











among subjects with Z = k and for which the longest time is censored, let 75 be infinite if the
longest time is an event. Then WKM is only defined up to the minimum of the values of 7.
The WKM estimator is consistent, if the event time and the censoring time are independent
conditional on Z. Extensions of WKM to time-dependent covariates are also described by
Murray and Tsiatis, 1996 and Malani, 1995.

For multiple imputation, the imputing risk set reduces to a risk set, R(j*, Z = z;), consist-
ing of those who have longer survival time than the censored time ¢; and the same covariate
value as z;. For the observed censored time ¢;, KMI imputes a pair (t},6;) drawn from the
nonparametric survival curve for those individuals in R(j%,Z = z;). Building on the theo-
retical foundation of KMI survival estimates obtained in Taylor et al. (2002), the property of
KMI survival estimates (S’K wmi(t)) with a categorical covariate for a large number of imputes
can be summarized in the following result. The proof is given in the Appendix.

Result 1: F{Sku(t)[Y} = WKM(2).

In this expression the expectation is with respect to the distribution of possible imputes
conditional on the observed data Y. The above result shows that the KMI survival point
estimates, with a large number of imputes, will on average reproduce the WKM survival
estimate over the range of times where WKM is defined. The RSI imputation method, which
tends to impute censored values more often than KMI, will not reproduce on average the
WKM estimate. In more complex situations, such as the situations with multiple categorical
covariates, multiple continuous covariates, or time-dependent covariates, the WKM may not
be defined and when it is defined the KMI method will not necessarily reproduce the WKM
estimate.

3.2 Consistency of the KMI method

Result 2: If one of the two working models is correct, T and C' are independent conditional

on the two risk scores. The conditions and proof are outlined in the Appendix.
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This result is the key one, it enables us to use two risk scores to define an imputing risk
set and within this imputing risk set the event times are asymptotically independent of the
censoring times. Thus estimates of the residual time distribution, derived from observations
in the imputing risk, are valid in large samples. Based on this property and appealing to the
results in Dabrowska (1989), we have the following result, a sketch proof of which is outlined
in the Appendix for the case of baseline covariates.

Result 3: If one of two working PH models is correctly specified, the KMI method for esti-
mating the distribution of T will have small bias in large samples for values of t prior to the
first censored value in the imputed datasets.

As a result, the KMI method has a large sample property of double robustness (Robins et al.,
2000). Because we use two PH models to choose the imputing risk set, based on the above
results, the survival estimate will be reasonable if only one of the two true models is from the
PH model family and is correctly specified.

The method has a second robustness property for time-independent auxiliary variables,
specifically if one of the two true models is from the accelerated failure time model family,
then fitting two PH models still gives good estimates of the regression coefficients (Solomon
(1984), Struthers and Kalbfleisch (1986)). Since it is only the regression coefficients, and not
the link function that are used in defining the imputing risk set, the KMI procedure is robust
to misspecification of the link function.

The above properties of the KMI method apply in large sample conditions. In small
sample size situations, this nearest-neighborhood approach, which is analogous to a kernel-
based method, could produce biased survival estimates even if one of the two working models
is correctly specified, especially when the failure-time model is misspecified. This phenomenon
is similar to that of the kernel-based method, as indicated in Pepe (1992). The bias is due to

the lack of availability of suitable donor observations.
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3.3 Inwverse Probability of Censoring Weighted method

We will be including in the application and simulation study a comparison with the IPCW
method as described in Robins and Finkelstein (2000). In particular we use the appropriate
adaptation of equation 10 from their paper, which is a weighted Kaplan-Meier estimate, in
which each event time is weighted by 1/K;(t), where K;(t) is an estimate of the conditional
probability that subject 7 is uncensored through time ¢, given the auxiliary data available.
This estimate is obtained by fitting a time-dependent PH model to the censoring times,
and requires estimation of both the regression coefficients and the baseline hazard in such a
model. Standard errors are obtained using the expressions given in the appendix of Robins

and Finkelstein (2000).

4. Application to AIDS Data

We apply the nonparametric multiple imputation schemes and the IPCW method to AIDS
data from the ACTG-019 clinical trial (Volberding et al., 1990; Faucett et al., 2002). There
are 1337 subjects, with 428 subjects in the placebo arm and 909 subjects in the treated arm,
where this latter arm is a combination of two doses of ZDV. The censoring rates for the
treatment and placebo groups are 97% and 92%, respectively. The percentage of the censored
observations that were administratively censored due to study termination was 95% in the
treatment group and 90% in the placebo group. The median follow-up time is 50 weeks.
For each subject CD4 counts were measured at months 0, 3, 6, 9, 12, 18. We focus on the
survival estimates at days 450 and 550 for both placebo and treated groups. Since CD4 count
is a critical aspect of the immune system, with low values indicating more severe immune
deficiency, we use it as an auxiliary variable in estimating the survival distribution of each
group. For each observed censored time we use individuals who survived longer than the
censored subject and who share the same treatment group to fit two working PH models for

the censoring and failure time distributions. We consider different parameterizations of CD4
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counts as covariates in these working models, e.g. using only the latest observed CD4 count
before each censored time, and using both baseline CD4 count and the latest observed CD4
count before each censored time. Since most of the censoring is administrative, this is a study
where we would expect to see little bias from dependent censoring and hope to see some gain
in efficiency by using the auxiliary variables.

