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Abstract

Graphs or networks are common ways of depicting information. In biology in
particular, many different biological processes are represented by graphs, such as
regulatory networks or metabolic pathways. This kind of {\it a priori} informa-
tion gathered over many years of biomedical research is a useful supplement to
the standard numerical genomic data such as microarray gene expression data.
How to incorporate information encoded by the known biological networks or
graphs into analysis of numerical data raises interesting statistical challenges. In
this paper, we introduce a network-constrained regularization procedure for linear
regression analysis in order to incorporate the information from these graphs into
an analysis of the numerical data, where the network is represented as a graph
and its corresponding Laplacian matrix. We define a network-constrained penalty
function that penalizes the $L 1$-norm of the coefficients but encourages smooth-
ness of the coefficients on the network. An efficient algorithm is also proposed
for computing the network-constrained regularization paths, much like the Lars
algorithm does for the lasso. We illustrate the methods using simulated data and
analysis of a microarray gene expression data set of glioblastoma.
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ABSTRACT

Graphs or networks are common ways of depicting information. In biology in particular,

many different biological processes are represented by graphs, such as regulatory networks

or metabolic pathways. This kind of a priori information gathered over many years of

biomedical research is a useful supplement to the standard numerical genomic data such as

microarray gene expression data. How to incorporate information encoded by the known

biological networks or graphs into analysis of numerical data raises interesting statistical

challenges. In this paper, we introduce a network-constrained regularization procedure for

linear regression analysis in order to incorporate the information from these graphs into an

analysis of the numerical data, where the network is represented as a graph and its corre-

sponding Laplacian matrix. We define a network-constrained penalty function that penalizes

the L1-norm of the coefficients but encourages smoothness of the coefficients on the network.

An efficient algorithm is also proposed for computing the network-constrained regularization

paths, much like the Lars algorithm does for the lasso. We illustrate the methods using

simulated data and analysis of a microarray gene expression data set of glioblastoma.

Key Words: Penalty, Microarray, Laplacian Matrix, Graph, Penalty.
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1 Introduction

A central problem in genomic research is to identify genes and pathways involved in dis-

eases and other biological processes and to build a prediction model for future outcomes by

linking high-dimensional genomic data, such as microarray gene expression data, to various

clinical outcomes. The problem can in general be formulated as a prediction problem with

n observations having outcomes y1, y2, . . . , yn and p predictors xij, i = 1, . . . , n, j = 1, . . . , p.

The outcome can be quantitative or binary, representing two cases such as “diseased” and

“healthy.” Consider the usual linear regression model where the response y is predicted by

ŷ = β̂0 + x1β̂1 + . . . + xpβ̂p, (1)

where a model-fitting procedure produces the vector of coefficients β̂ = (β̂0, · · · , β̂p). To deal

with the problem of high-dimensionality of the genomic data, many new regularized methods

have been developed for identifying the genes that are related to clinical phenotypes in

regression frameworks, including lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic

net (Zou and Hastie, 2005), fused lasso (Tibshirani et al., 2005) and LARS (Efron et al.,

2005), and various extensions such as adaptive lasso (Zou, 2006) and group lasso (Yuan

and Lin, 2006). Among these procedures, the elastic net regularization and the fused-lasso

are particularly appropriate for analysis of genomic data, where the former encourages a

grouping effect and the latter often leads to smoothes of the coefficient profiles for ordered

covariates.

One limitation of all these popular approaches is that the methods are developed purely

from computational or algorithmic points without utilizing any prior biological knowledge or

information. For many complex diseases, especially for cancers, much biological knowledge

or pathway information is available from many years of intensive biomedical research. The

large body of information is now available primarily through databases on different aspects

of biological systems. Such databases are often called metadata, which means data about

data. Some well-known pathway databases include KEGG, Reactome (www.reactome.org),

BioCarta (www.biocarta.com) and BioCyc (www.biocyc.org). Of particular interest are gene
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regulatory pathways that provide regulatory relationships between genes or gene products.

These pathways are often interconnected and form a network, which can be represented as

graphs, where the vertices of the graphs are genes or gene products and the edges of the

graphs indicate some regulatory relationship between the genes. This kind of a priori infor-

mation is a useful supplement to the standard numerical data coming from an experiment.

