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1. Introduction
Consider a randomized, two-arm, placebo-controlled clinical trial to evaluate efficacy of
a preventive HIV vaccine. The first two trials of this kind began in 1998 and 1999, and
are ongoing (Francis et al., 1998). For each trial, the primary objective is to assess the
vaccine’s impact on the incidence of HIV infection (Rida and Lawrence, 1995). Another
objective of these trials and future trials is to assess the vaccine’s impact on viral load
post acquisition of HIV (Nabel, 2001); viral load is the concentration of HIV in blood or
another body compartment. This objective is important because natural history studies
have shown that the viral load of an infected person predicts infectiousness (Quinn et al.,
2000) and the rate of disease progression (cf., Mellors et al., 1997), and several animal
studies have identified vaccines that failed to prevent infection but successfully controlled
viremia and prevented disease (cf., Shiver et al., 2002). Therefore, a vaccine effect to
lower viral load may be beneficial, whereas an effect to increase viral load may hasten or
exacerbate disease. The risk of harmful vaccine “enhancement” of viral load is genuine
(Burke, 1992), and has been observed for several viral vaccines (cf., Mascola et al., 1992).
The impact of vaccination on viral load can be studied in several ways. The data
available for analysis are right-censored HIV infection diagnosis times in all randomized
subjects, and longitudinal quantitative measurements of viral load in subjects who become
infected. Two main inferential approaches are intent-to-treat (ITT) analyses of all ran-
domized subjects and conditional analyses of infected subjects only. The ITT approach
assesses the causal effect of randomizing to vaccine. However, the majority (likely > 80%)
of randomized subjects will have zero viral load because they do not become infected dur-
ing the trial, which can give ITT analyses low power for detecting many alternatives of
interest (Hudgens, Hoering, and Self, 2002a). Also, in ITT analyses two very different

populations (uninfected and infected subjects) are placed on the same response scale.
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Consequently, the ITT analysis of viral load assumes that the outcomes absence of infec-
tion (with zero viral load) and infection with viral load below the quantification limit of
the assay are approximately equally prognostic for disease progression. This assumption
is difficult to justify, because the initial suppression of viral load in infected subjects may
be lost due to HIV evolution (Barouch et al., 2002). Alternatively, rank-based ITT meth-
ods could be used that assign the lowest two ranks to absence of infection and viral load
below the assay limit, respectively. However, to achieve greater power and to study the
causal effect of randomizing to vaccine in a subpopulation of persons who would become
infected described below, in this article we consider conditional analyses.

Conditioning on infection poses a major challenge to making an unbiased inference
of the vaccine effect on viral load, because the analyzed groups are selected by the post-
randomization event HIV infection. This post-treatment selection bias problem is common
in biomedical studies (cf., Rosenbaum, 1984; Robins and Greenland, 1992), and implies
that a comparison of viral load between infected subgroups, which measures the ‘net
vaccine effect’, does not have a causal interpretation. In particular, partial efficacy of
the vaccine to prevent HIV infection can bias the viral load comparison. For example,
the vaccine may prevent infections in individuals with strong immune systems, but allow
infections in individuals with relatively weak immune systems. If a weaker immune system
correlates with a higher viral load upon infection, then the viral loads in infected subjects
will tend to be selectively shifted upwards in vaccine relative to placebo recipients. On the
other hand, selection bias could occur in the opposite direction, for example the vaccine
could protect well against highly virulent strains but allow infections with mild viruses
which establish low viremia levels. Therefore, a standard two-sample test comparing viral
loads between infected groups may give a misleading impression that vaccination enhances

or suppresses viral burden. Or, the test may fail to detect a meaningful vaccine effect.
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Frangakis and Rubin (2002) (FR) developed a framework for causal inference that can
be used for studying a causal effect of vaccine on viral load that adjusts for the post-
randomization selection bias. This framework defines causal estimands using potential
outcomes (Rubin, 1974, 1978; Holland, 1986). For the present problem, each trial partici-
pant has a potential infection status under each randomization assignment. Additionally,
subjects who would be infected under randomization to vaccine have a potential viral load
under vaccine assignment, and subjects who would be infected under randomization to
placebo have a potential viral load under placebo assignment. Within FR’s framework,
a causal vaccine effect on viral load is defined as a comparison of potential viral loads
under the two randomization assignments for a subgroup of subjects with a common pair
of potential infection status outcomes; FR referred to such a group as a principal stratum.

Hudgens, Hoering, and Self (2002b) (HHS) developed tests for a causal vaccine effect
on viral load in the “always infected” principal stratum of subjects who would be infected
regardless of randomization to vaccine or placebo. Under plausible assumptions described
in Section 2, vaccine recipients who become HIV infected would also be infected had they
received placebo. Consequently, inferences drawn for the always infected subpopulation
address a practical question for individuals vaccinated in a public health program: If I
acquire HIV despite vaccination, what is the viral load compared to if I had foregone
vaccination? We consider inference on causal estimands defined for the always infected
principal stratum, which are defined in terms of potential outcomes in Section 2.

The causal estimands are not identified, because membership of an infected placebo
recipient in the always infected principal stratum is unknown (i.e., the infection status
had the subject been randomized to vaccine is unknown). This problem can be addressed
by modeling the probability that an infected placebo recipient is in the always infected

stratum as a function of the potential viral load under randomization to placebo. HHS
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implicitly took this approach, by defining two selection models that express bounds for
the maximum plausible levels of selection bias. Under these models, which identify the es-
timands, HHS developed testing procedures for assessing differences in the potential viral
load distributions of always infected subjects under the two randomization assignments.

