








population 2. We can think of the data as (Xi, Li), where Xi is the multi-
variate vector Xij , j = 1, . . . , p for subject i and Li ∈ {1, 2} is a label indi-
cating subject i’s group membership. Let µ1,j and µ2,j denote the means of
variable j in populations 1 and 2, respectively. Suppose we are interested in
testing

H0,j : µj ≡ µ1,j − µ2,j = 0, j = 1, . . . , p. (21)

We can define a procedure MT (c) as described in Section 2. We will use the
notation Dn for the non-standardized test statistics so that we can compare
them with the standardized t-statistics:

Tjn = (µjn − 0)/sd(µjn),
Djn = µjn − 0.

First, we examine different choices of data models, and then we investigate
the implications that each choice of model has in terms of the performance
of the implied testing procedure.

4.1 Models

Consider the following data models for this two sample problem:

1. P1: X|L = 1 ∼ P1 and X|L = 2 ∼ P2, where P1, P2 can be arbitrary
distributions,

2. P2: X|L = 1 ∼ P0(· − µ1) and X|L = 2 ∼ P0(· − µ2), for a common
non-parametric distribution P0 with mean zero.

Model P2 makes a much stronger assumption, specifically that under the
null hypotheses, the data are identically distributed in the two populations.
If we were testing the hypothesis H0 : P1 = P2, then this would clearly be a
good choice of model, but it may be a poor choice for testing Equation (21).
Other choices of models, which might be more parametric, could also be
considered.

4.2 Bootstrap Null Distributions

Each of the models implies a different null distribution for the test statis-
tics. Suppose we use the bootstrap estimator Q#

0n as described in Sec-
tion 2.7.2. For both of the models, we estimate µ1, µ2 with the sample
means µ1n1 , µ2n2 . If we assume model P1, then P̃n is the empirical dis-
tribution of (Xi, Li), and we resample n1 observations from population 1
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and n2 observations from population 2 separately to form the bootstrap
samples X#

1 , L#
1 , . . . , X#

n , L#
n . Then, Q#

0n is the empirical distribution of
Z#

n =
√

n(µ#
1n1

− µ#
2n2

− (µ1n1 − µ2n2)). If we assume model P2, then we
first estimate P0 by making centered observations Xi − µ1n1 if Li = 1 and
Xi − µ2n2 if Li = 2 and forming the empirical distribution P0n of the com-
bined sample of centered observations. Then, we resample n1 observations
from P0n and add µ1n1 and n2 observations from P0n and add µ2n2 to form
the bootstrap samples X#

1 , L#
1 , . . . , X#

n , L#
n . Again, Q#

0n is the empirical
distribution of Z#

n .
We note that this procedure for P2 is equivalent to forming a combined

empirical distribution of the Xi (i = 1, . . . , n) and using the distribution of√
n times the difference in the sample means when we draw n1 samples and

set Li = 1 and n2 samples and set Li = 2. This is the resampling (with
replacement) analogue of the commonly used permutation test. Remarkably,
permutation tests are known to be exact (even for p >> n) under the model
P2 (Lehmann [1986] and Puri and Sen [1971]). As noted above, P2 implies
a stronger null model restriction, which is needed for an exact test. In
contrast, the bootstrap method implied by model P1 is only approximate.
Note also that the exactness of the permutation test is conditional on the
observed data, so that the unconditional significance of an “exact” level
α permutation test is less than or equal to α (i.e.: it is unconditionally
conservative). In other words, even for a finite sample size an “exact” test
controls the error rate conservatively (not exactly) in the sense that the error
rate θ ≤ α.

4.3 Implications for the Permutation Test

4.3.1 Covariance

For simplicity, we suppose that p = 2, but note that conclusions about
the covariance of two variables can be applied to any pairwise covariance
when p is much larger. For variable j, denote the variance of Xi by σ2

1,j in
population 1 and by σ2

2,j in population 2. Let φ1 be the covariance between
the two variables in population 1 and φ2 be the covariance between the two
variables in population 2. We have derived formulas for the variance of Dj

(j = 1, 2) and the covariance of the two test statistics D1, D2 under both
models (Table 2, derivations in Appendix).