Incorporating the information from these graphs into an analysis of the numerical data is a

non-trivial task that is generating increasing interest. Such networks or graphs in fact induce

certain structures on the genomic data, including simple group structures where genes within

a pathway are treated as a group and graphical structures. Several statistical methods have

been developed to utilize the pathways or network information, including the group additive

regression models (Wei and Li, 2007a; Luan and Li, 2007) and a hidden Markov random field

approach to utilize the network structures in identifying the differentially expressed genes

(Wei and Li, 2007b).

In this paper, we propose to develop a network-constrained regularization procedure

for fitting linear regression models and for variable selection, where the predictors in the

regression model are genomic data with graphical structures. The goal of such a procedure

is to identify genes and subnetworks that are related to diseases or disease outcomes. In

order to achieve automatic variable selection and to account for the network structures,

we define a network-constrained penalty that is a combination of the lasso penalty and a

penalty induced by the Laplace matrix of the graph. Such a procedure can select subgroups

of correlated features in the network, thus enjoying global smoothness over the network. Our

proposed procedure, which includes the elastic net regulation procedure as a special case, is

similar in spirit to the fused-lasso (Tibshirani et al., 2005). It induces smoothed coefficient

profiles, which can result in more interpretable identification of genes and subnetworks that

are related to the responses in the context of known biology.

The rest of the paper is organized as follows. In Section 2 we define the network-

constrained regularization procedure for linear regression models and present an efficient

algorithm for estimating the parameters. We provide the grouping property and the asymp-
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totic theorem for the parameter estimates in Section 3 and simulation results in Section

4. We then present in Section 5 an application of the proposed methods to an analysis of

a microarray gene expression data set of glioblastoma. Finally, Section 6 presents a brief

discussion of the results.

2 Network-constrained Regularization for Linear Mod-

els

2.1 Network constrained penalty based on Laplace of the network

Suppose that the data set contains n observations and p predictors, with response vector y =

(y1, . . . , yn)T and design matrix X = (x1| . . . |xp), where xj = (x1j, . . . , xnj)
T , j = 1, . . . , p.

We also assume that the predictors are standardized and the response is centered so that

n∑
i=1

yi = 0,
n∑

i=1

xij = 0, and
n∑

i=1

x2
ij = 1 forj = 1, . . . , p.

Consider a network that is represented by a weighted graph G = (V,E, W ), where V is the

set of vertices that correspond to the p predictors, E = {u ∼ v} is the set of edges indicating

that the predictors u and v are linked on the network and there is an edge between u and v,

and W is the weights of the edges, where w(u, v) denotes the weight of edge e = (u ∼ v). In

applications, the edge weight can be used to measure uncertainty of the edge between two

vertices. Define the degree of the vertex v as dv =
∑

u∼v w(u, v). We say u is an isolated

vertex if du = 0. Following Chung (2005), we define the Laplacian matrix L for G with the

uvth element defined by

L(u, v) =





1− w(u, v)/du if u = v and du 6= 0

−w(u, v)/
√

dudv if u and v are adjacent

0 otherwise.

For any fixed non-negative λ1 and λ2, we define the network-constrained regularization
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criterion

L(λ1, λ2, β) = (y−Xβ)T (y−Xβ) + λ1|β|1 + λ2β
T Lβ, (2)

where |β1| =
∑p

j=1 |βj| is the L1 norm, which induces a sparse solution (Tibshirani, 1996),

and as shown in the following Lemma, the second term βT Lβ induces a smoothness solution

of β on the network.

Lemma 1. For a given graph G with p vertices and m edges, let L be the Laplacian matrix

of G, then βT Lβ can be written as

βT Lβ =
∑
u∼v

(
βu√
du

− βv√
dv

)2w(u, v), (3)

where
∑

u∼v denotes the sum over all unordered pairs {u, v} for which u and v are adjacent

on the network.

This can be seen by simple algebra and the fact that L can be written as L = SST ,

where Sp×m is the matrix in which rows are indexed by the vertices and in which columns

are indexed by the edges of G such that each column corresponding to an edge e = {u, v}
has an entry w(u, v)/

√
du in the row corresponding to u, an entry −w(u, v)/

√
dv in the row

corresponding to v, and has zero entries elsewhere.