Testing the null hypothesis presuming an extreme degree of selection bias is practically
very useful, because rejection implies a significant effect of vaccination above and beyond
any plausible selective effects. However, the actual degree of bias is likely less than that
specified by an extreme model, so that HHS’s tests may sacrifice power. Achieving maxi-
mal power is especially important for key subgroup analyses, such as by gender (Sterling
et al., 2001), route of exposure, or host genotype, and for analyses of seminal viral load,
given the higher variability of seminal versus plasma viral load (Coombs et al., 1998).
Therefore, it is important to also consider selection models that reflect intermediate de-
grees of selection bias, which may be more realistic and will allow for more powerful
statistical tests. In this article we develop a method for sensitivity analysis that con-
siders a continuous range of possible selective effects spanning from no bias to maximal
plausible bias as considered by HHS. In different contexts, Rosenbaum and Rubin (1983),
Scharfstein, Rotnitzky, and Robins (1999), and Goetghebeur et al. (2000) also developed
methods of continuously-indexed sensitivity analysis of inferences on causal effects.

The article is organized as follows. Section 2 defines causal estimands and shows that
they are identified from three assumptions and a biased sampling model that specifies
the nature and degree of selection bias. A class of logistic biased sampling models is de-
scribed, which is indexed by an interpretable sensitivity parameter § that can be chosen
to represent any magnitude of selection bias ranging between extreme positive and nega-
tive bias. Given a particular model in the class, Section 3 describes procedures for testing

the corresponding null hypothesis of no causal effect of vaccination on viral load. A plot
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of the test statistic (or p-value) versus (8 provides a sensitivity analysis to help discern if
the data support a causal effect that is robust to plausible post-randomization selective
effects. Section 3 also shows how the sensitivity analysis can be based on estimation
rather than testing. Section 4 evaluates the proposed testing procedures in simulations,

and Section 5 illustrates a sensitivity analysis on a simulated vaccine trial dataset.

2. Causal Estimands and Biased Sampling Models for Sensitivity Analysis
2.1 Definition and identifiability of causal estimands

First we define the potential outcomes of the trial participants. Let Z be the vector
of vaccination assignments for the N randomized subjects, with it element Zi (Z; = v,
vaccine; Z; = p, placebo). Let S(Z) be the N-vector with ith element S;(Z), which is
the indicator of whether the ith subject would be infected given Z. For subjects with
S;(Z) =1, let Y;(Z,S) be the potential viral load (PVL) given Z and S = S(Z). In order
to limit the possible potential outcomes for each subject, we adopt Rubin’s (1978) Stable
Unit Treatment Value Assumption (SUTVA) throughout. It states that S;(Z) = S;(Z’)
whenever Z; = Z/, and, Y;(Z,S) = Y;(Z',S') whenever Z; = Z! and S;(Z;) = S}(Z;) = 1.
SUTVA implies that potential outcomes for each subject ¢ are unrelated to the assignment
Z; of other subjects, and allows S;(Z) and Y;(Z,S) to be written as S;(Z;) and Y;(Z;),
respectively. Therefore, under SUTVA each subject has two potential infection outcomes
(Si(v), Si(p)) and at most two PVL outcomes (Y;(v),Y;(p)). For each subject only one
of S;(v) or S;(p) is observed, denoted S = S;(Z;), and in the subgroup with S =1,
Y° = Y;(Z;) is observed. Note that Y;(v)(Y;(p)) is defined only if S;(v) = 1(S;(p) = 1).

By Property 2 of FR, a comparison between the ordered sets {Y;(v) : S;(v) = S;(p) =
1} and {Y;(p) : Si(v) = S;(p) = 1} is a causal effect, because it is made within a principal
stratum. For subjects in the always infected stratum {S;(v) = S;(p) = 1}, suppose the

Y;(v) are identically distributed as F('Zl;” nf(.), and the Y;(p) are identically distributed as
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F('ﬁ;” (). Then, any functional that measures a contrast of the distributions

Flrm(y) = Pr(Vio) < olSi0) = Si(p) = 1)

Eo ™ (y) = Pr(Yi(p) < ylSi(v) = Si(p) = 1) (1)

is a causal estimand. Based on (1), a null hypothesis for no causal effect of vaccination

on viral load in the always infected principal stratum can be expressed as:

Hy : F('Zl;‘"mf(y) = F(';l)w'mf(y) for all y. (2)

Unfortunately, because neither distribution in (1) is identifiable (since S;(v) and S;(p)
are not both observed for any subject), it is not possible to test (2) without introducing

assumptions. Two assumptions are useful for identifying the distributions:

Al: The assignment Z; of each subject is independent of his/her potential outcomes.

A2: For each subject i, Pr(S;(v) =1, S;(p) =0) =0.

Assumption A1l plausibly holds in HIV vaccine efficacy trials due to randomization and
blinding. A2 states that no subject would be infected if randomized to vaccine but unin-
fected if randomized to placebo, and under Al will hold if vaccination does not increase
the per-exposure infection probability for any subject. The SUTVA assumption may not
hold because HIV disease is infectious (Halloran and Struchiner, 1995); however if the
study population is a small sample from a large population of susceptible individuals and
there are few infectious contacts between trial participants, then it should approximately
hold. SUTVA can be checked through epidemiologic studies and data on mixing of risk
behavior among trial participants. Given SUTVA, A1 can be tested based on risk behav-
ior data, and under SUTVA and Al, A2 can be checked by testing if the HIV infection
rate is higher in the vaccine group than in the placebo group.