These expressions show us that under most values of the underlying pa-
rameters, the bootstrap and permutation distributions of Dj are not equiv-
alent. But, when (i) n1 = n2 or (ii) σ2

1,j = σ2
2,j ≡ σ2

j (j = 1, 2) and
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P1 V ar(Dj)
σ2
1,j

n1
+

σ2
2,j

n2

P2
σ2
1,j

n2
+

σ2
2,j

n1

P1 Cov(D1, D2) φ1

n1
+ φ2

n2

P2
φ1

n2
+ φ2

n1

Table 2: Formulas for the variance and covariance of the difference in means
statistic under two different models. It is interesting to note that the roles
of n1 and n2 are reversed under permutations.

φ1 = φ2 ≡ φ, then they are the same. Thus, unless one of these condi-
tions holds we recommend using a bootstrap distribution since it preserves
the correlation structure of the original data. When a study is “balanced”
(n1 = n2), however, these results suggest that one should use the equiva-
lent permutation distribution, because the variances and covariances are the
same for both populations and estimates of these “pooled“ values (which
make use of all n subjects) are more efficient. Notice that if we were to use
the usual standardized t-statistics Tjn = (µjn−µ0

j )/sd(µjn), despite the fact
that the variances are equal under both models, the covariances are still not
equivalent unless n1 = n2 or the correlation structures are the same in the
two populations.

4.3.2 Bias

We have also found that resampling-based estimated null distributions of
standardized t-statistics do not have mean zero whenever n1 6= n2, unless
the observed difference in means is zero. For the permutation method, this
bias depends on the observed difference in means (Figure 2), while for the
bootstrap methods the bias is independent of the observed difference. This
finite sample bias arises from using a variance estimate in the denominator of
the t-statistics, and disappears in simulations when the estimate is replaced
by the true variance. In small, heavily unbalanced samples, one should be
aware that this bias could be relatively quite large. We found that there
is also a bias in the estimation of the variance of both the difference in
means and the t-statistic in unbalanced designs whenever the two groups
have unequal observed means.

As an illustration, consider the following very simple example. Let n1 =
2, n2 = 50 and suppose that the observations for variable j in population
1 are (1, 3) while the observations in population 2 are a vector of zeros. It
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Figure 2: Mean of the permutation null distribution of the standardized
two sample t-statistic for simulated data. Population 1 consists of n1 = 2
subjects with observed values 1 and 3. Population 2 consists of n2 = 50
subjects with observed values normally distributed with standard deviation
0.1 and different choices of mean. The mean of the null distribution is plotted
versus the mean in Population 2 (i.e.: as a function of the difference in means
since the mean in Population 1 is constant). The vertical line marks where
the difference in means is truly zero. The mean of the null distribution is
close to zero here, but increases in magnitude with the difference in means.
The mean of the null distribution should be zero for all data sets. All 1326
possible permutations were performed exactly.

is easy to enumerate all of the possible permutations for this data set and
compute the expected value of any test statistic under this null distribution
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exactly. The results for the difference in means and the t-statistic are:

E(µ1 − µ2) =

(
2
2

)
∗ 2 +

(
50
1

)
∗ 0.44 +

(
50
1

)
∗ 1.48−

(
50
2

)
∗ 0.08(

52
2

) = 0

E(
µ1 − µ2√

σ2
1/n1 + σ2

2/n2

) =

(
2
2

)
∗ 2 +

(
50
1

)
∗ 0.87 +

(
50
1

)
∗ 0.99−

(
50
2

)
∗ 1.27(

52
2

) = −1.104

4.4 Simulations

We have conducted simulations to understand the performance of different
multiple testing procedures for the two sample problem. In our evaluation of
the different methods, we focus on estimation of the null distribution (e.g.:
mean and variance of the test statistic under different choices of Q0n), since
accurately estimating Q0 is essential if resulting inferences are to be correct.
We also report estimates of the error control rates in Section 4.4.4, though
we note that at most I = 200 data sets are used in each simulation so that
the margin of error is almost as large as the level α that we are trying to
estimate.

