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Statistical Methods for Inference of Genetic
Networks and Regulatory Modules

Hongzhe Li

Abstract

Large-scale microarray gene expression data, motif data derived from promotor
sequences, genome-wide chromatin immunoprecipitation (ChIP-chip) data, DNA
polymorphism data and epigenomic data provide the possibility of constructing
genetic networks or biological pathways, especially regulatory networks. In this
paper, we review some new statistical methods for inference of genetic networks
and regulatory modules, including a threshold gradient descent procedure for in-
ference of Gaussian graphical models, a sparse regression mixture modeling ap-
proach for inference of regulatory modules, and the varying coefficient model for
identifying regulatory subnetworks by integrating microarray time-course gene
expression data and motif or ChIP-chip data. We present the statistical formula-
tions of the problems, statistical methods, and results from analysis of real data
sets. Areas of future research are also discussed.
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Abstract

Large-scale microarray gene expression data, motif data derived from promotor sequences,
genome-wide chromatin immunoprecipitation (ChIP-chip) data, DNA polymorphism data
and epigenomic data provide the possibility of constructing genetic networks or biological
pathways, especially regulatory networks. In this paper, we review some new statistical
methods for inference of genetic networks and regulatory modules, including a threshold
gradient descent procedure for inference of Gaussian graphical models, a sparse regression
mixture modeling approach for inference of regulatory modules, and the varying coefficient
model for identifying regulatory subnetworks by integrating microarray time-course gene
expression data and motif or ChIP-chip data. We present the statistical formulations of the
problems, statistical methods, and results from analysis of real data sets. Areas of future
research are also discussed.

1 Introduction

The completion of the human genome project and the development of many high-throughput
genomic technologies make it possible to systematically define the organization and function
of gene, protein and metabolite networks. Large-scale microarray gene expression data,
promotor sequences data and genome-wide chromatin immunoprecipitation (ChIP-chip) data
provide the possibility of learning gene regulation and constructing the gene regulatory
networks and pathways or cellular networks (Ideker et al., 2001; Friedman, 2004; Das et al.,
2006). In a recent review, Bansal et al. (2007) summarized the methods for inferring genetic
networks into two broad classes: those based in the “physical interaction” approach that aims
at identifying interactions among transcription factors and their target genes and those based
on the “influence interaction” approach that aims to relate the expression of a gene to the
expression of the other genes in the cell, rather than relating it to the sequence motif found in
its promotor. In this paper, we review some recently developed statistical methods for several
problems related to inferences of genetic network and regulatory modules, including both
“physical interaction” networks using diverse data sets and “influence interaction” networks
using gene expression data alone.

Early research on gene expression analysis has mainly focused on using clustering analysis
to identify co-regulated genes (Tavazoie et al., 1999). Recently, some efforts have been de-
voted to developing probabilistic models for modeling regulatory and cellular networks based
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on genome-wide high-throughout data, including both Bayesian network modeling (Fried-
man, 2004; Segal et al., 2003) and Gaussian graphical modeling (Schaffer and Strimmer,
2005; Wille et al., 2004; Dobra et al., 2004; Li and Gui, 2006). The goal of such probabilistic
modeling is to investigate the patterns of association in order to generate biological insights
plausibly related to underlying biological and regulatory pathways. It is important to note
that the interaction between two genes in a gene network defined by such graphical models
does not necessarily imply a physical interaction, but can refer to an indirect regulation via
proteins, metabolites and ncRNA that have been measured directly and therefore its inter-
pretation depends on the model formulations (Bansal et al., 2007). In this paper, we will
present some details on Gaussian graphical models and methods for estimating the graphical
structure in the high-dimensional settings.

It is now understood that much of a cell’s activity is organized as a network of interact-
ing modules. Such a module consists of genes co-regulated by a set of regulators to respond
to different conditions (Segal et al., 2003; Ernst et al., 2007). It is therefore important to
identify such regulatory modules. Genome-wide expression profiles provide important infor-
mation on cellular states and cells’ activities and therefore provide information for inferences
of regulatory modules. Segal et al. (2003) present a probabilistic method for identifying reg-
ulatory modules from gene expression data using classification and regression tree (CART)
methods. In this approach, a set of regulators including transcriptional factors and signaling
proteins is first identified from literature. The model further assumes that both regulators
and its targets must be regulated at the transcriptional levels, resulting in detectable changes
in expression. These regulators can then be used as predictors for gene expression levels us-
ing CART. The genes that are regulated by the same set of regulators are then identified as
regulatory modules. Bonneau et al. (2007) recently proposed a similar framework for learn-
ing parsimonious regulatory networks and called the method “Inferelator.” The method first
clusters genes into groups and then essentially perform linear regression with the least ab-
solute shrinkage and selection operator (Lasso) (Tibshirani, 1996) to select the regulators
that are related to the expression variations of the cluster of genes. In this paper, we will
present a sparse regression mixture modeling (SRMM) approach for identifying the gene reg-
ulatory modules. Since we expect only a small set of regulators that control the expression
of a module, the regression model should therefore be sparse. Our approach is based on a
combination of finite mixture modeling (McLachlan and Basford, 1988) and Lasso.

Another area of intensive research in recent years has been to integrate gene expression
data with motif or ChIP-chip data in order to identify transcriptional networks (Bussemaker
et al. 2001; Keles et al., 2002; Gao et al., 2004, Conlon et al., 2003). The foundamental
idea of these approaches is based on linear regression analysis with gene expression levels
as responses and motifs or ChIP-chip data as predictors. While these approaches work
reasonably well in discovery of regulatory motifs in lower organisms, they often fail to identify
mammalian transcriptional factor binding sites (Das et al., 2006). Das et al. (2006) proposed
to correlate the binding strength of motifs with expression levels using the multivariate
adaptive smoothing splines (MARS) of Friedman (2001). Ernst et al. (2007) proposed
an interesting approach based on the Hidden Markov model for reconstructing dynamic
regulatory networks using microarray time-course gene expression data and ChIP-chip data.
We will present an approach based on varying coefficient models in order to identify the
transcriptional factors that are involved in a given biological process.