Assumption A2 is very useful, because it implies that infected vaccine recipients

must be in the always infected principal stratum. Together with A1, this implies that
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F('f}l;“"f(y) = F,(y) =Pr(Y* < y|S%* =1, Z; = v), where F,(-) is the distribution of viral
load in infected vaccine recipients; thus F('fjl)w () is identified from the observed data.
A2 is similar to Angrist, Imbens, and Rubin’s (1996) Monotonicity Assumption 5, which
is useful for identifying a causal estimand defined for a principal stratum of compliers.
On the other hand, A1 and A2 do not identify F(';l)w'mf(-), because they do not determine
whether an infected placebo recipient is in the “protected” {S;(v) = 0,S;(p) = 1} or
always infected {S;(v) = 1, S;(p) = 1} stratum.

Given the randomization assignment and observed infection status of a trial partic-
ipant, Table 1 indicates the principal stratum or strata to which the participant must
belong, and lists the information available on potential viral loads. The table makes clear
that the always infected stratum is the natural subpopulation for causal inference on viral
load, because it is the only stratum for which causal estimands involve only well-defined
potential viral loads. Rubin (2000) made this point through a parallel example in which
there are two randomized treatments and vital status is observed one year after random-
ization, and the goal of causal inference is to assess the treatment effect on quality of life
within the principal stratum of subjects alive under either treatment assignment.

2.2 Logistic selection bias models that identify the causal estimands

The set of subjects infected under randomization to placebo, {S;(p) = 1}, partitions
into the principal strata of protected and always infected subjects, with the level of vaccine
efficacy (V'E) against infection determining the proportion in each. Specifically, define
VE =1—RR=1-Pr(S;(v) =1)/Pr(S;(p) = 1); VE is a causal estimand measuring the
relative reduction in infection risk conferred by randomizing to vaccine versus placebo.
A2 implies VE = Pr(S;(v) = 0]S;(p) = 1), which is the probability that a subject in
{Si(p) = 1} is in the protected principal stratum (note that A2 is crucial here; Pr(S;(v) =

0/S;(p) = 1) is not identified by randomization alone). The density of Y (p) in subjects
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infected under randomization to placebo (fp)(y)) can be written as a mixture of the

densities of Y'(p) for the protected (f(’;rft(y)) and always infected (f(“;;“"f(y)) strata:

() = VE = fE (y) + (1= VE) * fi" ™ (). (3)

With some calculations, the mixture (3) can be re-expressed as a biased sampling model

oy ™ (y) = W w(y) fon (v), (4)

where w(y) = Pr(Si(v) = 1)Yi(p) = y,S(p) = 1) and W = [Z2 w(y)fop(y)dy is a
normalizing constant equal to 1 — VE = RR. The weight function w(y) = RR(y) =
1 — VE(y) is the probability that a subject infected with viral load y if randomized to
placebo would be infected if randomized to vaccine.

Let F,(y) and f,(y) be the distribution and density of the observed viral load in in-
fected placebo recipients, respectively. Under the randomization assumption A1, Fi,(y) =
F,(y), and the biased sampling model (4) can be re-stated as f(alf)w'mf(y) = (1-VE) 'w(y)

f»(y). Therefore, under A1-A2 the null hypothesis of interest (2) is equivalent to

Ho: Fy(y) = (l—VE)‘l/y w(2)dF,(z) for all y. (5)

—o0
By Al, VE is identified from the observed data. If w(-) were known, then both
F('f}l)wmf() and F('Z;”'i"f(-) would be identified, and the hypothesis (2) could be tested.
However, w(-) is unknown, and it is not possible to test whether a particular w(-) is
correctly specified from the data plus A1-A2. Our approach to this problem assumes w(-)
is known, and tests (5) for a variety of fixed choices of w(-). For such an approach to be
fruitful, it is important that the unidentified sensitivity function w(-) be interpretable.
Towards this goal, we parameterize w(y) as logistic, indexed by an interpretable selec-

tion bias parameter 3, which allows it to be constant or smoothly monotone increasing or

decreasing: w(y) = w(y|a, B) = exp{a+LPy}/(1+exp{a+Fy}). The sensitivity parameter

9
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(3 is a log odds ratio: €? is the odds ratio of infection under randomization to vaccine given
infection under randomization to placebo with viral load y versus with viral load y — 1.
This interpretation allows the choice of 3 to be guided by beliefs about plausible degrees

of selection bias. For fixed € [—00, 00], the logistic selection bias model is specified by

Fo ™) = (1 -vE) ! [ yoo : ixfx{;‘{; f Zﬂ}z}de(z) = F,(y|B). (6)