By Lemma 1, we can rewrite equation (2) as

L(λ1, λ2, β) = (y−Xβ)T (y−Xβ) + λ1

p∑
j=1

|βj|+ λ2

∑
u∼v

(
βu√
du

− βv√
dv

)2w(u, v), (4)

and define the network-constrained regularized estimator β̂ as the minimizer of equation (4),

i.e.,

β̂ = argminβ{L(λ1, λ2, β)}. (5)

We can view this procedure as a penalized least squares regression. Let α = λ2/(λ1 + λ2),

then β̂ in equation (4) is equivalent to the solution to the optimization problem

β̂ = argminβ{|y−Xβ|2},

subject to (1− α)

p∑
j=1

|βj| + α
∑
u∼v

(
βu√
du

− βv√
dv

)2w(u, v) ≤ t for some t.
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We call the function

(1− α)

p∑
j=1

|βj|+ α
∑
u∼v

{(βu/
√

du − βv/
√

dv)
2w(u, v)}

the network-constrained penalty, in which the second term imposes smoothness of the param-

eters β over the network via penalizing the weighted sum of squares of the scaled difference

of the coefficients between neighbor vertices in the network. We re-scale the β coefficients

in order to account for different degrees of the vertices on the network, allowing the genes

with more connections (e.g., the hub genes) to have larger coefficients. The biological mo-

tivation of this penalty is that we expect the genes that are linked on the networks to have

similar functions and therefore similar regression coefficients. Note that we do not require

these coefficients to be the same or have the same signs. If the weight w(u, v) represents

the probability that vertices u and v are connected, we impose smoothness over these two

vertices with probability w(u, v). This provides one way of accounting for uncertainty of the

network.

Note that when α = 0, the network-constrained penalty reduces to the lasso, a singular

penalty function at zero and for all α ∈ (0, 1), it is strictly convex, and hence retains the

good properties of both sparsity and smoothness. When L = I, the network-constrained

penalty becomes the elastic net penalty of Zou and Hastie (2005). Figure 1 shows contours

for four penalty functions for a bivariate argument β = (β1, β2), where α = 0.3 for the elastic

net, fused lasso and the network-constrained penalties. Like the fused lasso penalty, one

important feature of the network-constrained penalty is that it is not symmetric over the

x-axis or y-axis; therefore, β parameters of different signs will have different penalties.

2.2 Solution and algorithm

Following Zou and Hastie (2005), we develop a similar efficient computation procedure to

solve the network-constrained regularization problem. As shown in the following Lemma,

minimizing equation (4) is equivalent to solving a lasso-type optimization problem, thus

enjoying the computational advantage of the lasso.
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lasso elastic net

network−constrained fused lasso

Figure 1: Contours for four penalty functions for a bivariate argument β = (β1, β2). The

upper left shows contours of the lasso penalty. The upper right shows contours of the elastic

net penalty. The lower left shows the contours of the network-constrained penalty and the

lower right shows the contours of the fused lasso penalty, both for α = 0.3.

Lemma 2. Given data set (y,X) and two fixed scalars (λ1, λ2), define an artificial data set

(y∗,X∗) by

X∗
(n+p)×p = (1 + λ2)

−1/2


 X
√

λ2S
T


 ,Y∗

(n+p) =


 Y

0


 ,

where L = UΓUT and S = UΓ1/2. Let γ = λ1/
√

1 + λ2 and β∗ =
√

1 + λ2β. Then the

network-constrained criterion can be written as

L(λ1, λ2, β) = L(γ, β∗) = (y∗ −X∗β∗)T (y∗ −X∗β∗) + γ

p∑
j=1

|β∗j | (6)
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Let β̂∗ be the solution to the above lasso problem, i.e,

β̂∗ = argminβ∗{L(γ, β∗)};

then the solution to (4) becomes

β̂ =
1√

1 + λ2

β̂∗. (7)

Following Zou and Hastie (2005), to correct for potential bias due to double shrinkage,

we adjust the network-constrained estimate β̂ by a factor 1 + λ2. Lemma 2 indicates that

the network-constrained penalty problem can be reformulated as an equivalent lasso-type

problem by creating an augmented data set, thus enjoying the automatic variable selection

property. Note that this augmented data set increases the sample size from n to (n+p), which

means that this model can potentially select all p variables even when n ¿ p. Similar to the

elastic net, this feature overcomes the limitation that lasso can select at most n (when n < p)

variables before it saturates. In the next section we will show that the network-constrained

criterion can perform the grouped variables selection procedure in a fashion similar to the

elastic net.

Finally, if only training samples are available, tenfold cross-validation (CV) can be used

for estimating the prediction error and for comparing models. For each fixed λ2, we can

use the number of steps for the lasso solution of the optimization problem (6) as the second

tuning parameter besides λ2, which is selected by tenfold CV. The chosen λ2 is the one giving

the smallest CV error.