In this paper, we present the statistical formulations of the problems related to inference
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of genetic networks based on gene expression data, inference of regulatory modules based on
both gene expression data and genome annotation including information on transcriptional
factors and regulators, and inference of regulatory networks based on gene expression and
sequence motif or ChIP-chip data. We review some statistical methods developed for these
methods and focus on the approaches that we have developed. We illustrate these methods
by presenting results from analysis of several real data sets. Finally, we present a brief
discussion on future work in this important area.

2 Network Inference Based on Gaussian Graphical Mod-

els

Graphical models use graphs to represent dependencies between stochastic variables (Ed-
wards, 2000). The graphical approach yields dependence models that are easily visualized
and presented. One specific graphical model is the Gaussian graphical model, which assumes
that the multivariate vector follows a multivariate normal distribution with a particular
structure of the inverse of the covariance matrix, often called the precision or concentra-
tion matrix. For such Gaussian graphical models, it is usually assumed that the patterns
of variation in expression for a given gene will be predicted by those of a small subset of
other genes. This assumption leads to sparsity (i.e., many zeros) in the precision matrix of
the multivariate distribution and reduces the problem to well-known neighborhood selection
or covariance selection problems (Dempster, 1970). In such a concentration graph modeling
framework, the key idea is to use partial correlation as a measure of independence of any two
genes, rendering it straightforward to distinguish direct from indirect interactions. This is in
contrast to the covariance graphical model where marginal correlations are used. It has been
demonstrated in the literature that many biochemical and genetic networks are not fully
connected (Tegner et al., 2003; Jeong et al., 2001; Gardner et al., 2003) and many genetic
interaction networks contain many genes with few interactions and a few genes with many
interactions. Therefore, the genetic networks are intrinsically sparse and the corresponding
precision matrix should be sparse.

There are several approaches in the literature to covariance selection problems in the con-
text of microarray data analysis. Schafer and Strimmer (2005) proposed a naive approach
to estimate the precision matrix by using a boosted G-inverse, then determining which off-
diagonal elements are zero by a thresholding and false discovery procedure. The drawback of
this approach is that the sparsity is not accounted for when estimating the precision matrix,
so the procedure is expected to perform poorly. Meinshausen and Buhlmann (2006) proposed
a gene-by-gene approach by using the Lasso (Tibshirani, 1996) to find neighbors for each
gene. Under a large set of assumptions they showed that the neighbors can be consistently
identified when the sample size goes to infinity, which is very rare for microarray gene expres-
sion data. Dobra et al. (2004) proposed a Bayesian approach by converting the dependency
networks into compositional networks using Cholesky decomposition. The graphs are then
used to estimate the precision matrix. Since Cholesky decomposition of the precision ma-
trix naturally imposes ordering restriction of the variables, the procedure is computationally
quite intensive since it has to determine gene order in their model construction. Finally,
Wille et al. (2004) proposed to infer Gaussian graphs based on tri-graphs by considering all
partial correlations conditioning on only one other variable. Strictly speaking, the result-
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ing tri-graphs are not true Gaussian concentration graphs. In the following, we provide a
brief introduction ofto Gaussian graphical models and review the threshold gradient descent
(TGD) approach for identifying such graphs developed in Li and Gui (2006).

2.1 Gaussian graphical models

We assume that the gene expression data observed are randomly sampled observational or
experimental data from a multivariate normal probability model. Specifically, let X be a
random normal p-dimensional vector and X1, · · · , Xp denote the p elements, where p is the
number of genes. Let V = {1, · · · , p} be the set of nodes (genes), and X(k) be the vector of
gene expression levels for the kth sample. We assume that

X ∼ Np(0, Σ) (1)

with positive definite variance-covariance matrix Σ = {σij} and precision matrix Ω = Σ−1 =
{ωij}. This model can also be summarized as a graph model. Let G = (V, E) be an
undirected graph with vertex set V = {1, · · · , p} and edge set E = {eij}, where eij=1 or 0
according to whether vertices i and j, 1 ≤ i < j ≤ p, are adjacent in G or not. The Gaussian
graphical model consists of all p-variate normal distributions Np(0, Σ) where Σ is unknown
but where the precision matrix satisfies the following linear restrictions:

eij = 0 ⇒ ωij = 0.

This model is also called a covariance selection model (Dempster, 1970) or a Gaussian pre-
cision graph model.

Let [−i] denote the set {1, 2, · · · , i−1, i+1, · · · , p}. In the Gaussian graphical model, it is
well known that the partial regression coefficients of Xi on Xj in the normal linear regression
p(Xi|X[−i]) is −ωij/ωii, j ∈ [−i], and the ijth partial correlation between the ith and the
jth gene is ρij = −ωij/

√
ωiiωjj. For a given gene g, we define the neighbor of this gene as

neg = {j : ωgj 6= 0, j ∈ [−g]},

which contains all the genes with a non-zero partial correlation with the gene g. From
the multivariate normal distribution theory, we have the following conditional independence
result,

Xg ⊥ XG\(neg
⋃

g)|Xneg .

2.2 Threshold gradient descent regularization

We consider the estimation of the precision matrix Ω based on a sample of i.i.d. observations
X(k) ∈ Rp, k ∈ N = {1, · · · , n}, where the set N can be interpreted as indexing the samples
on which we observe the variables in V and X(k) is the kth observation. Li and Gui (2006)
developed a penalized procedure for estimating Ω using the idea of threshold gradient descent
(Friedman and Popescu, 2004; Gui and Li, 2005) to take into account the sparse nature of
the precision matrix for genetic networks.