Given fixed 3, the parameter « is determined as the solution to the equation F,(oco|3) = 1.
Figure 1 illustrates five selection models specified by (6) and f fixed at —oo, —1, 0, 1, oo,
which represent different ways to distribute V£ of the mass of f,)(y) into the protected
principal stratum via (3). Note that if V'E = 0 there is no selection bias, regardless of
B, and the higher V E, the greater opportunity for bias. Heuristically, 3 specifies how
much bias occurs through V E. Fixing 5 = 0 specifies a constant weight w(y|a, 5 = 0) =
RR, and reflects an assumption of no selection bias. Fixing f > 0 makes w(y|«, )
monotone increasing in y and reflects “positive” selection bias, with infection odds under
randomization to vaccine higher for a larger PVL Y (p) = y. In this case, if the causal null
hypothesis (2) is true, then the net vaccine effect is that F, () is stochastically larger than
F,(+). Similarly, 5 < 0 makes w(y|c, #) monotone decreasing in y and reflects “negative”
selection bias, with infection odds under randomization to vaccine lower for a larger y,
and under (2) the net vaccine effect is that F,(-) is stochastically smaller than F}(-).
HHS developed tests for (5), using two models representing maximum plausible posi-
tive and negative bias. HHS’s “positive” selection model is specified by placing all subjects
in {S;(p) = 1} with Y(p) less than the VEth—percentile q(‘;f of its distribution into the
protected principal stratum, and the “negative” selection model is specified by placing
all subjects in {S;(p) = 1} with Y (p) greater than the upper VEth—percentile q(lp’)VE of
its distribution into the protected principal stratum. These models are limiting members

of the class of logistic models (6), specified respectively by 8 = oo (Figure 1, right-most

10
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panel) and 3 = —oo (Figure 1, left-most panel). To see this, note that setting o = —Bq(‘ﬁ
implies lims_,oow(y|e, B) equals I{y > g7’} for y # ¢, and 1/2 for y = q;,}', and setting
a = —ﬁq(lp_)VE implies limg_, w(y|a, f) = I{y < q(lp_)VE} for y # q(lp_)VE and 1/2 for
Yy = q(lp_)VE . Therefore, based on the logistic weight function with £ ranging between —oo
to 0o, the class of models (6) spans all plausible magnitudes of selection bias.

If selection bias is presumed to follow model (6) for some unknown /3 within a plausible

range [peq to Bpos, then a 2-sided null hypothesis representing no causal vaccine effect in

the always infected stratum allowing for possible selection bias is given by

Hop,,,,pneq : Fp('WPOS) < F() < Fp('wneg)a Bpos € [0, Oo]aﬁneg € [~00,0]. (7)

Under A1-A2, Hyg,,, 3,., is equivalent to F(';l)w'i”f(-) < F('f}l;‘"i"f(-) assuming model (6) with
B = Bpos and F('Lvl;”'inf(-) < F('Z;”'inf(-) assuming model (6) with 8 = (,,,. For the special
case [pos = Pneg = 0, (7) collapses to the null hypothesis of no net vaccine effect on
viral load, Hy : F,(-) = F,(-). Therefore, under the assumption of no selection bias, a
standard comparison of viral load distributions between infected subgroups assesses the

causal effect of vaccine in the always infected principal stratum.

One-sided null hypotheses representing no causal vaccine effect are given by

Hog,o + Fp(1Bpos) < Fo(-), Bpos € [0,00], (8)
Hog,ey « Fo(-) < Fp(+[Bneg); Breg € [—00, 0]. 9)
If (8) is rejected, then always infected individuals have significantly higher viral loads
under randomization to vaccine than placebo when controlling for selection bias. In
sum, A1-A2 and model (6) can be used to specify a 1- or 2-sided null hypothesis for no

causal effect of vaccine in the always infected stratum that can be tested, and a sensitivity

analysis can be performed by testing the hypothesis for a range of fixed values of 3,5, B1eg-

3. Statistical Hypothesis Tests and Estimation

11
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Let Yy1,+ -+, Yy, and Yy, -+, Y}, denote the samples of observed viral loads from in-
fected vaccine and placebo recipients. Y could be the average of 2 or more viral load
measurements taken from an infected subject, or another continuous outcome such as the
area under the longitudinal viral load curve. We assume each sample is independently,
identically distributed, and the two samples are independent of one another. Sections 3.1
and 3.2 consider nonparametric tests of the null hypotheses (7), (8), and (9), and Section
3.3 considers nonparametric estimation of an average causal effect parameter.
3.1 Nonparametric Test Statistics

Fix Bpes > 0 and B,y < 0. Using the empirical distributions ]31, and F’p calculated from
the two observed samples, and an estimate of V' E, nonparametric tests of Hog,,,, Hog,.,
and Hog,,, 3,., can be based on comparisons of F,(+) with E,(*|Bpos), Fy(-|Bneq), and both
estimates, respectively. The V' E parameter can be estimated by VE=1- ]’"Q—’; X,—’;, with
N,(N,) the number of subjects randomized to vaccine (placebo). Under Al VE is unbi-
ased for V E if the vaccine protects by an “all-or-none” mechanism, and is approximately
unbiased if it protects by another mechanism, since HIV infection is a rare event (Hal-
loran, Haber, and Longini, 1992). We consider three criterion functions for summarizing

the comparisons, based on means, suprema, and integrated squared differences.

The statistic T for comparing means, appropriate for testing (8) or (9), is given by

Tus = | y{dFu(w) - dbw19)}. (10)

where [ ydF,(y) = n,' X1, Y,; and F},(y|) is the nonparametric maximum likelihood
estimator of F,(y|f) under model (6), calculated as
- -1 1 R
Byl = (1-VE)  — 3 1{¥; <y}uw(¥pula, §).
P i=1
Here, @ is computed by solving the equation ﬁ’p(oow) =1 for «, i.e., a solves

[ _expla+ Byt o
ostafi&iic \/700 1+ exp{a+ @U}de(y). ()

12
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A solution to (11) can be found rapidly using a numerical one-dimensional line search.