4.4.1 Data and Null Distributions

The following approach was used to generate simulated data sets. First,
we simulate n1 observations from a p-variate normal distribution with equal
means µ1 = 0, equal variances σ2

1 = 0.1, and all pairwise correlations ρ1 = 0.
Second, we simulate n2 observations from a p-variate normal distribution
with equal means µ2 = 0, equal variances σ2

2 = 5 and all pairwise correla-
tions ρ2 = 0.9. The values of all parameters are chosen in light of the results
from Section 4.3 as an extreme case of unbalanced groups in terms of sample
size, variance, and correlation. We have examined different sample sizes and
dimensions, but focus here on the results for p = 100 and several choices
of n1, n2 representing unbalanced, nearly balanced and perfectly balanced
designs. It would be an interesting area of future research to look at a wide
range of covariance structures and sample sizes in order to try to understand
the relative contributions of variance, correlation, and sample size to error
control in finite samples. We know that the difference in covariance struc-
tures between the two populations will cause problems for the permutation
method when n1 6= n2, and our goal is to study the effect for several finite
sample sizes (n1, n2).

For each simulated data set, we compute two test statistics: the differ-
ence in means Dn and the standardized t-statistic Tn. The null distributions

21

Hosted by The Berkeley Electronic Press



of these statistics are then estimated by (i) permutation-based Qn(P0n), (ii)
the non-parametric bootstrap Q#

0n, and (iii) the parametric bootstrap-based
Qn(P0n) (i.e: P0n = N(0,Ψn), where Ψn is the observed data covariance
matrix). Notice that in (iii) we use the correct parametric distribution for
the data. Equation (16) holds for the data generating distribution in the
simulations, so we expect all three estimators to perform well asymptoti-
cally. The goal is to examine their finite sample performance. In each case,
B = 1000 independent resampled data sets are used. Since we know the
true distribution P in this simulation, we can compare parameters of the
estimated null distributions to their true values.

Permutation Non-parametric Parametric True
Bootstrap Bootstrap Value

mean (sd) over I = 200 data sets
n1 = 5, n2 = 6
V AR(Dj) 0.97 (0.40) 0.67 (0.28) 0.80 (0.48) 0.85
V AR(Tj) 1.21 (0.030) 3.26 (0.80) 1.56 (0.12) 1.62
n1 = 100, n2 = 5
V AR(Dj) 0.071 (0.034) 0.84 (0.60) 1.038 (0.73) 1.001
V AR(Tj) 1.34 (0.18) 16.58 (21.08) 1.96 (0.21) 1.996
n1 = 200, n2 = 10
V AR(Dj) 0.052 (0.030) 0.65 (0.50) 0.78 (0.64) 0.5005
V AR(Tj) 1.23 (0.18) 8.95 (13.69) 1.65 (0.49) 1.285
n1 = 19, n2 = 20
V AR(Dj) 0.26 (0.075) 0.23 (0.070) 0.25 (0.074) 0.26
V AR(Tj) 1.05 (0.047) 1.14 (0.075) 1.11 (0.057) 1.11
n1 = 50, n2 = 50
V AR(Dj) 0.101 (0.02) 0.100 (0.02) 0.102 (0.02) 0.102
V AR(Tj) 1.02 (0.04) 1.05 (0.05) 1.04 (0.05) 1.041

Table 3: Variance of the permutation, non-parametric bootstrap, and para-
metric bootstrap null distributions of the difference in means Dj and the
t-statistic Tj . Since all variables have the same marginal distribution in
this simulation, we report the results for one and note that they are repre-
sentative for all variables. The true values are from formulas (approximate
for the t-statistics, Moore and McCabe [2002]) and have been confirmed by
simulation.
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4.4.2 Choice of Test Statistic