In order to utilize the sparse property of the precision matrix, we propose in this section
to maximize the likelihood function based on model (1) subject to constraint by “sparse”
precision matrix Ω. Let ωd ≡ {ω11, · · · , ωpp} denote the vector of the diagonal elements of
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the matrix Ω and ωo ≡ {ωij}i6=j denote the vector of q = p(p− 1)/2 off-diagonal elements of
the Ω matrix. The likelihood function can be written as

w(ωd, ωo) =
n

2
log |Ω| − 1

2

n∑

k=1

X(k)
′
ΩX(k), (2)

where X(k) is the kth observation. We assume that the variables are standardized. When
p < n, the maximum likelihood estimate (MLE) of Ω is simply the inverse of the sample
covariance matrix, and when n < p, the MLE of Ω is not unique.

In order to account for sparsity of the precision matrix Ω, Li and Gui (2006) defined a
loss function as the negative of the log likelihood function (2),

l(ωd, ωo) = −w(ωd, ωo).

Based on equation (2), the gradient of the loss function with respect to Ω is

∂l

∂Ω
=

n

2
Ω−1 − 1

2

n∑

k=1

X(k)X(k)
′
. (3)

From this we can obtain the gradient of the loss function over the off-diagonal elements ωo.
Define g(ωo) = (g1(ω

o), · · · , gq(ω
o)) = −∇ωol(ωo, ωd) to be the negative gradient of l with

respect to ωo. To find an optimal path from all the paths from Ω = I to the MLE of Ω or to a
precision matrix surface formed by Ω = S− when p > n, we start from ν = 0, ωo = (0, · · · , 0)
and ωd = (1, · · · , 1) and update the elements ωo by the following gradient descent step,

ω̂o(ν + ∆ν) = ω̂o(ν) + ∆νh(ν),

where ω̂o(ν) is the ωo value corresponding to current ν, ∆ν > 0 is an infinitesimal increment
and h(ν) is the direction in the parameter space tangent to the path evaluated at ω̂o(ν).
This tangent vector at each step represents a descent direction. In order to direct the path
towards parameter points with diverse values, following Friedman and Popescu (2004), we
define h(ν) as

h(ν) = {fj(ν).gj(ν), j = 1, · · · , q},

where
fj(ν) = I[|gj(ν)| ≥ τ ·max1≤k≤q|gk(ν)|],

where I[.] is an indicator function, and 0 ≤ τ ≤ 1 is a threshold parameter that regulates the
diversity of the values of fj(ν); larger values of τ lead to more diversity. g(ν) is the negative
gradient evaluated at ω̂o(ν) and current ωd. Therefore, τ is the parameter that controls the
degree of penalty and sparsity in the ωo, with τ = 1 giving the sparsest graphs. Instead of
moving along the true gradient direction, the threshold gradient update only moves along
those elements with large values of the gradient. After ωo is updated, we update the diagonal
elements of Ω, ωd, by maximizing the log-likelihood function (2) with ωo fixed at the current
values, ω̂o. This is done by using Newton-Raphson iterations.

In summary, for any threshold value 0 ≤ τ ≤ 1 , the threshold gradient descent regular-
ization algorithm for the sparse Gaussian graphical model involves the following six steps,

5

Hosted by The Berkeley Electronic Press



1. Set ωo(0) = 0, ωd(0) = 1, ν = 0.

2. Calculate g(ν) = −∂l/∂ωo for the current ωo and ωd.

3. Calculate fj(ν) = I[|gj(ν)| ≥ τ ·max1≤k≤q|gk(ν)|] and h(ν).

4. Update ωo(ν +4ν) = ωo(ν) +4ν · h(ν), ν = ν +4ν.

5. Update parameters ωd by maximizing the log-likelihood using Newton-Raphson itera-
tions with ωo fixed at ωo(ν + ∆ν).

6. Repeat steps 2-5.

For a given τ , it is easy to see that the likelihood function increases as the iterations increase,
and different τ correspond to different paths for Ω from I to S−. It should be emphasized
that for a given τ , the threshold gradient iterations stop before it reaches S− and the number
of gradient iterations at which to stop the algorithm can be determined by cross-validation
(see Section 2.3). Li and Gui (2006) particularly considered the algorithm with τ = 1, which
corresponds to the sparsest graph for a given TGD step, and called the proposed procedure
the direct threshold gradient descent procedure. Such a procedure is expected to perform
better for gene expression data since most biological or genetic networks are expected to be
very sparse (Barabasi and Oltvai, 2004).

2.3 Model selection by cross-validation and bootstrap

As the iterations continue, more and more non-zero elements are selected in the precision
matrix and the corresponding undirected graphs grow larger. The final model should provide
the best balance between coverage (correctly identified connections/total true connections)
and false-positives (incorrectly identified connections/total identified connections) (Gadner
et al., 2004). Li and Gui (2006) proposed to use K-fold cross-validation for choosing the
number of TGD iterations, ν, where for each ν, the K-fold cross-validated log-likelihood
criterion is defined as

CV (ν) =
1

K

K∑

k=1

(
−nk log |Ω−k|+

∑
i∈Vk

X(i)ΩX(i)

)
,

where nk is the size of the kth validation set Vk and Ω−k is the TGD estimate of the precision
matrix based on sample V \Vk evaluated at Ω̂(ν). Alternatively, we can use the BIC criteria
for selecting ν, where the degrees of freedom can be defined as the number of nonzero entries
of the off-diagonal elements of the precision matrix. This is similar in spirit to Lasso in linear
regression where the degrees of freedom is defined as the number of nonzero coefficients (Zou
et al., 2007).

Since the number of the off-diagonal elements in the precision matrix is often quite large
compared to the sample size, there is often considerable uncertainty in the edges chosen.
As a final step in the procedure, we propose to use the bootstrap method to determine the
statistical accuracy and the importance of each of the edges identified by the TGD procedure.
In bootstrapping, B bootstrap data sets, X∗1, · · · , X∗B, are sampled with replacement from
the original data set such that each bootstrap sample contains n observations. We then
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apply the TGD procedure to each bootstrap data set and examine which edges are in the
final models. One can then choose only the edges with high probability of being non-zero in
the precision matrix over the bootstrap samples.