The null hypothesis Hyg,,, is rejected if Tyg,,, is large. For large positive (3,,, and
a = —Bposgﬁ, with @ﬁ the (n,(1 — @))th largest value of Y,---,Y),, as used by
HHS, Twg,,, reduces to HHS’s nonparametric statistic 7y, that tests (8) with 3., = oo.
Similarly, Hyg,,, is rejected if Thyg,., is negative and large, and for large negative 3., and
a = —ﬁnequ;_ﬁ, Tng,., reduces to HHS’s statistic Ty, that tests (9) with (., = —00.
The maximum of |Tg,,,| and |Thgs,.,| can be used for a 2-sided test of (7).

Second, a 1-sided Kolmogorov-Smirnov-type statistic for testing (8) is defined by

TKSﬁpos = m1/2sup—oo<y<oo Hﬁp(y|5pos) - ﬁv(y)} \ O ) (12)

with n = n, + n,, m = (nyn,)/n, and an Anderson-Darling-type statistic is defined by

~

[ {E(wl5p0s) — Ftw)} v 0]

H, 133 dﬁn 5 0s ) 13
m Hy(y|Bpos) (1 _Hn(y|5pos)) (Y/1Bpos) (13)

Tapgy.s =

where Hy,(y|Bpos) = (np/1) Ey(y|Bpos) + (nw/n) Ey(y). One-sided statistics for testing (9)
are given by (12) and (13) with S,,s replaced by (e, and V replaced by A. Two-sided
statistics for testing (7) can be defined similarly. When 8 = B,s = fpeg = 0, the 2-sided
statistics reduce to the classical Kolmogorov-Smirnov and Anderson-Darling test statistics
for comparing two distribution functions (D’Agostino and Stephens, 1986).
3.2 Computing Critical Values for the Tests

We use a modification of the ‘Controls Only’ bootstrap procedure developed by HHS
for computing critical values for the test statistics. The modification is that once the
bootstrap estimate of vaccine efficacy VE" is computed as in HHS, a bootstrap estimate
a* is computed as the solution to equation (11) with VE replaced by VE". Estimating

VE and « within each bootstrap iteration appropriately accounts for the uncertainty in

the vaccine efficacy estimate.
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In general, the nonparametric bootstrap tends to approximate smooth distributions
better than distributions with discontinuities. For [ finite, the use of a smooth logistic
selection weight function in the test statistics suggests that the nonparametric bootstrap
should perform well. For |5| infinite (the extreme cases), the distributions F,(-|fpes) and
F,(|Bneg) have discontinuities at the truncation point, which could abrogate bootstrap
performance. The simulation study confirms that tests of Hgyg,,, with 3,,s = oo have
poorer size and power characteristics than tests of Hog,,, with [y, = 1.

3.3 Nonparametric Estimation

Under A1-A2 and a model (6) with f fixed, fiacr(8) = —Tmp is a consistent es-
timate of the average causal effect (ACE) parameter pacr(8) = [ y{dF('Z;”'inf(y) —
dF('LUl;”'i"f(y)}. By bootstrap re-sampling from F,(y) and E,(y|3), 95% bootstrap percentile
confidence intervals about pacg(f) can be constructed. An estimation-based sensitivity

analysis can be carried out by plotting point and interval estimates of pacg(f) versus 5.

4. Simulation Study

Through simulations of an HIV vaccine trial we evaluate the three 1-sided tests of the
null hypothesis Hyg,,, in (8). Rejecting (8) implies that individuals infected under ei-
ther assignment have significantly higher viral load if assigned vaccine than if assigned
placebo when controlling for selection bias specified by (., and model (6). We consider
an intermediate-sized efficacy trial with 45 infections expected in the placebo group (Rida
et al., 1997), and suppose the true V E equals 30% or 50%. The true amount of selection
bias is determined by the parameter § = [,,s in model (6), with 5 = 0, 1, or co. Thus,
data are generated under three kinds of null models, which assume no selection bias, an
intermediate amount of selection bias (supposing the infection odds under vaccine of a
subject who would be infected under placebo increases e! = 2.72-fold per one unit higher

PVL Y (p)), and maximal plausible positive selection bias. We assume two independent

14
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measures of viral load are available per person. The sample Y}, -+, Y}, is generated from
a normal distribution with mean 4.50 and variance 0.36. These parameter values equal
those used by HHS, selected based on a cohort of recently HIV infected persons. The
sample Yy, -+, Y,,, is generated from F,(:|3) in model (6) with true 5 =0, 1, or co. For
each true [, three vaccine effects on viral load in the always infected are evaluated: mean
shifts of A = 0,1/3, or 1/2 logjy over and above any selection bias induced by the true g,
i.e., the samples are drawn such that F(';f;‘"mf(y) = F,(y|f5) and F('f}l)w'mf(y) = F,(y—Alp).

For each of 500 datasets simulated under each parameter configuration, the three 1-
sided test statistics are calculated, with presumed selection bias levels 5 = 0, 1, or co.
Critical values for the tests are determined using 500 bootstrap replications.