The results based on the latest observed CD4 as the only covariate are provided in Table
1 and Figure 1. Table 1 displays selected estimates from the partially-observed (PO) analysis,
that is, the analysis of the observed censored event time data, from the multiple imputation
analyses and from the IPCW method. Figure 1 displays the estimated survival curves based
on the partially observed (PO) analysis and based on the KMIB multiple imputation method.
In a situation with a single covariate, there is no need to fit the two working models, and
therefore no weights are used for selecting the imputing risk set. For both the treatment and
placebo groups, the imputation analyses produce very similar estimated survival to the PO
method. This agrees with the conclusion in Faucett et al. (2002).

Besides the survival estimates, Table 1 also provides estimated SEs. RSI, KMI, RSIB, and
KMIB tend to give a modest reduction in the estimated SEs compared to the PO analysis.
The results for M=15 and 30 are similar to those for M=10, indicating that 10 imputations
are reasonable for the analysis.

When both baseline CD4 count and the latest observed CD4 count before each censored
time are in the working models, with w; = 0.8 and w, = 0.2, the multiple imputation methods
again give similar results for both treated and placebo groups (results not shown).

The IPCW methods produced similar estimates of survival, but was slightly less efficient.
5. Simulation Study

We perform several simulation studies to investigate the properties of the multiple imputation

based procedures and to compare with IPCW methods. We consider a binary auxiliary vari-
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able, multiple time-independent auxiliary variables, and time-dependent auxiliary variables.
We investigate bias, variance and coverage rates of confidence intervals, and how these are
affected by the censoring mechanism, by the inclusion of the bootstrap stage, by the sample
size, by model misspecification for calculating the risk scores, by the weights (wy) and by the
size (NN) of the nearest neighborhood.

5.1 Data Generation

For the situation with a binary covariate (Table 2), the event time and censoring time are
both generated from an exponential distribution. For more complex situations (Tables 3-5),
the event and censoring times are both generated from hypothetical PH models conditional
on auxiliary variables.

For the situation with the failure time working model potentially misspecified (Tables
3-5), five hypothetical auxiliary variables (Z1,..., Z5) are independently generated from a
U(0,1) distribution. The event time is generated from the model \(¢) = t* x exp(—2.0Z; +
0.5Z5 — 2.0Z5 + 2.0Z; + 2.0Z5). The censoring time is generated from the model A.(t) =
3 % exp(—3.0Z, + 0.57Zy — 2.0Z3 + 1.57Z, + 2.0Z;) for dependent censoring or from \.(t) = 0.6
for independent censoring. When the working failure time or working censoring models are
misspecified only the terms for Z;, Z and Z3 are included.

For time-dependent covariates two models are considered, either a random effects (RE)
model or a Brownian motion (BM) model. For the RE model, an auxiliary variable (Z;;)
is generated from the model, Z;(t) = bo; + b1; * t, where ¢ has units of days, by; ~ N(0,9),
and by; distributed as N(0,0.005%). For the BM model Z; is generated from a model, Z;(t) =
boi +b1xt+0BM;(t), where by; ~ N(5.1696,0.3), by = —0.2/365, BM;(t) is a Brownian motion
stochastic process and 0% = 0.05/365. The auxiliary variable is generated at time 0 and every
3 months for a total duration of 2 years and a maximum of 8 measurements. The event time

T; is generated from the model Af(t) = ¢oexp{¢1l;(t)} and the random censoring time C; is
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generated from the model A\ (t) = yoexp{e1l;(t)}, where l;(t) = Z;(t) for the RE model and
1;(t) = Z;(t)? for the BM model. When simulating independent censoring, ¢y = 0.0008 xe %12,
¢1 = —1.5, 10y = e % and ; = 0.0 for the RE model and ¢y = 5% 108, ¢; = —1.0, 19 = 0.0025
and 1), = 0.0 for the BM model. With dependent censoring, ¢y = 0.0008 * =915 ¢; = —1.5,
1o = €% and ¢, = —0.5 for the RE model and ¢y = 8, ¢; = —0.3, ¢g = 1.0 and 9, = —0.2
for the BM model. There are 300 subjects generated. The latest observed covariate before
each censored time is the only auxiliary variable used to define the nearest neighborhood.