2.4 Simulation results and application to real data set

Li and Gui (2006) performed simulation studies to evaluate the proposed threshold gradient
descent procedure and applied this to analysis of isoprenoid metabolic pathways. Results
indicate that by accounting for sparsity in estimating the precision matrix, one can obtain a
better estimate of the precision matrix, and the TDG procedure can effectively identify the
linked edges in the Gaussian graphical models.

Li and Gui (2006) applied the TGD procedure to analysis of the Arabidopsis thaliana
isoprenoid pathway. The isoprenoid biosynthetic pathway provides intermediates of many
natural products including steroles, chlorophylls, carotenoids, plastoquinone and abscisic
acid, etc. It is now known that plants contain two pathways for the synthesis of the structural
precursors of isoprenoids: the mevalonate (MVA) pathway, located in the cytosol/ER, and
the recently discovered methylerythritol 4-phosphate (MEP) pathway, located in the plastids.
The pathway in plastids, which is mevalonate-independent, occurs and is responsible for the
subsequent biosynthesis of plastidiar terpenoids such as carotenoids and the side chains of
chlorophyll and plastoquinone (Wille et al., 2004). It is therefore important to understand
the organization and regulation of this complex metabolic pathway, with the long-term goal
of using the generated knowledge to undertake metabolic engineering strategies oriented to
increase the production of isoprenoids with pharmaceutical and food applications, and also
to the design and development of new antibiotics.

In order to better understand the pathway and gain insights into the crosslink between the
two pathways at the transcriptional level, Wille et al. (2004) reported a data set including
the gene expression patterns monitored under various experimental conditions using 118
GeneChip microarrays. For the construction of the genetic network, they focused on 40
genes, 16 of which were assigned to the cytosolic MVA pathway, 19 to the plastidal MEP
pathway and five genes encoding proteins located in the mitochondria. See the solid lines of
Figure 1 for the MVA and the MEP pathways and the genes involved.

In order to demonstrate whether the proposed TGD method can identify the known
isoprenoid pathways of these 40 genes based on the 118 gene expression measurements, Li and
Gui (2006) first estimated the precision matrix by the threshold gradient methods. Using 10-
fold cross-validation, the TGD procedure resulted in 20 non-zero off-diagonal elements. We
next used a bootstrap with the TGD procedure to estimate the confidence of the edges. With
bootstrap probability of 0.50 or higher, we identified 19 pairs of genes that are connected
with high confidence, of which 12 pairs have a bootstrap probability of 0.80 or higher. These
19 pairs are plotted on the true network in Figure 1. We find a module with strongly
interconnected genes in each of the two pathways. For the MEP pathway, DXPS2, DXR,
MCT, CMK and MECPS are connected as the true pathway. Similarly, the genes in the
MVA pathways, AACT2, HMGR2, MK, MPDC1, FPPS1 and FPP2 are closely connected.
In addition, there are also several genes in the MEP pathway that are linked to proteins in
the mitochondria.
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Figure 1: Pathways identified by the TGD method for the 40 genes in the isoprenoid pathways,
where the solid arrows are the true pathways, curved undirected lines are the estimated edges
with bootstrap probability of greater than 0.5 for the TGD method. For this plot, the left panel
represents a subgraph of the gene module in the MEP pathway and the right panel represents
a subgraph of the gene module in the MVA pathway. The numbers on the estimated edges
are the bootstrap probabilities.
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3 Methods for Identifying Regulatory Modules

Since the networks inferred from gene expression data alone do not imply any physical
interactions among genes, it is important to incorporate other data sources to infer regulatory
networks. In addition, influence interactions may include physical interactions if the two
interacting partners are a transcriptional factor and its target, suggesting that incorporating
the transcriptional factors information can help to identify the relevant regulatory networks
and modules. Segal et al. (2003) proposed to integrate gene expression data and knowledge
of transcriptional factors in order to identify transcriptional modules using regression trees in
a mixture modeling framework. Lee et al. (2007) further developed this idea for integrating
microarray gene expression data, SNPs data and regulatory information in order to identify
the genetic variations that affect the regulatory modules. In this section, we reformulate
the problem into sparse regression mixture modeling (SRMM) and propose a Lasso-EM
algorithm for identifying such regulatory modules.

3.1 The SRMM for identifying transcriptional modules

Consider the microarray gene expression data setup of G genes over C experimental condi-
tions. These G genes also include C transcriptional factors or signaling proteins. Let Ygc be
the log-expression level of the gth gene at the experimental condition c, for g = 1, · · · , G and
c = 1, · · · , C and Y = {Ygc, g = 1, · · · , G, c = 1, · · · , C}. Let Xrc be log-expression level of the
rth regulator at the condition c, for r = 1, · · · , R and c = 1, · · · , C, Xc = {X1c, · · · , XRc} be
the expression level of the R regulators at the cth experiment condition, and X = {Xrc, r =
1 · · · , R, c = 1, · · · , C}.

Assuming that there are K regulatory modules, let Mg be the module membership for
the gene g. We assume the following model for the observed expression data for genes in the
kth regulatory module,

Ygc|{Mg = k} =
R∑

r=1

Xrcβkr + εgc,

Mg ∼ Multinomial(π),

with π = (π1, · · · , πK)T , πk ≤ 0, and
K∑

k=1

= 1, (4)

where βk = (βk1, · · · , βkR)T is the vector of module-specific parameters, εgc is the error term,
which is assumed to follow a N(0, σ2

k), and πi is the prior probability that a gene belong to
the ith module. Since the expression level of a given gene is often regulated by a small set of
regulators, for a given k, we should expect that many of the elements in vector βk should be
zero. We call model (4) the SRMM model. In this mixture model formulation, the unknown
parameters include K, βk and σ2

k for k = 1, · · · , K and π. Note that the SRMM model (4)
can be easily extended to include interaction terms between the regulators,