We compare Dn and Tn based on the ease with which their null distributions
can be estimated. For most models there are consistent finite sample esti-
mators of the null distributions of both test statistics, although it is known
that the null distribution of pivotal statistics (such as Tn) can be estimated
with less asymptotic error than that of Dn in many cases (Hall [1992]). In
our simulations, we observed the finite sample bias of the estimated null
distributions of Tn noted in Section 4.3, while null distributions of both test
statistics had observed means close to zero when the observed difference in
means between the two samples was close to zero. The covariance structure
of the test statistic null distributions was more difficult to estimate (See Ta-
ble 3). In particular, the variance of Tn’s null distribution is usually much
too large with the non-parametric bootstrap estimator (resulting in conser-
vative error rate control). In addition, whenever n1 6= n2 the permutation
estimates of the variance and correlation of the null distribution of Dn and
the correlation (but not the variance) of the null distribution of Tn are far
from the truth, as predicted by the formulas in Section 4.3. Thus, it is
certainly interesting to do multiple testing with Dn in addition to Tn.

We suggest that Dn may be a better choice at small sample sizes and
with non-parametric data generating models, whereas Tn is often preferable
with larger sample sizes or more parametric models. In other words, pivoting
(i.e.: dividing by sd(µn)) only helps when the estimate sd(µn) is close to a
constant (e.g.: asymptotically). How fast it becomes beneficial to pivot (as
n →∞) is determined by the variance of sd(µn), which depends on (i) the
data generating model (i.e.: model-based estimation versus non-parametric
estimation) and (ii) the variance of the data.

4.4.3 Choice of Estimated Null Distribution

For both Dn and Tn, we compare the three choices of test statistic null
distribution estimators. The comparison is based on the ability of each
method to estimate the true null distribution and consequently to control
error rates of interest. The most striking finding is that when n1 = n2, the
permutation method performs very well even when the covariance struc-
tures are unbalanced, as predicted by the algebraic results in Section 4.3.
Predictably, using a parametric bootstrap estimate of the data null distri-
bution P0 performs well when the model is correct, but quite poorly oth-
erwise. The non-parametric bootstrap generally performs better for Dn

than for Tn for two reasons. First, the bootstrap method estimates sd(µn)
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non-parametrically. Second, ties in the resampling can result in very small
estimates sd(µn). Smoothing the empirical distribution does reduce this
problem. Both of these factors contribute to the bootstrap method pro-
ducing highly variable and unrealistically large resampled t-statistics. In
contrast, the permutation-based test statistic (which uses a pooled estimate
sd(µn)) is much less variable, so that the asymptotic results of Hall [1992]
will apply.

Permutation Non-parametric Parametric
Bootstrap Bootstrap

n1 = 5, n2 = 6
Dj 0.090 0.24 0.20
Tj 0.11 0.045 0.075
n1 = 5, n2 = 100
Dj 0.67 0.15 0.12
Tj 0.095 0.0050 0.035
n1 = 10, n2 = 200
Dj 0.77 0.12 0.10
Tj 0.085 0.015 0.025
n1 = 19, n2 = 20
Dj 0.045 0.080 0.070
Tj 0.055 0.035 0.045
n1 = 50, n2 = 50
Dj 0.080 0.085 0.090
Tj 0.080 0.065 0.065

Table 4: Estimates α̂ of the error rate P (Vn > 10) over I = 200 indepen-
dent data sets with p = 100 variables for the permutation, non-parametric
bootstrap, and parametric bootstrap null distributions of Dn and Tn. We
can expect the error in the estimates to be on the order of 0.05. The target
error rate is α = 0.05.