We note that for the RE model the conditions necessary for the KMI method to eliminate
bias are not satisfied, in particular there is not a single linear combination of current and past
covariate values which determines the distribution of the future failure time. The reason for
this is because the hazard depends on just the current value of the time-dependent variable,
however both the current value and the slope are needed to determine the future values of the
time-dependent auxiliary variable. For the BM model the conditions are satisfied because the
current value contains all the information about both the future values of the time-dependent
variable and the hazard of the failure time, and hence of the distribution of future event times.
5.2  Imputation and Analysis

For the “Fully-Observed” (FO) analysis (the gold standard), we apply KM estimation to
each generated data set before any censoring is applied. For the “Partially-Observed” (PO)
analysis, we apply KM estimation to each data set with random censoring. For the multiple
imputation methods, for each simulated data set, we multiply impute future event or censored
times for each observed censored time using auxiliary variables as described in Section 2. We
compute KM estimates for each augmented data set and perform the multiple imputation
analysis. We focus on S(t) at a fixed time point ¢ chosen so that the true S(¢) is equal to, or

close to, 0.5.
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5.3  Results

5.3.1 Binary time-independent covariate. In Table 2, we display the WKM, IPCW and
multiple imputation estimates. In independent censoring cases, all the point estimates target
the quantile correctly (almost identical to FO estimates). The SD and SE values for the PO
method are higher than those of other methods. For example, the KMIB method gains about
5% efficiency compared to the PO method, and by comparing with the SD values for FO and
PO we see that the methods recover about 1/3 of the information lost due to censoring. In
addition, the KMI and RSI methods yield almost identical estimates and standard deviations
as the WKM method and the IPCW method. The coverage rates are close to the nominal
level. For dependent censoring, the KMI, KMIB, WKM and IPCW methods produce almost
identical estimates as the FO estimates. However, the PO method yields biased survival

estimates and the RSI and RSIB reduce but do not eliminate the bias.

5.8.2  Multiple time-independent covariates. Several different scenarios with continuous
covariates were examined. In the cases of independent censoring (results not shown) all the
imputation methods do not have bias, have improved efficiency compared to PO when the
failure time model is correctly specified and have coverage rates close to the nominal level.
The case of dependent censoring is more challenging, we show only the results for KMIB and
IPCW because we find that RSI and RSIB are less good at reducing the bias. In Table 3
we show the impact of the size of the nearest neighbourhood (NN). The best choice of NN
appears to be 10. The KMIB method substantially reduces the bias, but does not eliminate it.
The coverage rates are close to the nominal level. Table 3 also shows the impact of changing
the weights. As expected reducing the emphasis on the failure time model and increasing
the emphasis on the censoring time model reduces the bias in cases where the working failure

time model is misspecified and increases it when the censoring time model is misspecified. The

15

Hosted by The Berkeley Electronic Press



coverage rates are adequate and a reasonable choice for wy would be 0.8 or 0.5. For KMIB,
when the working failure time model is correctly specified, the bias is smaller compared to the
situation with the working failure time model misspecified. Compared to the IPCW method,
the KMIB estimator has greater bias but less variability. The squared difference ratio (SDR)
column measures the squared difference of the estimate from the FO estimate for each dataset,
relative to the PO method; thus higher numbers indicate a better estimator. It shows that
both KMIB and IPCW give substantially closer estimates to the best (FO) estimate than the
PO method, and that KMIB is closer to FO than IPCW is to FO when the failure time model
is correctly specified and more weight is placed on this model.

Results for the effect of sample size on the bias of KMIB are provided in Table 4. As the

sample size increases, the bias slowly decreases and the coverage rate improves.

5.3.8 Time-dependent covariates. Table 5 shows the results for KMIB and IPCW for
both the random effects and the Brownian motion generation scheme. For the random effects
model with independent censoring, KMIB and IPCW have similar properties. There is no
bias and a slight gain in efficiency compared to PO and the coverage rates are good. For the
Brownian motion model with independent censoring the KMIB has no bias, but the IPCW
introduces bias for reasons we don’t understand. With dependent censoring, for both the
random effects and Brownian motion models the KMIB substantially reduces but does not
eliminate the bias. The IPCW method is less successful at reducing the bias.

The bias from imputation methods is not eliminated completely because the time-dependent
auxiliary variable is periodically measured, thus not necessarily at a time point close to the
censored time point. We investigated this in a further simulation (results not shown) and
found that the bias is reduced but not eliminated in finite samples if the auxiliary variables

are measured much more frequently.
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6. Discussion

The research in this paper provides a direct, simple and transparent approach, nonparametric
multiple imputation, to using auxiliary variables to recover information for censored observa-
tions. The simulation study shows that the use of this multiple imputation method can lead to
improved performance of estimators. In general, the multiple imputation point estimates are
less variable and closer to the truth than the estimates produced by analyzing the observed
data without using the auxiliary variables.