Ygc|{Mg = k} =
R∑

r=1

Xrcβkr +
∑

r,r′
XrcXr′cβkrr′ + εgc,

where βkrr′ is used to model the interaction effect between the regulators r and r′ on gene
expression levels for genes in the kth module.
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3.2 An EM algorithm based on Lasso

In order to deal with the problem of a large R and to account for the sparse nature of the
parameters βk in model (4), we propose to develop the following EM algorithm based on
the Lasso for estimating the model parameters. Let M = {Mg1, · · · , MgK , g = 1, · · · , G} be
the matrix of module-membership indicators for the G genes, where Mgk is 1 if the gth gene
belongs to the kth module. The complete data log-likelihood can be written as

l(βk, σ
2
kπ; Y,M |X) = l1(M ; π) + l2(Y |M, X; βk, σ

2
k),

where

l1(M ; π) =
G∑

g=1

K∑

k=1

Mgk log(πk),

l2(Y |M,X; βk, σ
2
k) = −1

2

G∑
g=1

K∑

k=1

C∑
c=1

Mgk

{
log(σ2

k) +
(Ygc −XT

c βk)
2

σ2
k

}
. (5)

It is easy to show that in the (t + 1)th E-step, we have

M̂gk = E(Mgk = 1|X, Y ) =
π

(t)
k Pr(Yg|Mgk = 1; β

(t)
k , σ

(t)
k )∑K

k=1 π
(t)
k Pr(Yg|Mgk = 1; β

(t)
k , σ

(t)
k )

,

where Pr(Yg|Mgk = 1; β
(t)
k , σ

(t)
k ) is the normal density for Yg if the gth gene belongs to the

kth module. At the (t + 1)th M-step, it is easy to check that the EM equation for updating
the prior probability is given by

π̂
(t+1)
k =

∑G
g=1 M̂gk

G
.

However, the M-step for updating the parameter βk needs to account for the sparsity of this
parameter. From the expression of l2 in equation (5), we need to find the βk that minimizes
the following quantity,

G∑
g=1

M̂gk

C∑
c=1

(Ygc −XT
c βk)

2 =
G∑

g=1

C∑
c=1

(

√
M̂gkYgc −

√
M̂gkX

T
c βk)

2,

subject to sparsity constraint of βk,

|βk|1 =
R∑

r=1

|βkr| < s,

where s is a tuning parameter, assumed to be the same for all k = 1, · · · , K. This is

equivalent to performing linear regression with
√

M̂gkYgi as responses and
√

M̂gkX
T
gi as

regressors. We can then use Lasso to update βk. However, since G × C is often very large,
such an implementation can be very time-consuming. Alternatively, we can use a sparse
version of the EM algorithm or the Hard-EM algorithm to update βk. Specifically, we first
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classify the gene g into the kgth module, where kg = argmaxkM̂gk, for g = 1, · · · , G. We
then estimate βk using Lasso based on the data of the genes in the current kth module under
the constraint that |βk|1 < s. This can be efficiently implemented using the R Lars function
(Efron et al., 2004).

Finally, after obtaining the update of βk, we can update the error variance by

σ̂
2(t+1)
k =

{∑G
g=1 M̂gk(Yg −XT β

(t+1)
k )T (Yg −XT β

(t+1)
k )}

∑G
g=1 CM̂gk

.

We call this EM algorithm using Lasso the Lasso-EM algorithm. After the convergence of
the Lasso-EM algorithm, we can partition the genes into K regulatory modules. Specifically,
we partition gene g into module k if k = argmaxk′{Pr(Mg = k′)}. In addition, we can obtain
the regulation program of a module specifying the set of regulatory genes in the module that
controls the module and the mRNA expression profile of the genes in the module as a function
of the expression of the module’s regulators. Specifically, for the kth module, the regulation
program includes the regulator set {r : β̂kr 6= 0} and the sign and the magnitude of β̂kr

determine how the regulation program controls the expression of the module. Note that our
method allows some regulators to participate in the regulation programs of multiple modules
and also allows a group of genes that is not regulated by any of the regulators.

3.3 Selection of the number of modules K and the tuning param-
eter s

In order to implement the proposed Lasso-EM algorithm, for each given number of the
modules K, we need to determine the tuning parameter s(K). We also need to determine
the number of the regulatory modules K. As commonly used for mixture models, for a given
number of regulatory modules k, we can choose the tuning parameter s by maximizing the
BIC score, which is defined as

BIC(s(k)) = l(s(k))− p(s(k)) log(G× C)

for the model with k cluster and tuning parameter s, where p(s(k)) =
∑k

k=1

∑R
r=1 I(βkr 6= 0)

is the total number of non-zero parameters in the model (Zou et al., 2007) and G × C is
the number of observations, and the log-likelihood for the model with k clusters and tuning
parameter s can be written as

l(s(k)) = log
G∑

g=1

K∑

k=1

πk(2πσ2
k)
−C/2 exp

{
−

∑C
c=1(Ygc −XT

c βk)
2

σ2
k

}
.

We then choose K as K = argmaxk l(s(k)).

3.4 Application to yeast stress data set

To demonstrate the proposed Lasso-EM algorithm for identifying the transcriptional mod-
ules, we applied the proposed method to analysis of the yeast data set reported in Segal et al.
(2003), consisting of 2,355 genes, 466 candidate regulators (transcriptional factors and signal-
ing proteins) and 173 arrays of the yeast stress data, measuring gene expression responses to
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Figure 2: The respiration and carbon module identified from analysis of the yeast stress
responses microarray gene expression data set using the proposed Lasso-EM algorithm. The
plot was generated using the plotting tool provided in Segal et al. (2003). The heatmap is
for gene expression, where genes are plotted as rows and arrays are columns. Arrays are
arranged according to the regulation tree, where each node represents a regulator and the
expression of the regulators is shown below their respective node.
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various stress conditions. This set of 2,355 genes has a significant change in gene expression
at the measured stress conditions, excluding members of the generic environmental stress
response cluster.