Using a nominal 5% Type I error level, Table 2 shows estimated sizes and powers of the
tests. The sizes are judged by the bolded rows, for which the correct amount of selection
bias is presumed (true = presumed [3). All tests have empirical size close to nominal,
except when VE = 30% and 8 = oo the size is inflated to 8-12%. The elevated size is
caused by the simulated trials with estimated V' E less than zero; this occurred 18 times
and of these the nonparametric mean-based test rejected the null hypothesis 16 times. If
the 18 trials with VE < 0 are discarded, then the rejection rate is 5.8%. A similar pattern
was seen for the other test statistics. When VE < 0, the testing procedure operates under
the assumption of no selection bias, and simply tests Hy : F,,(-) = F,(-). However, in fact
F,(-) < F,(-) due to positive selection bias (true f = oo), which explains the inflated
probability of rejection. Note that when VE = 50% the sizes are not elevated, because
the estimated V' E is rarely negative. In summary, the tests generally have nominal size,
except that when V F is low and the sample size is moderate, underestimation of V E can
lead to an increased risk of false rejection. This phenomenon was also found by HHS.

When the correct selection bias model is assumed, the three tests have comparable
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power, with that of the Kolmogorov-Smirnov procedure slightly less. In addition, power
diminishes as the true f increases. Next we consider power when an incorrect amount of
selection bias is presumed (Table 2, unbolded rows). If zero bias is presumed (5 = 0), but
in truth there is moderate bias (8 = 1), power is high, but at the expense of an inflated
false rejection rate, at 15% when VE = 30% and 26% when VE = 50%. If zero bias
is presumed and there is actually extreme bias (5 = o0), then power is extremely high
and the sizes are extremely inflated. This illustrates the importance of accounting for
the possibility of selection bias to avoid being misled. Next, suppose there is no selection
bias, but one conservatively presumes 3 = co. Then power drops severely, e.g., to 10%
for detecting a 1/2 logp mean shift when VE = 50%, compared to 93% if the correct
B = 0 is assumed. For the more moderate assumption § = 1, a much smaller price is
paid, with power dropping to 64%. Thus, making a highly conservative assumption of
maximal selection bias can cause great power loss. This finding supports the use of a
continuously-indexed sensitivity analysis as proposed here.

The Kolmogorov-Smirnov-type and Anderson-Darling-type tests are expected to have
greater power than the mean-based test for detecting non-mean-shift alternatives. We
briefly studied this conjecture by generating placebo group viral loads from a normal
mixture distribution 0.5/N(3.50,0.36) + 0.5N(5.50,0.36) (e.g., infection with a mild or
virulent virus), and vaccine group viral loads from a mixture of truncated normal dis-
tributions 0.5TruncN(3.50,0.36) + 0.5TruncN(5.50,0.81), with truncation point of each
distribution at the 70th percentile. With alternative hypothesis no change in the first
component and a 1.5 log;y mean shift in the second component, assuming = oo, the
Kolmogorov-Smirnov-type test had 78% power while the other tests had between 13%
and 20% power. Thus, if the viral load distributions are expected to differ in respects

other than a mean-shift, then the Kolmogorov-Smirnov-type test may be preferable.
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5. Example

To illustrate how a sensitivity analysis could be carried out on a forthcoming vaccine trial
dataset, we analyze a single dataset, simulated using Gaussian distributions assuming
n, = 45 infections in the placebo group, VE = 40% (and thus n, = 27 infections in the
vaccine group), a true causal vaccine effect to reduce the mean viral load in the always
infected by 0.33 logi, and true 8 = B, = —1, i.e., moderate negative selection bias
that leads to lower viral loads in infected vaccine recipients. The true causal and biasing
vaccine effects on viral load imply that the net vaccine effect on mean viral load is 0.49
logyo. For S, ranging in [—00, 0], we consider testing Hyg,,, in (9) versus the alternative
hypothesis that vaccination lowers viral load in the always infected.

The first step is to produce descriptive plots and summary measures comparing the
observed viral load distributions between the infected subgroups. The average viral loads
are 3.96 and 4.48 in the infected vaccine and placebo groups, respectively. The second step
is to calculate a test statistic for values of 3 = 3,,., ranging between 0 and a negative value
that makes the selection bias odds ratio OR = ™ large (e.g., f = —5 yields e™# = 148),
and for the extreme model (8 = —o0). The third step is to plot the p-value of the test
statistic versus O R, which will always be monotone except for stochastic variations in the
bootstrap. This provides a graphical sensitivity analysis (Figure 2). Fourth, calculation
of the value of § at which the test statistic is exactly statistically significant at the 0.025
level allows one to assess the extent of selection bias needed to lose the significance of the
result. A 0.025 significance level is chosen because the test is 1-sided. In this example
the critical 8 value for the Tj/s test statistic is -1.83, which implies the selection odds
ratio must be at least e!® = 6.23 before the significance of the test result is lost. The
sensitivity analyses based on the other two test statistics give similar results (Figure 2).

Fifth, an estimation-based sensitivity analysis can be carried out (Figure 3). Suppose
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vaccination must lower mean viral load in the always infected by at least 0.2 log;, to be
considered clinically significant. The value of 8 at which the lower 95% confidence limit
for pace(B) crosses 0.2 is -0.50, corresponding to a “critical” odds ratio of €’ = 1.65.

Sixth, the analyses could be repeated for important subgroups of infected participants.
Seventh, interpretations are made. In this example, a study team might conclude that it
is unlikely that selection bias could fully explain the observed lower viral loads in infected
vaccine recipients, and therefore a genuine viral suppressing effect of vaccine in the always
infected is inferred. However, whether the effect is clinically significant is inconclusive.
These conclusions would be based on beliefs that a selection bias effect with odds ratio
6.23 or higher is implausible, but a selection odds ratio of 1.65 is not unexpected.