Of the imputation schemes, RSI removes less bias, if there is bias due to dependent censor-
ing, compared to KMI. One feature of RSI is that both censored event times and uncensored
values appearing in the imputing risk set are likely to be chosen for the newly imputed event
times. KMI imputes censored values from the risk set with positive probability only if the
longest observation in the imputing risk set is censored. Hence, after imputation, RSI will typ-
ically produce more censored observations in the augmented data set compared to KMI. The
censoring that remains, although less prevalent, may still be informative and hence survival
estimates based on the augmented data set may still be biased. Therefore, KMI is preferred
to RSI. The major reason for the remaining bias in the KMI method in the case of dependent
censoring is the sample size. In particular the nearest neighborhood contains some observa-
tions that are not close enough to the target value, so some remnants of dependent censoring
remain within the neighborhood. This is likely to be more of a problem with high dimensional
covariates compared to cases with less than say 5 auxiliary variables. An additional compli-
cation with high dimensional covariates is that it will be hard to obtain good estimates of the
coefficients in the working models with many covariates, making it even harder to define a
nearest neighborhood that is truely close to the target value.

Theoretical results for large samples indicate that the risk sets allow for good estimation

of the imputation distribution of interest, even with dependent censoring. Numerical results
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indicate that when the working model for the event time is misspecified the bias is greater
than when it is correctly specified. The use of two working models does lead to a reduction in
bias, from the double robustness property. One reason that a small bias remains is that the
imputed dataset can contain a small number of censored observations. Another reason is that
the nearest neighbors are not being chosen with enough precision. Both these sources of bias
will diminish with increased sample size, however the rate of improvement is slow. We also
observed more gains in efficiency when the failure time model is correctly specified. Thus,
although double robustness is a very useful property, it should not be used as a replacement
for trying to find reasonable fitting working models for both the failure time and the censoring
time, rather it should be used in addition to seeking good models for the observed data.

The comparison between the KMIB method and the IPCW method showed that KMIB
was not quite as effective as the IPCW method at reducing bias due to dependent censoring
when there were multiple baseline covariates. KMIB appeared to be more efficient than IPCW
in the application, but the difference in efficiency were smaller in the simulations. The results
in Table 3 indicate that the KMIB method, with appropriae of weights, gives estimates closer
to the best value, than the estimates from the IPCW method.

With time dependent covariates and dependent censoring the IPCW method was not as
effective as reducing the bias as KMIB. This may be because the estimator depends crucially
on the coefficients fit to the model of the censoring data. We found in the simulation that these
coeflicients were attenuated towards zero due to the fact that that the time dependent auxiliary
variable was only measured at discrete times, rather than being measured continously.

An attractive aspect of the KMI procedure is its weak reliance on a statistical model,
because the model is only used to identify a nearest neighborhood. Once this neighborhood
is defined, the residual time distribution is obtained using nonparametric methods. Then the

imputation is conducted on this estimated residual time distribution for censored observations.
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After the imputation the analysis is based on the original data, augmented by the imputed
data. As a result, the reliance on the statistical model is weak and any gains in efficiency
or reduction in bias are derived mainly from the data, rather than from assumptions in the
models.

In addition to its robustness in this application, the general approach of multiple imputa-
tion has features that make it attractive. One such feature is that after imputation the data
analyst can perform other analyses appropriate for the goals of their study. A second attrac-
tive feature is that there is a standard way to obtain measures of uncertainty. Published work
(Robins and Wang (2000)) indicates that the standard multiple imputation variance formula
is only valid in simple situations, however the results in our simulations where the SE’s were
close to the SD’s indicate that the formula is working well in our more complex situations.

The adequacy of imputation procedures will depend on the “nearness” of the imputing
risk set and on the availability of possible donor observations, which diminishes in the tails of
the survival distribution. The “nearness” of the imputing risk set will depend on the quality
of the parameter estimates from the two working models. In situations where the working
models are refit for every censored observation, the parameter estimates could be improved
by assuming that they vary smoothly with time.

In this paper, we fix the size of the nearest neighborhood. Future research could employ
a dynamic scheme to select the size of the nearest neighborhood dependent on the time of
the censored observation. There other possible adaptations that might improve the KMIB
method. For example, rather than equally weighting all the observations in the nearest neigh-
borhood, one could give more weight to close observations. Instead of using the Kaplan-Meier
estimate to summarize the residual time distribution in the imputing risk set, one could use a
smoother estimate. By fitting two working models, one is essentially conditioning on two linear

combinations of available covariates. In the case of a time-dependent auxiliary variable one
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could condition on an additional linear combination designed to summarize the distribution

of the possible future values of the longitudinal variable.
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APPENDIX