4.4.4 Error Rate Control

Since the two population mean vectors are equal, we know that any rejected
null hypotheses are false positives, so we can estimate error rates. We report
results from using Equation (13) with k = 10 to control P (Vn > 10) ≤ α =
0.05, where Vn is the number of false positives. Results for other error rates
followed similar patterns. Table 4 shows the estimates of α over I = 200
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independent data sets, where the thresholds are computed independently
for each data set. A few interesting points emerge. First, conservative
error control is associated with overestimating V AR(Tj) (causing the upper
quantiles cj to be too large) and conversely, failure to control the error rate
is due to under-estimation. Second, the direction of the bias in ˆV AR(Tj)
has consequences in terms of the size of the bias of α̂. In particular, the
skewedness of type I error means that bias due to an underestimate of the
variance is much larger in magnitude than the bias due to a similarly sized
overestimate of the variance. Finally, the parametric and non-parametric
bootstrap methods tend to be conservative for Tn and anti-conservative for
Dn, whereas the permutation method tends to be anti-conservative for both
statistics (but particularly for Dn).

We have also conducted simulations with some differences in means not
truly zero. Estimated error rates tend to be slightly larger when there are
some false null hypotheses. Also, the methods with the largest error rates
have the most power. In practice, one might want to use a cost function
that accounts for both type I and type II errors in order to optimize both
the error rate and power.

5 Applications to Gene Expression Data Analysis

In this paper, we have focused on asymptotics for fixed dimension p and
n → ∞. Under these asymptotics, the usual central limit theorem applies,
and N(0,Σ(P )) is the correct test statistic null distribution. In many appli-
cations, such as gene expression studies, however, the number of variables
is typically always much larger than the number of samples. We present a
few preliminary ideas on this topic. First, it is clear that some error rates
should be harder to control than others because they depend on the most
extreme gene(s) (e.g.: family-wise error). Second, parameters whose estima-
tors have second order terms (e.g.: regression coefficients) will make error
control harder than with sample means. Third, what we can say about the
asymptotic distribution of the test statistics depends on the rate at which
p →∞ relative to n.

When p � n, there is no multivariate central limit theorem. Hence,
proving an approximation by a multivariate normal will only be possible
with restrictive parametric assumptions on the observed data, though we
rarely believe such a parametric model for the data in the gene expression
context. We consider the example studied by van der Laan and Bryan [2001]
and Pollard and van der Laan [2002], in which n

log p →∞. Let (µ,Σ) denote
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the mean and covariance of the data X. Then, if the minimum eigen value
of Σ is bounded away from zero, van der Laan and Bryan [2001] have shown
that when n

log p →∞

1. maxi,j |Σn,i,j − Σi,j | → 0,

2. maxi,j |Σ−1
n,i,j − Σ−1

i,j | → 0.

This uniform consistency result is very different from a central limit
theorem and does not guarantee that

√
n(µn−µ) D−−−−−→

n
log p

→∞
N(0,Σ). It does

show us that when X ∼ N(µ,Σ) one should control the error rate under
the test statistic null distribution N(0,Σn). Furthermore, in general, for
X ∼ P one might reasonably choose to use one of the consistent estimators
of N(0,Σ) discussed in this paper as a null distribution for multiple testing.
Note, however, that for any n there will typically be some genes whose
marginal distribution is not yet normal (i.e.: the central limit theorem does
not yet apply). It is a topic of future research to investigate the precise
conditions under which the multivariate normal approximation N(0,Σ(P ))
is valid.

5.1 Data Analysis

We apply resampling-based multiple testing methods to a publicly available
data set (Alizadeh et al. [2000]). Expression levels of 13, 412 clones (relative
to a pooled control) were measured in the blood samples of 40 diffuse large
B-cell lymphoma (DLBCL) patients using cDNA arrays. According to Al-
izadeh et al. [2000], the patients belong to two molecularly distinct disease
groups, 21 Activated and 19 Germinal Center (GC). We log the data (base
2), replace missing values with the mean for that gene, and truncate any
expression ratio greater than 20-fold to log2(20).