Note that if only the hypothesis Hyg, ., with extreme selection bias (.., = —oo had
been tested, then the team would likely not be able to conclude that vaccination reduced
viral load in the always infected (p-value > 0.20, Figure 2). This illustrates the added

value of a continuously-indexed sensitivity analysis.

6. Discussion
Appropriate interpretation of analyses of vaccine effects on viral load is challenging. Two
main reasons are the lack of validation of viral load measures as accurate surrogates for
secondary transmission and disease progression, and the potential for selective effects of
the vaccine to bias inferences. Like HHS, we address the second problem, and extend
their work to provide a method of sensitivity analysis over a continuous range of levels
of putative selective effects. Since the true amount of selection bias may be considerably
less than the worst-case amounts considered by HHS, the methods developed here may
provide for more powerful assessments.

As illustrated in the Example, an observation of lower viral loads in infected vaccine

recipients compared to infected placebo recipients could be caused partly by a causal
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viral suppressing effect of vaccine in the always infected principal stratum and partly by
selective vaccine protection against viruses that produce higher viral loads. Both effects
are beneficial, and the assessment of the net vaccine effect (in the infected subgroups)
usefully informs about the overall benefit of vaccination, and this result should be reported
together with the causal inference for the always infected principal stratum. On the other
hand, for assessing a possible vaccine effect to increase viral load, the inference on the
net vaccine effect could dangerously mislead. Selection bias could create higher viral
loads in infected vaccine recipients compared to infected placebo recipients, i.e., produce
a negative net vaccine effect, even though the vaccine has no adverse causal effect on viral
load and has beneficial V' E > 0. Therefore, it is crucial to build robustness to selection
bias into assessments of vaccine harm, to protect against a spurious conclusion that could
prevent use of or slow development of a safe and partially efficacious vaccine.

Within the framework of FR, this article develops techniques for causal inference in
the always infected principal stratum. Alternatively, causal inference could be made using
a missing data framework that assumes all randomized subjects will eventually become
HIV infected, and thus at some point will have a viral load value. In such an approach, the
viral load is missing in subjects who have not yet been infected by the time of the analysis,
and causal estimands can be defined based on functionals of contrasts of the viral load
distributions for the vaccine and placebo groups. The goal of assessing such estimands is
to compare the viral load distribution between the randomized groups had (contrary to
fact) all subjects been infected during the trial. Rotnitzky and Robins (1997) developed an
inverse probability of censoring weighted estimating equations method that could be used
for causal inference on a mean-difference version of this estimand. This technique would
model the viral load by a semiparametric conditional mean model with unspecified error

distribution and the infection probability (i.e., the response probability) by a parametric
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model. If the hazard rate of infection rather than the binary infection probability was
modeled, then Scharfstein, Rotnitzky, and Robins’ (1999) method would apply for making
inference on the same estimand. The advantages of these approaches include that they
minimize modeling assumptions, they can incorporate predictors of the infection risk, and
they can be used for sensitivity analysis of the effect of misspecification of the model for
infection risk. The drawback of any such missing data approach for the present application
is that the causal estimand may not be relevant or interpretable, because it is unrealistic
to suppose that all subjects would eventually be HIV infected. FR criticize use of such a
causal estimand because it uses nonexistent “a priori’ counterfactuals. Inferences for the
always infected subpopulation provide interpretable and practical information for vaccine
recipients who become HIV infected despite vaccination.

In addition to HIV vaccine trials, the methods developed here apply to general random-
ized clinical trials, for sensitivity analyses of causal treatment effects in the subpopulation

of subjects who would experience a post-randomization event under either assignment.
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Table 1. For the two randomization assignments Z; = v, p and infection outcomes
S = S,(Z;) = 0,1, the table indicates the basic principal stratum or strata to which
the subjects belong, and the information available on the potential viral loads Y;(v) and
Yi(p). Note that Y;(Z) is defined if and only if S;(Z) =1, Z = v, p, and the principal
strata of uninfected placebo recipients and of infected vaccine recipients are known by

assumption A2.

Randomiz. Observed

Assignm.  Infection Principal Stratum {S;(v), S;(p)} and
Z; Status S Information on Potential Viral Loads Y;(v), Y;(p)
vaccine uninfected Protected or Never-infected
{Si(v) =0, Si(p) = 1} {Si(v) =0, Si(p) = 0}
Y;(v) undefined Y;(v) undefined
Yi(p) unobserved Yi(p) undefined
placebo uninfected Never-infected
{Si(v) = 1, Si(p) = 0} {Si(v) = 0, Si(p) = 0}
(empty set by A2) Y;(v) undefined

Yi(p) undefined

vaccine infected Always-infected
{Si(v) =1,Si(p) = 0} {Si(v) =1, Si(p) =1}
(empty set by A2) Y;(v) observed

Y;(p) unobserved

placebo infected  Protected or Always-infected
{Si(v) =0, S;(p) = 1} {Si(v) =1, S;(p) =1}
Y;(v) undefined Y;(v) unobserved
Yi(p) observed Yi(p) observed
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Table 2. Power x 100% for detecting a 0, 1/3, and 1/2 log;o mean-shift alternative, over

and above any selection bias induced by the true 3, based on a 1-sided 5% level test