Relationship between KMI and WKM estimates

Proof of Result 1:
Consider time ¢ for which there are no censored observations before ¢ in each KMI imputed
data set after imputation. For the m'* KMI imputed dataset, m =1, ..., M, the KM survival

estimator can be written as

n . .. . . .
A I(patient i is alive at ¢ in the m® imputed dataset)
Simr(t) = Z

- n
=1

I

z I(patient j with categorical variable k is alive at ¢ in m' imputed dataset) ny
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where S7(.) is the KM survival estimate conditional on having covariate value k in the
m! KMI imputed dataset. Taylor et al. (2002) have shown that E{S"(t)[Y} = Sk(t),
m = 1,..., M, where the expectation is with respect to the distribution of possible imputes

conditional on Y. The final survival estimator derived from M imputed datasets is
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Sicmr(t) = 37 Lomea 1Rar(®)} = 57 Xy i {57 (1) 5
and E{Sxarr()Y} = 57 X it [ELSPOIYI3] = 24 {Sk(t) 5} = WEKM(t). Note
that if ¢ is after the the first censored time in the imputed dataset, S”?Ml(t) can’t be written

as a sum and the first equality in the proof does not hold.
Properties of KMI Imputation Methods

Properties of probability models.
Consider first the case of ¢ time-independent covariates, denoted by Z. Let 7" and C denote
the random variables for the event and censoring time respectively. Assume T and C are

independent given Z, i.e.
Pr(T > t1,C > ty|Z) = Pr(T > t1|Z)Pr(C > t3|Z) (A1)

for all t1,t5. Let Ap(t|Z,C > t) denote the intensity of the counting process for the failure
time 7. Note that equation A.1 implies that Ar(t|Z,C > t) = Ap(t|Z), which is the usual
assumption for independent censoring conditional on Z (Andersen et al. (1993)). Let Z;
and Z, be vectors of covariates for the true failure-time and the true censoring-time models,
respectively. These models are the true models in the sense that if they hold, then all the
information in Z at time ¢t about the distribution of 7" given T > ¢ is contained in linear com-
binations of Z;, with a similar statement for the distribution of C. Thus Pr(T > t;|Z,T >
t) = Pr(T > t1|BsZs, T > t)) and Pr(C > t3|Z,C > t) = Pr(C > t3|f.Z.,C > t)). Further-
more, we will specify these models to be proportional hazards of the form Aos(t)exp(5rZy)
and Ao.(t)exp(5.Ze).

In practice, these two models may not hold, or may be misspecified. We define a working
failure time model, and a working censoring time model based on covariates Z} and Z;. These
models have hazards of the form Ao, (t)ezp(8;Z}) and Aowc(t)ezp(8;Z7). Either of the two

working models could be misspecified, examples of model misspecification include choosing
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the wrong covariates, the wrong functional form of the covariates, e.g. using v/Z; instead of
71, and the incorrect link function.

Here 3; (B:) and 8} (B;) denote the regression parameters for the true failure (censoring)
time model and the working PH failure (censoring) time model, respectively. The parameter
B is defined as the large sample limit of the estimate of 3} when the working model is fit in the
absense of censoring, with a similar definition for 3;. Let RS* = (RS}, RS}) = (8}2}, B:Z;),
be the risk scores associated with the two working models.

Result 2. If either the working failure time model or the working censoring time model is
correct then T and C' are independent conditional on RS*.
Proof: First, we consider the situation where the working censoring model is correct, i.e.
Pr(C > t3|Z) = Pr(C > t3|8.Z.), Z: = Z. and 3} = (., and the working failure time model
is incorrect. We further assume the parameter values are known. Hence, the censoring time
C depends on Z only through 5.Z (= 5:Z}). Then we have

Pr(T > t1,C > t3|RS*) = Ezgs- [E{I(T > t,,C > t5)|Z, RS"}]

= Ez s+ [Pr(T > t1|Z)Pr(C > t3|Z)] = Ezgs- [Pr(T > t1|Z)Pr(C > t5| 5. Z})]

= Ez s+ [Pr(T > t1|Z)] Pr(C > t,|RS*) = Pr(T > t,|RS™)Pr(C > 13| RS")
The second equality holds because of the assumption of conditional independence given Z,
the third equality holds because of the assumption that the working censoring time model is
correct. The proof for the other situation, where the failure time model is correctly specified,
is similar. Thus we have shown if one of two working PH models is correct, 7" and C are
independent conditional on two risk scores (RS*). It further follows that conditioning on
follow-up time, the residual time distribution of 7" and C' are independent given RS*, i.e.
Pr(T > t;,C > t3|RS*, T > t,C > t) = Pr(T > t;|RS*,T > t)Pr(C > t3|RS*,C > t)

A consequence of this result is that everyone who is censored at ¢ has the same residual

failure time as those people with the same risk score who are still at risk at ¢, ie censoring does
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not add information about the future of the failure time process. This is a key property for
the multiple imputation schemes in this paper, because it allows us to extend the follow-up
for each censored observation with information derived from the imputing risk set. It implies
that a Kaplan-Meier estimate of Pr(T > t;|RS*,T > t), for t; > t, derived from people with
the same risk score is a valid estimate, not biased by dependent censoring.