5.1.1 Testing for a Difference in Means

Our goal is to identify and then cluster clones with significantly different
mean expression levels between the Activated and GC groups. We com-
pute standardized t-statistics Tjn for each gene. We use permutation and
non-parametric bootstrap methods to compute joint null distributions of the
t-statistics. We choose to control the usual FWER (k = 1) and compare
the clones identified as having significantly different means between the two
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groups using: (i) Equation (13) common quantiles (for gene-specific thresh-
olds) with the non-parametric bootstrap distribution, (ii) single-step Bon-
ferroni common quantiles with the non-parametric bootstrap distribution,
(iii) Equation (13) common quantiles with the permutation distribution, (iv)
single-step Bonferroni common quantiles with the permutation distribution,
and (v) Bonferroni adjusted common threshold with the tabled t-distribution
for each marginal distribution.

Method Null Distribution Rejections
Equation (13) common quantiles bootstrap 186
Bonferroni common quantiles bootstrap 186
Equation (13) common quantiles permutations 287
Bonferroni common quantiles permutations 287
Bonferroni common threshold t-distribution 32

Table 5: Number of rejected null hypotheses (out of p = 13, 412) for five
different choices of thresholds and null distribution. All 32 of the genes in the
t-distribution subset are in both the permutation and the bootstrap subset,
and the bootstrap and permutation subsets have 156 genes in common. Data
are from Alizadeh et al. [2000].

Table 5 shows how many of the p = 13, 412 null hypotheses are rejected
using each method. Interestingly, Equation (13) and single-step Bonferroni
common quantiles produce the same subset of clones (for both the boot-
strap and the permutation null distributions), though this need not be the
case since the single-step Bonferroni quantiles are always smaller. We see
that the variances of the t-statistics across the B = 1000 samples tend to
be smaller in the permutation distribution compared to the bootstrap dis-
tribution, resulting in the larger number of rejected null hypotheses with
permutations. Based on the results of Section 4.4, we believe that the per-
mutation subset is likely to be larger and the bootstrap subset to be smaller
than the true subset. We believe that the permutation subset is likely to be
closer to the true subset, since it makes use of a pooled variance estimate in
Tn and n1 ≈ n2.

We repeat this analysis using the difference in means Dn as the test
statistic. For all of the resampling approaches, more clones are selected
than with the t-statistics. This result confirms our observation in the simu-
lations that Dn tends to be more anti-conservative than Tn. We also repeat
the analysis with two random Activated patients removed so that the design

27

Hosted by The Berkeley Electronic Press



is perfectly balanced. Slightly fewer genes are significantly different between
the two groups, but setting n1 = n2 = 19 did not change the results signifi-
cantly.

5.1.2 Testing for an Association with Disease Group Using Lo-
gistic Regression

One might also be interested in testing for an association between gene
expression and an outcome Y of interest, such as survival or disease group.
In this case, a regression model E(Y | Xj) = m(Xj | βj) (e.g.: linear or
logistic regression) is fit for every gene j = 1, . . . , p, producing a vector of
observed regression coefficients βn which measure the association between
gene expression and the outcome. The usual test statistics can be used
(with µj = βj as the parameter) to test the hypotheses H0,j : βj = 0,
j = 1, . . . , p (or more generally, H0,j : βj = β0

j ). The bootstrap method of
Section 2.7.2 can then be used to estimate the test statistic null distribution,
using appropriate resampled random variables (e.g.: Z#

n =
√

n(β#
n −βn) for

test statistics
√

n(βn − 0)).
We apply the non-parametric bootstrap method to the data set of Al-

izadeh et al. [2000], with disease group (Activated versus GC) as a binary
outcome and a logistic regression model. This is an example of a case that
illustrates the simplicity of the bootstrap method. Despite the fact that (i)
the outcome is not a linear function of gene expression and (ii) the error
may not be independent of gene expression, the bootstrap can be applied
directly without concern about the form of the test statistic distribution. In
contrast, the usual resampling-based multiple testing methods (e.g.: permu-
tations or resampling residuals as proposed by Westfall and Young [1993])
do not work, because the assumptions under which they are appropriate
do not hold. Table 6 contains the number of genes that are significantly
associated with disease group. The finding that the number of rejected null
hypotheses is the same for k = 1, 10, 50 is partially due to the discreteness of
the resampled null distribution (with B = 1000 resamples). By resampling
more times (e.g.: B = 10000), a sharper bound can be achieved.