We started the Lasso-EM algorithm based on results from the hierarchical clustering.
Allowing for at most 5 regulators for each module, the Lasso-EM algorithm identifie35 d
regulatory modules, each containing several significant GO processes, indicating that the
same set of regulators may regulate different biological processes. As an example, Figure
2 shows a heatmap for the Respiration/Carbohydrate metabolism module, including four
regulators, Hap4, GAC1, Reg2 and SNF.3 (YJL103C), and their effects on gene expression
levels for genes in this module are given by the following linear model,

y = 0.12Hap4 + 0.015GAC1 + 0.047Reg2 + 0.06SNF3.

This model specified the Hap4 transcriptional factor as an important activating regulator,
consistent with the known role of Hap4 in activation of respiration (Segal et al., 2003).
This model also suggests that the protein phosphatase type 1 regulatory subunit Gac1 and
transcription factor Reg2 may also regulate the expression levels of this module. The results
largely agree with the similar module identified by Segal et al. (2003).

4 Inference of Transcriptional Networks

Since many essential biological systems or processes are dynamic systems, it is important
to study the gene expression patterns over time in a genomic scale in order to capture the
dynamic behavior of gene expression. Research in analysis of such microarray time-course
(MTC) gene expression data has focused on two areas: clustering of MTC expression data
(Luan and Li, 2003; Ma et al., 2006) and identifying genes that are temporally differentially
expressed (Hong and Li, 2006; Yuan and Kendziorski, 2006; Tai and Speed, 2006; Storey
et al., 2005). While both problems are important and biologically relevant, they provide
little information about our understanding of gene regulations. We present in this section
the methods based on the “physical interaction” approach that aim to identify interactions
among transcriptional factors and their target genes through sequence motifs and ChIP-chip
data found in promotor sequences. In particular, Wang et al. (2007) considered integrating
microarray time-course gene expression data and motif or ChIP-chip data in order to identify
the transcriptional factors that are involved in gene expression variations during a given
biological process.

4.1 Functional response model with time-varying coefficients for
MTC gene expression data

We consider a microarray time-course gene expression experiment. Let Yi(t) be the expression
level of the ith gene at time t, for i = 1, · · · , n. We assume the following regression model
with functional response,

Yi(t) = µ(t) +
K∑

k=1

βk(t)Xik + εi(t), (6)
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where µ(t) is the overall mean effect, βk(t) is the regulation effect associated with the kth
transcriptional factor, Xik is the matching score or the binding probability of the kth tran-
scriptional factor on the promoter region of the ith gene, and εi(t) is a realization of a
zero-mean stochastic process. Several different ways and data sources can be used to derive
the matching score Xik. One approach is to derive the score using the position-specific weight
matrix (PSWM). Specifically, for each candidate TF k, let Pk be the positive specific weight
matrix of length L, b with element Pkj(b) being the probability of observing the base b at
position j. Then each L-mer l in the promoter sequence of the ith gene is assigned a score
Sikl as:

Sikl =
L∑

j=1

log
Pkj(bilj)

B(bilj)
,

where bilj is the nucleotide at position j on the lth sequence for gene i, and B(b) is the
probability of observing b in the background sequence. This score always assumes a value
between 0 and 1. We then define Xik = maxlSikl, which is the maximum of the matching
scores over all the L-mer in the promoter region of the ith gene. The maximum scores
can then be converted into the binding probabilities using the method described in Chen
et al. (2007). Alternatively, we can define the binding probability based on the chromatin
immunoprecipitation (ChIP-chip) data (Wang et al., 2007; Chen et al., 2007).

4.2 Estimation using B-splines

We consider estimation of the nonparametric function in Model (6) using the smoothing
spline method by approximating βk(t) by using the natural cubic B-spline basis,

βk(t) =
L+4∑

l=1

βklBl(t) (7)

where Bl(t) is the natural cubic B-spline basis function, for l = 1, · · · , L + 4, where L is
the number of interior knots. Replacing βk(t) by its B-spline approximation in equation (7),
Model (6) can be approximated as

Yi(t) = µ(t) +
K∑

k=1

{
L+4∑

l=1

βkl[Bl(t)Xik]

}
+ εi(t), (8)

where we have K groups of parameters, with β∗k = {βk1, · · · , βkL+4} being the parameters
associated with the group k, and we want to select the groups with non-zero coefficients.
This is the grouped variable selection problem considered in Yuan and Lin (2006).

4.3 A group SCAD penalization procedure

Wang et al. (2007) proposed a general group SCAD (gSCAD) procedure for selecting the
groups of variables in a linear regression setting. Selecting important variables in Model (6)
corresponds to the selection of groups of basis functions in Model (8). Yuan and Lin (2006)
proposed several procedures for such group variable selection, including group LARS and
group Lasso. Instead of using the L1 penalty for group selection as in Yuan and Lin (2006),
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we propose to use the SCAD penalty of Fan and Li (2001). Specifically, to select non-zero
βk(t), we can minimize the following penalized loss function

l(β) =
n∑

i=1

T∑
j=1

[yij − µ(tj)−
K∑

k=1

L+4∑

l=1

βklBl(tj)Xik]
2

+nT

K∑

k=1

pλ(||β∗k||2), (9)

where yij is the observed gene expression level for gene i at time tj, pλ(.) is the SCAD penalty
with λ as a tuning parameter, which is defined as

pλ(|w|) =





λ|w| if |w| ≤ λ, ,

− (|w|2−2aλ|w|+λ2)
2(a−1)

if λ < |w| < aλ,
(a+1)λ2

2
if |w| > aλ

(10)

and ||β∗k||2 =
√∑L+4

l=1 β2
kl. The penalty function (10) is a quadratic spline function with two

knots at λ and aλ, where a is another tuning parameter. Fan and Li (2001) showed that the
Bayes risks are not sensitive to the choice of a and suggested using a = 3.7.