Note that if the failure time model is correctly specified then Pr(T > t|Z,T > t) =
Pr(T > t|BZs, T > t)), i.e. all the information about the future distribution of 7 is
contained in RS*, and we would expect the estimator to be efficient. If the failure time model
is incorrectly specified, then in general Pr(T > t,|Z,T > t) # Pr(T > t,|8;Zs, T > t), thus
some of the information about the distribution of 7" has been lost by conditioning on RS*, this
is likely to lead to less efficient estimators. We also note that if 7" and C are unconditionally
independent, they will be independent given RS* and hence the Kaplan-Meier estimator of
Pr(T > t;|RS*,T > t) is valid.

Properties of estimates.

Let B;Z and ﬁj be the estimates from the two working models obtained by maximising the
partial likelihood function of the two working models, and let RS = (B;Z;, B:Zi) When
the multiple imputation estimators are applied to finite sample size data, a number of other
issues arise. One is that we know RS rather than RS*. A second is that RS} and RS} (or
RS ; and RS :) can take a continuum of possible values, assuming that Z contains continuous
rather than all categorical variables. Thus for each censored observation there is unlikely to
be any other observations with identical values of RS*, forcing us to use a neighborhood with
similar, but not identical values of RS*. The neighborhood will have to be small to minimize
bias, but also large enough to keep variability low. We will provide a heuristic argument that
suggests the bias of S p;(t) will be small in large samples.

A consequence of the result that 7" and C' are independent conditional on RS* if one of the
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two working models is correct is that (Andersen and Gill (1982)) BA]’Z 7, B} and B 2 pr
Since Pr(T > t1,C > t3|RS*), Pr(T > t;|RS*), and Pr(C > t3|RS*) are continuous functions
of RS*, then by the continuous mapping theorem 7" and C are asymptotically independent
conditional on B} } and Bz,

For considering the large sample bias of E{Sgu(t)Y} we start by assuming that both
B; and (3} known. Assume RS} and RS} are contained in the finite rectangle I in R*. We
then partition I into several (K) disjoint squares with ¢, being the width of each square. This
partition defines a categorical variable, Irg+«, taking values 1 to K. The values of the risk
scores within the same category are defined to be equal. In large samples, for each censored
observation the imputation method uses an imputing risk set, all of which will have the same
value of Irs«. As n — oo we let ¢, — 0 and K — oo, in such a way that ng, — oo, to
ensure a large sample within each category. We noted earlier that S xmi(t), with large M,
was equivalent to WKM when there are no censored observations before time ¢ in each KMI
imputed data set. Using this result, the expression for the expectation of KMI conditional on

the observed data Y, can be rewritten as
K
E{Skur(t)|Ya} =Y [S(t|IRS* — k) Pr(Ins- = k|Yn)]
k=1

where S(t|Izs- = k) is the conditional KM estimator at time ¢ among those in category k
and Pr(Irs+ = k|Y,) is the sample proportion, ny/n, in category k. The above expression
is analagous to a uniform kernel conditional KM estimate in Dabrowska (1989). Dabrowska
shows that under certain conditions and assumptions S , the kernel conditional KM estimate,
is uniformly consistent. We appeal to this result and the previously shown result that 7" and

C are independent conditional on RS* to show that
K
137 [S(tlns: = B)Pr(Ins- = kIYu)] - / S(H|RS* = u)d{ Frs- (u)}|;—0,
k=1
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where ||S(t|RS*)||r = sup{|S(t, RS*)| : RS* € I}, S(t|RS*) is the true survival rate given
RS* and Fgg«(u) is the distribution of RS* on I. The marginal survival function S(¢) can
be written as [ S(t|RS* = u)d{Fgs-(u)}, thus if the conditions are satisfied Sgu(t) is a
consistent estimate of S(t), giving Result 3 when both 8} and 8; known. The same method
can be applied if there is a single continuous covariate.

We note however that this argument only applies if there are no censored values in the
imputed datasets less than ¢. In practice this is unlikely to be the case except for small %;
depending on the value of ¢ there are likely to be a small fraction of imputed censored values
less than ¢. This suggests that in large samples the bias of S kr(t) will be small, but maybe

not zero.

We now consider the case with both 7 and f; unknown. The estimated risk scores are
RS = (B;ZZ}, szz) Now the categorical indicator variable Iz~ based on the estimated
risk scores differs from that based on RS*. However, under the assumption that one of the
two working models is correct, B; AN B} and Bj RLAEN B%, and, conditional on .F/L\S’*, T and
C are asymptotically independent. If ¢, — 0, as n — oo in such a way that \/ng, — oo,
then heuristically, it can be seen that as the sample size increases the number of observations
in a category increases to infinity as the size of the neighborhood gets smaller and that the
difference between RS and RS* is of smaller order than the the size of the neighborhood.