3 Properties of the Proposed Procedure

We present several properties related to the proposed network-constrained regularization

procedure, including the grouping effect and the asymptotic property in the case when p is

fixed and n →∞.
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3.1 The grouping effect

We show in this section that the estimates of network-constrained regularization can lead to

desirable grouping effects for predictors that are correlated or linked on the network. The

following Lemma, which is the direct result from the Lemma 2 of Zou and Hastie (2005) since

the network-constrained loss function is a convex function, guarantees the grouping effect

for network-constrained penalization regression in the situation with identical predictors.

Lemma 3. Assume that β̂ is determined by equation (7), also assume that xi = xj, then

β̂i = β̂j, for any λ2 > 0.

If we consider the simple case when the two genes are linked only to each other on the

network, the following theorem provides an upper bound on the difference of the estimates

from the network-regularization procedure.

Theorem 1. Given data set (y,X) and two fixed scalars (λ1, λ2), the response y is centered

and predictors X are standardized. Let β̂(λ1, λ2) be the solution to equation (5). Suppose

that β̂i(λ1, λ2)β̂j(λ1, λ2) > 0, and the two vertices u and v are only linked to each other on

the network, du = dv = w(u, v). Define

Dλ1,λ2(u, v) =
1

|y|1 |β̂u(λ1, λ2)− β̂v(λ1, λ2)|,

then

Dλ1,λ2(u, v) ≤ 1

2λ2

√
2(1− ρ) (8)

where |y|1 =
∑n

i=1 |yi| and ρ = xT
uxv is the sample correlation.

The proof of this theorem is similar to that in Zou and Hastie (2005) and is given in

Appendix A. The upper bound in (8) gives a quantitative description for the grouping effect

of the network-constrained regularization, which is half of the upper bound in the elastic

net model. In a pathway, for two adjacent vertices i and j satisfying di = dj = w(i, j), if xi

and xj are highly correlated, i.e., ρ
.
= 1, then the difference between the coefficient paths of

features i and j is almost 0.
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3.2 Asymptotic property

In this section, we derive asymptotic results for the estimates from network-constrained

penalization under the assumption that p is fixed and the sample size n → ∞. The result

and proof is similar in spirit to the estimates based on the fused lasso (Tibshirani et al.,

2005). Consider the following linear regression model,

y = x1β1 + · · ·+ xpβp + ε,

where ε is the error term of mean 0 and variance σ2. For a given n i.i.d. observations, recall

that the network-constrained penalized least squares criterion is

n∑
i=1

(yi − xi
T β)2 + λ(1)

n

p∑
j=1

|βj|+ λ(2)
n

∑
u∼v

(
βu√
du

− βv√
dv

)2w(u, v),

where the Lagrange multipliers λ
(1)
n and λ

(2)
n are functions of the sample size n. We have the

following asymptotic theorem for the estimates:

Theorem 2. If λ
(l)
n /
√

n → λ
(l)
0 ≥ 0 for l = 1, 2 and

C = limn→∞(
1

n

n∑
i=1

xix
T
i )

is non-singular, then
√

n(β̂n − β) →d argmin(V )

where

V (u) = −2uTW + uT Cu + λ
(1)
0

p∑
j=1

{ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0)}

+ 2λ
(2)
0

∑
i∼j

(
βi√
di

− βj√
dj

)(
ui√
di

− uj√
dj

)w(i, j),

and

W ∼ N(0, σ2C).

The proof of this theorem is given in Appendix B. For the special case when p = 2 and

w(i, j) = 1, let

C =


 c11 c

c c22


 ,
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then we have
√

n(β̂n − β) →d (u1, u2)
T , where

u1 =
1

det(C)
{c22W1 − cW2 + λ

(1)
0 (c− c22)/2− λ

(2)
0 (c + c22)(β1 − β2)},

u2 =
1

det(C)
{c11W2 − cW1 + λ

(1)
0 (c− c11)/2 + λ

(2)
0 (c + c11)(β1 − β2)},

which is a bivariate normal random variable.

4 Simulation Studies

To demonstrate the performance of the proposed network-constrained regularization proce-

dure, we first simulated the following simple regulatory network: suppose that we have 200

transcription factors (TFs) and each regulates 10 genes. The resulting network includes 2200

genes and edges between each of the TFs and the 10 genes that they regulate. We assume

that four TFs and the genes that they regulated are related to response Y . For the first

model, we assume that the data are simulated from the following models:

• y = Xβ + ε

• β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

10

,−5,
−5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

10

, 3,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

10

,−3,
−3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

10

, 0, . . . , 0)

• ε ∼ N(0,
∑

β2
j /2) = N(0, 37.4) so that the signal-to-noise ratio is 2.