4.4 Numerical algorithm, properties and application

Wang et al. (2007) proposed a local quadratic approximation algorithm, similar to that in
Fan and Li (2001), to perform the optimization problem of equation (9) and developed a
GCV procedure for selecting the tuning parameter λ in the SCAD penalty function (10).
They also established the oracle property of the gSCAD estimates. Wang et al. (2007) also
performed simulation studies to evaluate the gSCAD procedure. Simulation results indicate
that for a similar false positive rate, the gSCAD procedure is more sensitive in identifying the
relevant transcriptional factors than simple linear regression. In addition, the estimates of
the transcriptional effects are less variable than those obtained from simple linear regression
analysis.

We applied the proposed methods to the analysis of cell cycle MTC data corrected by
Spellman et al. (1998). The cell cycle is one of life’s most important processes, and the
identification of cell cycle regulated genes has greatly facilitated the understanding of this
important process. Spellman et al. (1998) monitored genome-wide mRNA levels for 6178
yeast ORFs simultaneously using several different methods of synchronization including an
α-factor-mediated G1 arrest, which covers approximately two cell-cycle periods with mea-
surements at 7-min intervals for 119 mins with a total of 18 time points (http://genome-
www.stanford.edu/cellcycle/data/rawdata/). Using data based on different synchronization
experiments, Spellman et al. (1998) identified a total of about 800 cell cycle regulated genes,
some showing periodic expression patterns only in a specific experiment. Using a model-
based approach, Luan and Li (2003) identified 297 cell-cycle regulated genes based on the
α-factor synchronization experiments. We applied the mixture model approach described in
previous section using the ChIP data of Lee et al. (2002) to derive the binding probabilities
Xik for these 297 cell cycle-regulated genes for a total of 96 transcriptional factors with at
least one nonzero binding probability in the 297 genes.
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We applied the gSCAD procedure with L = 2 and an additional L2 penalty in order to
identify the TFs that affect the expression changes over time for these 297 cell cycle regulated
genes in the α-factor synchronization experiment. The gSCAD procedure identified a total
of 71 TFs that are related to yeast cell cycle processes, including 19 of the 21 known and
experimentally verified cell cycle-related TFs. The estimated transcriptional effects of these
21 TFs are shown in Figure 3, except for the two TFs (CBF1 and GCN4) that were not
selected by the gSCAD procedure and the TF LEU3, the other 18 TFs all showed time-
dependent effects of these TFs on gene expression levels. In addition, the effects followed
similar trends between the two cell cycle periods. It was not clear why CBF1 and GCN4
were not selected by the gSCAD. The minimum p-values over 18 times points from simple
linear regressions are 0.06 and 0.14, respectively, also indicating that CBF1 and GCN4 were
not related to expression variation over time. Overall, the model can explain 43% of the
total variations of the gene expression levels.

To assess false identifications of the TFs that are related to a dynamic biological proce-
dure, we randomly permuted the gene expression values across genes and time points and
applied the gSCAD procedure again to the permuted data sets. We repeated this procedure
50 times. Among the 50 runs, 5 runs selected 4 TFs, 1 run selected 3 TFs, 16 runs selected 2
TFs and the rest of the 28 runs did not select any of the TFs, indicating that our procedure
indeed selects the relevant TFs with few false positives.

5 Discussion, Conclusions and Future Research

In this paper, we have reviewed several important problems and statistical methods related
to analysis of genetic networks and regulatory modules based on integrating microarray gene
expression data and ChIP-chip data, including the problem of constructing genetic networks
based on microarray gene expression data and Gaussian graphical models; the problem of
identifying regulatory modules based on gene expression data and a pre-defined set of poten-
tial regulators, and the problem of identifying regulatory networks based on both microarray
gene expression data and motif and ChIP-chip data. Our review mainly emphasizes the sta-
tistical formulation of the problems and our solutions to these problems. Applications to
real data sets are also briefly discussed and presented. It should be emphasized that these
algorithms only generate what can be loosely referred to as a “first approximation” to a gene
regulatory network. The results of this method should not be interpreted as the definitive
regulatory network but rather as a network that suggests (possibly indirect) regulatory inter-
actions (Thorsson et al., 2005; Bonneau et al., 2007). It should also be noted that this paper
emphasizes the use of gene expression data for inferences of genetic networks and regulatory
modules; however, accurate protein-level measurements of TFs will invariably have a more
direct influence on the mRNA levels of the genes they regulate.

The paper only covers three problems in inference of genetic networks and regulatory
modules. As more and more large-scale genomic and epigenomic data are being generated,
novel statistical and computational methods are required for many other problems related
to analysis of microarray gene expression data. We present two such areas that need further
methodological development.
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Figure 3: Estimated time-dependent transcriptional effects for 21 known yeast transcriptional
factors related to the cell cycle process using gSCAD. Note that CBF1 and GCN4 were not
selected by gSCAD.
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Figure 4: KEGG Apoptosis regulatory pathway: nodes are genes and edges represent the
regulatory relationship between genes. Only genes with the corresponding probe-pairs found
on the Affymetrix U133A are plotted.
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5.1 Incorporating network information into analysis of microarray
gene expression data

While the focus of this paper is on inference of genetic pathways and networks, an equally
important problem is to incorporate the pathway information derived from data or from
pathway databases into analysis of clinical phenotype data in order to identify the pathways
and networks that are related to various clinical phenotypes. There is a great need for meth-
ods that can link numerical microarray gene expression data measured on the networks to
the phenotypes in order to obtain biologically interpretable results. As an example, Figure
4 shows the regulatory Apoptosis KEGG pathway (Kanehisa and Goto, 2002), providing
information on the regulatory relationship for genes on this pathway. We are now able to
measure the gene expression levels for genes on this pathway for a sample of patients with
different clinical phenotypes. We should expect certain dependency of differential expres-
sion states for genes that are neighbors on this pathway. Incorporating such prior local
dependency of gene expressions into analysis of phenotype data can potentially gain power
in identifying the relevant genes. Some preliminary work from our group indicates that such
network-based analysis of gene expression data can greatly increase the sensitivity of iden-
tifying the relevant pathways or subnetworks (Wei and Li, 2007ab). For example, Wei and
Li (2007b) developed a Markov random field (MRF) approach for identifying differentially
expressed genes between two different experimental conditions, where a discrete MRF is used
to model the local dependency of the differential expression states for genes on the network.
They demonstrated by both simulations and analysis of several breast cancer gene expression
studies that such an MRF-based methods can identify more biologically interpretable genes
and sub-networks.