With a single continuous covariate RS = RS*, the working models and the regression
coefficients B ¢ and BC are not needed, so the fact that g} and §; are unknown is irrelevant.

Time-dependent covariates

Let Z, denote all the information that is available up to time ¢, which includes current
and previous values of Z and whether 7" and C' are bigger than ¢. The key assumption is
that T and C are conditionally independent given Z;, ie Pr(T > t,,C > t3|Z;) = Pr(T >

t1|Zy) Pr(C > t3]Z;), for all t; > t and t5 > t. In the multiple imputation method the working
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failure time and censoring time models are refit at each time of a censored observation, thus
the risk scores depend on time and are denoted by RSy = (RS}, RSy;). The same proof as
before leads to result 2 that T" and C' being conditionally independent given RSy, if one of the
two working models is correct, ie Pr(T > t,,C > t3|RS}) = Pr(T > t;|RS;)Pr(C > t3|RS}),
t1 > t, ty > t. Hence the Kaplan-Meier estimate derived from each imputing risk set is a valid
estimate, not biased by dependent censoring, and can be used for imputing. Whether the
method of Dabrowska can be extended to the case of time-dependent covariates, to prove the
double robustness in result 3, is unclear. The statement that the working model is correctly
specified is a stronger statement than in the case of time-independent covariates, because the
distribution of the residual time depends on both the hazard of the event and the stochastic
process for future values of Z. Thus the assumption is that information about both of these

can be summarized in a single linear combination.
[Figure 1 about here.]
[Table 1 about here.]
[Table 2 about here.|
[Table 3 about here.]
[Table 4 about here.]

[Table 5 about here.]
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Figure 1. Comparison of KM curves based on the partially-observed data (No Imputation)
and based on KMIB method using the latest CD4 count as the auxiliary variable.
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Table 1
Estimates of AIDS-free survival probabilities using the latest observed CDJ4 counts as

covariates based on partially-observed data (PO), IPCW method and multiply-imputed data
with M=10 and NN=10.

Treated
Method 5(450)% (SEs0)® S(550) (SEsso)
PO 0.965 0.0087 0.949  0.0113
IPCW 0.964 0.0090 0.946  0.0118
KMI 0.970 0.0064 0.951  0.0081
RSI 0.965 0.0077 0.952  0.0098
KMIB 0.968 0.0068 0.951  0.0093
RSIB 0.968 0.0067 0.952  0.0108

Placebo
Method  5(450)  (SEss0) S(550) (SEsso)
PO 0.930 0.0147 0.905  0.0176
IPCW 0.929 0.0149 0.902  0.0180
KMI 0.932 0.0137 0.907  0.0171
RSI 0.929 0.0142 0.901  0.0166
KMIB 0.931 0.0140 0.901  0.0165
RSIB 0.933 0.0142 0.904  0.0173

¢ KM survival estimate of remaining ATDS-free at day 450.

b based on Greenwood’s formula.
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Table 2
Monte Carlo Results for a binary covariate: Survival estimates. The total sample size is 80,
40 for each group. Results based on 500 replications and M=50.

Independent Censoring; Censoring rate:0.47
Event times ~ Exp(1.0/0.1); Censoring times ~ Exp(0.28)

Method true value average SD?® SE? CR¢
FO 0.50 0.497  0.0546 0.0556 95.8
PO 0.499  0.0633 0.0631 94.0

WKM 0.498  0.0600 0.0606 95.2

TPCW 0.498  0.0605 0.0595 95.0
RSI 0.498  0.0603 0.0599 94.8
KMI 0.497  0.0601 0.0590 94.8

RSIB 0.498  0.0600 0.0611 95.0

KMIB 0.497  0.0604 0.0606 95.0

Dependent Censoring; Censoring rate:0.50

Event times ~ Exp(1.0/0.1); Censoring times ~ Exp(0.5/0.2)

Method true value average SD SE CR
FO 0.50 0.497  0.0558 0.0555 95.2
PO 0.535 0.0645 0.0632 90.6

WKM 0.498  0.0651 0.0625 95.0

IPCW 0.497  0.0656 0.0611 93.2
RSI 0.508  0.0642 0.0607 93.6
KMI 0.498  0.0652 0.0594 93.4

RSIB 0.508  0.0639 0.0627 94.4

KMIB 0.498  0.0651 0.0626 95.0

¢ empirical standard deviation.

b estimated standard error based on Greenwood’s formula.

¢ coverage rate of 95% confidence interval calculated as

(0.975)

estimate +- standard error.
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Table 3
Monte Carlo results for 5 time-independent covariates with dependent censoring:: the effects
of the size of the nearest neighborhood and weights (wy,w.) on survival estimates (true
value=0.5). Censoring Rate: 0.51. Sample size 200, 500 replications, M=10.