• The expression levels for the 200 TFs follow standard normal, XTFj
∼ N(0, 1)

• The expression levels of the TF and the gene that it regulates are jointly distributed as

a bivariate normal with a correlation of 0.7. This implies that conditioning on the expression

level of the TF, the expression level of the gene it regulates, follows a N(0.7 ∗XTFj
, 0.51).

For the second model, the expression levels are simulated in the same way as for model

1, except that we assume that

β = (5, −5√
10

, −5√
10

, −5√
10

,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

7

,−5, 5√
10

, 5√
10

, 5√
10

,
−5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

7

,

3, −3√
10

, −3√
10

, −3√
10

,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

7

,−3, 3√
10

, 3√
10

, 3√
10

,
−3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

7

, 0, . . . , 0).

This model assumes that genes that are regulated by the same TF can have both positive

and negative effects on the response Y .
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For the third model, which is similar to Model 1, we assume that

β = (5,
5

10
, . . . ,

5

10︸ ︷︷ ︸
10

,−5,
−5

10
, . . . ,

−5

10︸ ︷︷ ︸
10

, 3,
3

10
, . . . ,

3

10︸ ︷︷ ︸
10

,−3,
−3

10
, . . . ,

−3

10︸ ︷︷ ︸
10

, 0, . . . , 0).

Finally, for model 4, we assume that

β = (5, −5
10

, −5
10

, −5
10

, −5
10

,
5

10
, . . . ,

5

10︸ ︷︷ ︸
6

,−5, 5
10

, 5
10

, 5
10

, 5
10

,
−5

10
, . . . ,

−5

10︸ ︷︷ ︸
6

,

3, −3
10

, −3
10

, −3
10

, −3
10

,
3

10
, . . . ,

3

10︸ ︷︷ ︸
6

,−3, 3
10

, 3
10

, 3
10

, 3
10

,
−3

10
, . . . ,

−3

10︸ ︷︷ ︸
7

, 0, . . . , 0).

Similar to model 2, this model assumes that genes that are regulated by the same TF can

have both positive and negative effects on the response Y .

For each model, the noise variance was chosen so that the signal-to-noise ratio was fixed

at 2. We simulated a training set and an independent test set with sample sizes of 100

for both sets. Ten-fold CV was conducted on the training data set to select the tuning

parameters and then the parameter estimates were obtained using all of the training data

set. For each model, we repeated the simulations 50 times. We then computed the prediction

mean-squared error (PMSE) on the test data set. In addition, we also calculated both the

sensitivity and specificity for each procedure. Table 1 summarizes the simulation results for

these four different models. For all four models, our proposed network-constrained procedure

gave much smaller or comparable PMSEs than the lasso or elastic net regressions. The

network-constrained procedure also resulted in much higher sensitivity in identifying the

relevant genes. The specificity is somewhat reduced, but not greatly as compared to the

gains in sensitivity.

5 Applications to Analysis of Microarray Gene Expres-

sion Data Sets

We demonstrate the proposed methods by analyzing a microarray gene expression study of

glioblastoma by Horvath et al. (2006). Glioblastoma is the most common primary malignant

brain tumor of adults and one of the most lethal of all cancers. Patients with this disease

12
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Table 1: Results of the simulation study, sensitivity, specificity and the prediction mean-

squared-errors (PMSE) are calculated based on 50 simulations, where standard errors are

given in parentheses below. Enet: the elastic net of Zou and Hastie (2005); Net: the proposed

network-constrained regulation procedure.

Sensitivity Specificity PMSE

Model lasso Enet Net lasso Enet Net lasso Enet Net

1 0.482 0.471 1.00 0.996 0.996 0.906 90.2 77.0 46.9

(0.06) (0.06) (0.00) (0.002) (0.002) (0.04) (17.4) (14.7) (7.3)

2 0.351 0.332 0.766 0.993 0.995 0.966 90.1 86.6 81.3

(0.05) (0.003) (0.06) (0.002) (0.003) (0.007) (14.18) (13.6) (12.0)

3 0.504 0.668 1.00 0.996 0.993 0.909 34.4 32.9 27.5

(0.11) (0.13) (0.00) (0.002) (0.002) (0.004) (6.67) (6.41) (4.37)