Novel methods are also needed to formally incorporate network information into regres-
sion models. One solution to this problem is to perform a network-imposed smoothness
penalty in order to obtain locally smoothed estimates of the regression parameters. Assume
that Y follows a distribution in an exponential family with mean µ = E(Y ) and variance
V = V ar(Y ). The generalized linear model (GLM) (McCullagh and Nelder, 1989) models
the random component of Y through a link function g:

g(µ) =

p∑

k=1

Xkβk, (11)

where Xk is the gene expression measurement of the kth genes and βk is the regression
coefficient corresponding to the kth gene, for a total of p genes on the genetic network
N = (G,E) with gene set G and edge set E. We further denote β = {β1, · · · , βp} as the
vector of regression parameters of the model. Suppose that we have n i.i.d. observations
(xi, yi), i = 1, · · · , n of a gene expression vector xi and a response variable yi. We can then
define an estimate of β by minimizing the following regularized loss function,

β̂ = argmin

{
l(β) + λ1

p∑

k=1

|βk|+ λ2β
′Lβ

}
, (12)

where l(β) is a loss function (e.g., negative of the log-likelihood function corresponding to
the GLM (11)), L is the Laplacian matrix as defined in Chung (1997) and λ1 and λ2 are two
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tuning parameters. It is easy to verify that

β′Lβ =
∑

i∼j∈E

(βi/
√

di − βj/
√

dj)
2, (13)

where i ∼ j denotes that ith gene and jth gene are neighbors on the network N and di and
dj are the respective degrees. The scaling of the β parameters by their degrees is used to
reflect the fact that the genes with more neighbors (e.g., the “hub” genes) tend to play a
more important biological role and therefore should correspond to larger coefficients. In this
regularized formulation (12), the first L1 penalty leads to sparse solution and the second
penalty β′Lβ leads to a smoothness solution with respect to the network structure, i.e., it
enforces that the degree-scaled β estimates are similar for genes that are neighbors on the
network. In order to account for both activation and inhibition effects, we can modify the
smoothness penalty (13) as

λ2





∑

i∼j∈E+

(βi/
√

di − βj/
√

dj)
2 +

∑

i∼j∈E−
(βi/

√
di + βj/

√
dj)

2



 ,

where E+ is the set of transcriptional activation edges (−→) and E− is the set of transcrip-
tional inhibition edges (a). This modification is used to reflect the fact that βi and βj are
expected to have the same sign if (i ∼ j) ∈ E+ and different signs if (i ∼ j) ∈ E−. Sim-
ilar to the Elastic-Net penalty of Zou and Hastie (2005), the optimization of equation (12)
can be efficiently solved by using the R Lars algorithm (Efron et al., 2004) and the tuning
parameters λ1 and λ2 can be chosen using cross-validation.

5.2 Development of statistical and computational methods for in-
tegrating gene expression data and epigenomic data

Another important area for future research is to develop rigorous statistical and computa-
tional methods for integrating microarray gene expression data with other types genomic
data for an even more detailed understanding of genetic networks, especially genetic regula-
tory networks. We have reviewed two such approaches: one uses the transcriptional factor
annotation information in inference of regulatory modules, the other uses the sequence motif
and ChIP-chip data on inference of regulatory models. However, other genome-wide data can
be very useful. For example, we know that sequence polymorphisms affect gene expression
by perturbing the complex networks of regulatory interactions. It is therefore important to
simultaneously consider both single nucleotide data and the gene expression data in order
to obtain both cis− and trans− effects on gene expression (Brem et al., 2005; Schadt et
al., 2005; Morley et al., 2004). Standard methods attempt to associate each gene expres-
sion phenotype with genetic polymorphisms. Lee et al. recently developed an interesting
method to understand the mechanisms by which genetic changes perturb gene regulation by
combining SNP, gene expression and transcriptional factors information.

Statistical and computational methodologies for genomic data analysis and integration
are also needed for analysis of epigenomics data, with the aim to understand systems-level
gene regulatory mechanisms. A multi-cellular organism contains only one genome, but differ-
ent cell types contain different epigenomic patterns, including chromatin structure (Steifeld
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et al., 2007), histone modification (Yuan et al., 2005), nucleosome positions (Segal et al.,
2006) and DNA methylations (Eckhardt et al., 2006). These epigenomic markers are im-
portant for regulating protein-DNA binding activities and gene transcription. As more and
more epigenomic data become available (Yuan et al., 2005; Eckhardt et al., 2006; Heintz-
man et al., 2007), it is important to develop novel statistical methods for analyzing such
data together with gene expression data in order to estimate the direct regulatory effects of
epigenomic factors.

5.3 Final Remarks

Elucidating genetic pathways and networks is one of the most important problems in modern
biology research. Microarray gene expression data together with other high-throughput
genomic, proteomic and epigenomic data provide the opportunity to derive such networks
and apply network knowledge to study other important biological systems such as disease
initiation and progression. However, statistical and computational methods for analyzing
these data are becoming even more important. We conclude this paper by quoting Dr.
Collins’s Nature article, “computational methods have become intrinsic to modern biological
research, and their importance can only increase as large-scale methods for data generation
become more prominent, as the amount and complexity of the data increases and as the
questions being addressed become more sophisticated ” (Collins et al., 2003).
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