Failure': correct; Censoring?: correct

Method NN average SD SE CR SDR?
FO 0.501  0.0332 0.0353 96.4
PO 0.568  0.0370 0.0395 58.6 1.00
IPCW 0.504 0.0421 0.0405 93.8 7.65
(wg,we) = (1.0,0.0)
KMIB 5 0.511  0.0385 0.0406 95.4 10.00
KMIB 10 0.509  0.0385 0.0405 94.6 10.32
KMIB 20 0.511  0.0390 0.0406 95.2 9.80
KMIB 50 0.524 0.0392 0.0409 92.2 5.14
Failure: correct; Censoring: correct, NN=10
Method weights average SD SE CR SDR
FO 0.494 0.0367 0.0353 94.4
PO 0.562  0.0400 0.0396 62.0 1.00
IPCW 0.498  0.0439 0.0402 91.6 7.88
KMIB (1.0,0.0) 0.502 0.0413 0.0403 95.2 9.94
KMIB (0.8,0.2) 0.502 0.0410 0.0405 94.8 10.23
KMIB (0.5,0.5) 0.503 0.0411 0.0405 94.8 9.71
KMIB (0.0,1.0) 0.506 0.0413 0.0409 95.2 8.44
Failure: incorrect; Censoring: correct, NN=10
FO 0.502  0.0361 0.0353 93.6
PO 0.569  0.0397 0.0394 58.4 1.00
IPCW 0.505  0.0438 0.0401 93.4 6.88
KMIB (1.0,0.0) 0.539  0.0411 0.0409 83.2 2.65
KMIB (0.8,0.2) 0.521 0.0416 0.0407 91.0 6.21
KMIB (0.5,0.5) 0.517  0.0405 0.0406 92.4 7.42
KMIB (0.0,1.0) 0.514 0.0409 0.0409 93.6 8.45
Failure: correct; Censoring: incorrect, NN=10
FO 0.497  0.0360 0.0353 94.0
PO 0.565 0.0404 0.0395 61.2 1.00
IPCW 0.501  0.0443 0.0402 924 7.96
KMIB (1.0,0.0) 0.505 0.0418 0.0403 93.4 10.51
KMIB (0.8,0.2) 0.507 0.0421 0.0405 93.2 9.49
KMIB (0.5,0.5) 0.510 0.0427 0.0405 924 8.24
KMIB (0.0,1.0) 0.536  0.0428 0.0412 82.6 2.50

! working failure time model,?> working censoring time model
3 squared difference ratio = %(PO — FO)?/%(est — FO)?
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Table 4
Monte Carlo results with 5 time-independent covariates with dependent censoring and the
working failure time model incorrectly specified: the effects of sample size on survival

estimates (true value=0.5). Censoring Rate: 0.51. Results based on 500 replications,
(wp = 0.8, w, =0.2), NN=10, and M=10.

Method sample size average SD SE CR

FO 200 0.499  0.0371 0.0353 93.2
PO 200 0.565  0.0407 0.0395 63.0
KMIB 200 0.516  0.0416 0.0407 90.8
FO 400 0.499  0.0238 0.0250 96.2
PO 400 0.566  0.0267 0.0279 33.8
KMIB 400 0.513  0.0283 0.0287 92.8
FO 800 0.499  0.0176 0.0177 95.0
PO 800 0.566  0.0194 0.0198 9.4
KMIB 800 0.509  0.0200 0.0204 93.2
FO 2000 0.499  0.0109 0.0112 954
PO 2000 0.566  0.0119 0.0125 0.0
KMIB 2000 0.506  0.0122 0.0129 95.3
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Table 5

Monte Carlo results for time-dependent covariates. Results based on sample size 300, 500
replications, NN = 10, and M=10. (a) Random effects model, Survival estimates at one
year (b) Brownian motion model, Survival estimates at siz months.

(a) Random Effects Model

Method average SD SE CR*
Independent censoring; Censoring rate:51%
FO 0.445 0.0281 0.0286 96.8
PO 0.445  0.0350 0.0351 95.0
IPCW 0.445 0.0335 0.0336 94.6
KMIB 0.438  0.0339 0.0333 94.0

Dependent censoring; Censoring rate:57%

FO 0.448 0.0302 0.0287 934
PO 0.543 0.0336 0.0325 17.8
IPCW 0.495 0.0369 0.0348 69.6
KMIB 0.466  0.0360 0.0340 89.6
(b) Brownian Motion Model
Method average SD SE CR*
Independent censoring; Censoring rate:46%
FO 0.514  0.0291 0.0288 94.4
PO 0.514  0.0307 0.0307 944
IPCW 0.537  0.0293 0.0288 86.6
KMIB 0.513  0.0301 0.0300 94.6
Dependent censoring; Censoring rate:62%
FO 0.519  0.0291 0.0288 94.2
PO 0.615  0.0348 0.0331 19.2
IPCW 0.557 0.0368 0.0374 824
KMIB 0.535 0.0376 0.0362 91.6
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