4 0.455 0.413 0.940 0.996 0.997 0.943 34.9 32.3 33.6

(0.11) (0.11) (0.03) (0.002) (0.002) (0.01) (6.06) (5.79) ( 5.28)

13

http://biostats.bepress.com/upennbiostat/art23



have a median survival of 15 months from the time of diagnosis despite surgery, radiation

and chemotherapy. Global gene expression data from two independent sets of clinical tumor

samples of n = 55 and n = 65 were obtained by high-density Affymetrix arrays. The gene

expression data sets were normalized using the RMA methods (Irizarry et al., 2003). Among

the first set of 55 patients, five were alive at the last followup and four were alive for the

second set. In our analysis, we built a predictive model using the first set of 50 patients

with time to death information and tested the predictive performance using the second set

of 61 patients with time to death information. We used the logarithm of time to death as

the response variable in our analysis.

To perform network-based analysis of the data, we merged the gene expression data

with the 33 KEGG regulatory pathways and identified 1533 genes on the Hu133A chip

that can be found in the 1668-node KEGG network of 33 pathways. Instead of consider-

ing all the genes on the Hu133A chip, we only focused analysis on these 1533 genes and

aimed to identify which genes and which subnetworks of the KEGG network of 33 path-

ways are related to survival times from brain cancer. Table 2 shows the results from three

different procedures in terms of prediction errors in the test data sets and the number of

genes selected by these procedures in the training set. Both the elastic network and the

network-constrained regularization procedures resulted in similar and slightly smaller pre-

diction errors than lasso. However, the network-constrained procedure selected more genes

than the lasso or elastic net, about half of these genes (44 genes) are connected on the KEGG

pathways. As a comparison, the lasso identified three pairs of connected genes (ITGB7∼
SYNJ2, PCK1∼ PTEN and FOXO1A∼PRKCG), and the elastic net identified only one pair

of connected genes (PRKCG∼ ITGB7). These genes do not provide much information on

which pathways/subnetworks might be related to survival from glioblastoma. Finally, the

genes identified by the network-constrained procedure include all the genes identified by the

elastic network and lasso.

Results from our network-constrained analysis indeed suggest that several pathways

might be related to time to death from glioblastoma. Figure 2 shows the connected sub-
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Table 2: Results from analysis of the glioblastoma data set, where the test set mean-squared

errors are calculated based on an independent set of 61 glioblastoma patients.

Method Test mean-squared error # of genes selected

lasso 1.18 23

elastic net 1.02 5

network-constraint 1.06 95

networks of KEGG that were identified by the proposed network-constrained procedure.

The largest subnetwork includes genes involving the MAPK signaling pathway (e.g., genes

PLCE1, PRKCG, MAP2K7, ZAK, KBKG, TRAF2 and MAPK11) and its connected path-

ways, such as the PI3K/Akt signaling pathway (e.g., genes GYS1) and its target FOXO1A.

Of particular interest is the identification of the FOXO1A that might be related to risk

of death from glioblastoma. FOXO1A is an important transcription factor involved in the

regulation of a range of critical processes in mammalian cells, including proliferation, differ-

entiation, apoptosis, metabolism, and responses to oxidative stress and DNA damage (Accili

and Arden, 2004). The prognostic relevance of MAPK expression in glioblastoma multiforme

was reported in Mawrin et al. (2003) and Pelloski et al. (2006).

The second subnetwork includes four genes, PTEN, PRKG2, MAPK8IP2 and ELK1. Li

et al. (1997) describe a phosphatase and tensin homolog deleted on the chromosome 10

(PTEN) protein that is mutated in a number of human cancers including those from breast,

brain and prostate. This protein interacts with actin filaments and is a putative protein

tyrosine phosphatase, and acts as a tumor suppressor, at least in part, by antagonizing

phosphoinositide 3-kinase (PI3K)/Akt signaling. Uht et al. (2007) suggested that PKC-eta-

mediated glioblastoma proliferation involves MEK/mitogen-activated protein (MAP) kinase

phosphorylation, activation of ERK and subsequently of Elk-1. The MAPK8IP2 (mitogen-

activated protein kinase 8 interacting protein) is closely related to MAPK8IP1/IB1/JIP-1, a

scaffold protein that is involved in the c-Jun amino-terminal kinase signaling pathway. This
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Figure 2: Subnetworks identified by the network constrained regulation method that might be

related to survival time from glioblastoma based on a sample of 50 patients.

protein is expressed in brain and pancreatic cells and has been shown to interact with, and

regulate the activity of MAPK8/JNK1 and MAP2K7/MKK7 kinases. This protein thus is

thought to function as a regulator of signal transduction by protein kinase cascade in brain

(Uht et al., 2007). Finally, the gene PRKG2, encoding the cGMP-dependent protein kinase

II, was targeted by insertions in brain tumors. Overexpression of PRKG2 in human glioma

cell lines led to a reduction in colony formation, cell proliferation and migration (Uht et al.,

2007).

