 % (7)

95% (5) No. of nodes (edges): 243 (297)
P values: < 0.001, < 0.001

99% (6) No. of nodes (edges): 87 (79)
P values: < 0.001, 0.017

No. of nodes (edges): 154 (183)
P values: < 0.001, < 0.001

No. of nodes (edges): 54 (46)
P values: 0.044, 0.133

Molecular Function: Cut-off Percentile (value)

Cellular Component 95% (3)

Cut-off Percentile (value)

99 % (5)

95% (5) No. of nodes (edges) : 149 (171)
P values: < 0.001, < 0.001

99% (6) No. of nodes (edges) : 54 (45)
P values: < 0.001, < 0.001

No. of nodes (edges): 55 (55)
P values: < 0.001, < 0.001

No. of nodes (edges): 28 (23)
P values: < 0.001, < 0.001

Note: Only nodes with degree > 0 are included.

15
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Table 4: Intersection graph between transcrip-
tome, phenotypic fitness data and each predic-
tome derived by combining the GO ontologies
— BP with CC and MF with CC networks re-
spectively. P values are reported from edge and
node label permutation tests respectively.

Biological Process: Cut-off Percentile (value)

Cellular Component 75% (4)
Cut-off Percentile (value)

90 % (5)

75% (4) No. of nodes (edges): 60 (49)
P values: < 0.001, < 0.001

No. of nodes (edges): 41 (29)
P values: < 0.001, < 0.001

Molecular Function: Cut-off Percentile (value)

Cellular Component 75% (2)
Cut-off Percentile (value)

90 % (3)

75% (4) No. of nodes (edges) :
P values: < 0.001, < 0.001

No. of nodes (edges): 24 (15)
P values: < 0.001, < 0.001

Note: Only nodes with degree > 0 are included

16
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Table 5: Tabular representation of intersecting
edges of a two graphs A and B. Here N =total
number of nodes, m =number of edges in graph
A, n = N(N —1)/2 — m =number of missing
edges in graph A, and k& =number of edges in
graph B. If there are K graphs with K > 2, the
integration of the graphs can instead be repre-
sented by a K-dimensional 2 table.

No. edges in graph B No. missing edges in graph B
No. edges in graph A X m— X m
No. missing edges in graph A kE—X n—k+X n
k m+n—k (g) =m+n
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