Nonparametric Kolmogorov- Anderson-
True Presumed Mean Smirnov Darling
o) o) 0 1/3  1/2 0 1/3  1/2 0 1/3  1/2
VE = 30%
0 0 4.8 73.8 96.8 54 69.0 91.2 4.0 72.0 944
0 1 3.2 498 82.0 3.0 44.8 782 24 46.8 79.6
0 00 0.2 158 36.0 0.8 16.8 376 0.2 154 33.6
1 0 146 91.8 998 156 8.4 978 144 90.2 99.2
1 1 5.8 67.6 946 7.2 63.4 90.8 5.4 65.4 94.0
1 00 1.8  26.0 522 1.4 276 51.8 1.6 258 488
00 0 69.6 100 100 76.2 100 100 79.8 100 100
00 1 374 958 100 426 970 100 458 974 100
00 00 8.8 55.0 83.2 12.0 55.2 82.4 10.8 57.2 86.2
VE = 50%
0 0 6.6 70.0 93.2 5.8 63.8 89.8 5.8 66.4 92.6
0 1 1.0  30.6 64.2 0.4 25.8 580 0.2 266 61.2
0 00 0.2 34 10.2 0.4 36 90 02 28 74
1 0 25.8 922 99.0 248 874 99.0 240 91.0 99.2
1 1 5.0 62.4 88.2 5.8 57.2 84.2 4.2 60.6 87.8
1 00 04 98 30.6 0.2 86 250 0.2 82 246
00 0 94.8 100 100 972 100 100 97.6 100 100
00 1 56.8 99.2 100 726 99.8 100 69.0 99.6 100
00 00 5.2 59.2 84.2 6.0 55.6 794 6.4 57.8 82.0
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Figure Legends

Figure 1. The upper panel shows plots of the density of Y;(p) for subjects infected under
randomization to placebo {S;(p) = 1} (total area) partitioned into the subdensity for
“protected” subjects not infected under randomization to vaccine {S;(v) = 0, S;(p) = 1}
(hatchmarked area = V' F) and the subdensity for subjects “always infected” under ran-
domization to either vaccine or placebo {S;(v) = 1, S;(p) = 1} (unshaded area = 1-V'E).
Using model (6) with 8 = —o0, —1,0, 1, or oo, the 5 panels reflect different assumptions
about how the vaccine relative risk w(y|a, 8) = RR(y) = Pr(S;(v) = 1|Yi(p) = v, Si(p) =
1) depends on the potential viral load (PVL) Y;(p) = y for subjects infected under ran-
domization to placebo. The lower panel shows corresponding plots of the logistic weight
function w(y|a, #). The hatchmarked areas equal VE = 0.30, and a was calculated from

1 -VE = [ w(z|a, B)dF ) (2) with Fi,)(-) given a normal distribution.

Figure 2. Based on the nonparametric mean-based, Anderson-Darling-type, and Kolmogorov-
Smirnov-type test statistics, the figure shows the 1-sided bootstrap p-value plotted as a
function of the selection bias odds ratio OR = e™# = e=Pnes; € is the odds ratio of infec-
tion under randomization to vaccine given infection under randomization to placebo with
viral load y versus with viral load y — 1. If the magnitude of selection bias is believed
to be less than OR = e'® = 6.23, then a significant causal effect of vaccination to lower

viral load in the always infected principal stratum can be inferred.

Figure 3. Point estimates fiscr(5) = —Twup (bold line) and bootstrap 95% confidence in-
tervals (dotted lines) for the average causal effect of vaccine pacp(f) = /25, y{dF, (';l)w il () —
dF(‘f]l;” I (y)} in the always infected principal stratum as a function of the selection bias

odds ratio OR = e P (left side of 0) and of OR = e P (right side of 0); e” is the odds
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ratio of infection under randomization to vaccine given infection under randomization to
placebo with viral load y versus with viral load y — 1. If the magnitude of selection bias is
believed to be less than OR = %" = 1.65, then a significant causal effect of vaccination
to lower the mean viral load by at least 0.2 log;y in the always infected principal stratum

can be inferred.

27

http://biostats.bepress.com/uwbiostat/paper208



fi TAd
9 S 14 €
00+ <— mo&Q
9 S 14 €

Sselq uonoaes
aANISod Wnwixep

00

z0

0

90

80

0T

S0 14 €0 co T0 00

90

selq uonaa|as
anmsod ajelpawiaiy|

‘T 9In3r

fi TAd fi TAd
9 S 14 € 9 S 14 €

o o L
g g
o o I
2 2
I I L
= S
o o L
s s
o o L
S S
|y [ s
5 5

0=¢ - ="y

9 S 14 € 9 S 14 €

. —_— —
g g
o o L
g 2

\
o4 o L
2 2
° ° ! L
g ! g

n

I I L
) )
o 4 L
S S
o o L
S S

selq Uonoa|as 0197

seiq uonods|es
aniebau areipawsiu|

00

20

7’0

90

80

0T

S0 0 €0 20 T0 00

90

fi TAd
9 S 14 €
bau,
00— ¢ g
9 S 14 €

Sselq uonoales
aneBau wnwixep

(¢ o|A)m

80

0T

144 €0 20 To 00
Ayisuop Ayjiqeqoad

S0

90

28

Hosted by The Berkeley Electronic Press



1-sided p-value
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Figure 2.
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