Among the small subnetworks of two genes, their involvement in glioblastoma has also

been reported in the literature for some of the pairs. Perego et al. (2002) showed that

the invasive behavior of glioblastoma cell lines is associated with altered organization of the

cadherin-catenin adhesion system, where the catenin (cadherin-associated protein), beta 1
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(CTNNB1) protein is a major component. Leach et al. (1996) suggested that a blockade of

the inhibitory effects of CTLA-4 can allow for, and potentiate, effective immune responses

against tumor cells. One reason for the poor immunogenicity of many tumors may be that

they cannot provide signals for the CD28-mediated costimulation necessary to fully activate

T cells. It has recently become apparent that CTLA-4, a second counter receptor for the B7

family of costimulatory molecules, is a negative regulator of T cell activation. In addition,

the family of more than 20 claudin (CLDN) proteins comprises one of the major structural

elements within the apical tight junction apparatus, a dynamic cellular nexus for maintenance

of a luminal barrier, paracellular transport, and signal transduction. Loss of normal tight

junction functions constitutes a hallmark of human carcinomas. CLDN1 may support tumor

suppressive functions in tissues such as the brain, where dramatic loss of expression has been

demonstrated in glioblastoma multiforme (Swisshelma et al., 2005).

In summary, these results indicate that by considering the KEGG pathways, our pro-

posed methods can identify subnetworks that are potentially relevant to time to death from

glioblastoma. Some of these subnetworks are well-supported by previously published work.

In contrast, the genes identified by lasso or the elastic network cannot suggest the involve-

ment of any possible pathways that are related to the risk of death from glioblastoma.

6 Discussion

We have introduced a network-constrained regularization procedure for linear models in

order to incorporate information coded in known genetic networks. Such a regularization

procedure can also be regarded as a penalized least squared estimation where the penalty

is defined as a combination of the L1 penalty and L2 penalty on degree-scaled differences of

coefficients between variables linked on the networks. Such a penalty induces both sparsity

and smoothness with respect to the network structure of the regression coefficients. Our

proposed network-constrained regularization procedure is similar in spirit to the fused lasso

(Tibshirani et al., 2005), both of which try to smooth the regression coefficients in certain
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ways. However, the fused lasso does not utilize prior genetic network information; instead,

it first clusters genes to provide a gene order for the fusion process. Second, instead of using

L2 norm on the differences of the coefficients of the nearby genes, the fused lasso uses the L1

norm on the differences, which tend to lead to the same regression coefficients for genes that

are nearby. However, when the gene neighbors are defined by the prior network information,

we should expect that the corresponding coefficients are similar but not the same. So for

the settings that we consider in this paper, it makes more sense to use the L2 norm on the

scaled coefficients in our definition of the network penalty. It is important to note that our

proposed network-constraint regularization procedure does not require the coefficients of the

genes that are linked on the network to have the same values or even the same signs. As

shown in our simulations (models 2 and 4), even when the coefficients of the neighboring

genes are different, the proposed procedure still performs well in terms of the sensitivity and

the prediction errors.

In this paper, we analyzed the glioblastoma gene expression data using KEGG pathways

and aimed to identify the KEGG pathways or subnetworks that are related to time to death

from the cancer. However, the proposed methods can be applied to any other networks of

pathways. An important question is to decide which pathways one should use in analyzing

the gene expression data. This partially depends on the scientific questions to be addressed.

If an investigator is only interested in a particular pathway, the proposed method can be

applied to that particular pathway. If an investigator is interested in fully exploring his/her

data and all available pathways, one should use a large collection of pathways, e.g., the

pathways collected by Pathway Commons (http://www.pathwaycommons.org/pc/) or build

the network of pathways using some existing network construction tools. It should also

be noted that our proposed methods can include all the genes probed on microarray by

simply adding isolated nodes to the graphs. Another related issue is that our knowledge

of pathways is not complete and can potentially include errors or misspecified edges on

the networks. One possible solution to this problem is to first check the consistency of the

pathway structure using the data available. For example, if the correlation in gene expression
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levels between two neighboring genes is very small, we may want to remove the edge from

the pathway structure. Alternatively, one can build a set of new pathways using various

data sources and compare these pathways with those in the pathway databases in order

to identify the most plausible pathways for use in the proposed method. Important future

research will be to assess how sensitive the results are to misspecification of the network

structures. We expect only the misspecification of the true response-related subnetworks

will have great effects on the results. Finally, we presented the asymptotic property of the

network-constrained estimates of the regression parameters for the scenario when p is fixed

and n → ∞. Interesting future research will be to derive the asymptotic property of the

estimates when p = pn →∞ as n →∞.

The proposed methods can be extended in several ways. First, the methods can be simi-

larly extended to other types of response variables such as binary or survival responses. The

efficient predictor-corrector algorithm proposed by Park and Hastie (2007) can be applied

to solve the solution path for logistic or Cox regression models with our network-constraint

penalty function. Second, many genetic networks are given by directed graphs. It is possible

to extend our method to directed networks by using the Laplacian matrix for directed graphs

(Chung, 2005) in our definition of the network-constraint penalty.
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Appendix

We provide proofs of the Theorems 1 and 2 in this Appendix.

Appendix A

We provide proof of Theorem 1, which is similar to that of Zou and Hastie (2005).

Proof of Theorem 1:

Since β̂iβ̂j > 0, we have sgn{β̂i(λ1, λ2)}=sgn{β̂j(λ1, λ2}. Because of equation (2.4), β̂(λ1, λ2)

satisfies

∂L(λ1, λ2, β)

∂βk

|β=β̂(λ1,λ2) = 0 if β̂k(λ1, λ2) 6= 0.
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Hence we have

−2xT
i {y−Xβ̂}+ λ1sgn{β̂i}+ 2λ2β̂i − 2λ2

∑
u∼i

w(u, i)
β̂u√
dudi

= 0 (9)

−2xT
j {y−Xβ̂}+ λ1sgn{β̂j}+ 2λ2β̂j − 2λ2

∑
v∼i

w(v, j)
β̂v√
dvdj

= 0. (10)

Subtracting equation (9) from equation (10) gives

(xT
j − xT

i )(y−Xβ̂) + λ1(sgn{β̂i} − sgn{β̂j}) + λ2(β̂i − β̂j)

+ λ2{ 1√
dj

∑
v∼j

w(v, j)
β̂v√
dv

− 1√
di

∑
u∼i

w(u, i)
β̂u√
du

} = 0.

By assumption, sgn{β̂i} = sgn{β̂j} and di = dj = w(i, j), we have

1

|y|1 |(β̂i − β̂j)| =
|xT

j − xT
i )||(y−Xβ̂)|
2λ2|y|1 .

Zou and Hastie (2005) showed that

|xT
j − xT

i )||(y−Xβ̂)|
λ2|y|1 ≤ 1

λ2

√
2(1− ρ).

This completes the proof.

Appendix B

We provide proof of the asymptotic Theorem 2.

Proof of Theorem 2:

Define

Vn(u) =
n∑

i=1

{(εi − uTxi/
√

n)2 − ε2
i }+ λ(1)

n

p∑
j=1

(|βj + uj/
√

n| − |βj|)

+ λ(2)
n

∑
i∼j

{( βi√
di

− βj√
dj

) + (
ui√
di

− uj√
dj

)/
√

n)2w(i, j)− (
βi√
di

− βj√
dj

)2w(i, j)}

First note that Vn(u) is minimized at
√

n(β̂n − β). Also note that

n∑
i=1

{(εi − uTxi/
√

n)2 − ε2
i } → −2uTW + uT Cu
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with finite dimensional convergence holding trivially. We also have

λ(1)
n

p∑
j=1

(|βj + uj/
√

n| − |βj|) → λ
(1)
0

p∑
j=1

{ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0)}

and

λ(2)
n

∑
i∼j

{( βi√
di

− βj√
dj

) + (
ui√
di

− uj√
dj

)/
√

n)2w(i, j)− (
βi√
di

− βj√
dj

)2w(i, j)}

→ 2λ
(2)
0

∑
i∼j

(
βi√
di

− βj√
dj

)(
ui√
di

− uj√
dj

)w(i, j).

Thus Vn(u) →d V (u), with finite dimensional convergence holding trivially. Since Vn is

convex and V has a unique minimum, it follows (Geyer, 1996) that

argmin(Vn) =
√

n(β̂n − β) →d argmin(V ).
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