5.1.3 Clustering

We choose to use the subset of 186 clones selected with the bootstrap null
distribution as having a significant difference in means for further analy-
sis. Using the uncentered correlation (or cosine-angle) metric, we apply a
hierarchical clustering algorithm called HOPACH (van der Laan and Pol-
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k = 1 10 50 100 200
Rejections 303 303 303 471 553

Table 6: Logistic Regression Parameters. Number of rejected null hypothe-
ses (out of p = 13, 412) using the non-parametric bootstrap estimated null
distribution and controlling the gFWER P (Vn > k) for different choices of
k, where Vn is the number of false positives. The test statistics used are√

n ∗ (βn − 0). Fine-tuned common quantiles {cj : j = 1, . . . , p} are com-
puted using Equation (13) with the estimated null distribution in order to
control the gFWER at level α = 0.05. Data are from Alizadeh et al. [2000].

lard [2003]) to identify the main clusters of clones and order the clones in
a sensible way. Figure 3 shows the clone-by-clone distance matrix ordered
according to the final level of the HOPACH tree. The six main clusters
identified in the first level of the tree are marked. One of these clusters
has an expression profile that is significantly associated with survival time
in a multiplicative intensity model and a cox proportional hazards model.
Investigating the relationship between expression and survival in this data
set is an area of future work.

5.1.4 Real Data Simulations

We conduct some additional simulations using 100 randomly selected genes
from the data set of Alizadeh et al. [2000] centered to all have mean zero
in the Activated and GC groups as the true data generating distribution.
The idea is to make use of a real data set in order to (i) avoid assumptions
about the parametric form of the underlying distribution and (ii) have a
more realistic covariance structure between the genes. We treat the 21 Ac-
tivated and 19 GC patients as the population and randomly sample n1 < 21
Activated and n2 < 19 GC patients from it to create an “observed” data set
I = 200 times. We estimate the null distributions of the t-statistic and the
difference in means, each resampling B = 1000 times. In each case, we use
Equation (13) to control the gFWER P (V > 10) ≤ α = 0.05. We repeat
the simulation for three choices of (n1, n2). Overall, the permutation distri-
bution does the worst job and the non-parametric bootstrap the best job of
controlling the error rate. Notice that the normal distribution parametric
bootstrap is no longer the best method, since the data model is not normal.

We also repeat the simulation with ten genes whose means are non-zero
in population 2 (as in Section 4.4). Error control rates are similar to those
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Figure 3: Uncentered correlation pairwise distance matrix of the 186 clones
differently expressed in GC versus Activated DLBCL. The clones are ordered
according to the final level of the HOPACH hierarchical tree. The dotted
lines mark the boundaries between the six main clusters identified in the
first level of the tree. Red corresponds with smallest and white with largest
distance. Data are from Alizadeh et al. [2000].

in Table 7, and power is very high (at least 0.88 for all null distributions).

6 Discussion

Defining a formal statistical framework for hypothesis testing in multivariate
settings has lead us to a better understanding of the correct null distribution
for testing multiple hypotheses simultaneously. First, we have learned that
for common choices of test statistics one should use a null distribution which
is a projection of the true test statistic distribution on the space of mean zero
distributions. Second, when the test statistics are based on asymptotically
linear estimates µn of the parameter of interest µ(P ), then the asymptoti-
cally correct test statistic null distribution is N(0,Σ(P )), where Σ(P ) is the
covariance of the vector influence curve of µn. Third, our theorem shows
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Permutation Non-parametric Parametric
Bootstrap Bootstrap

n1 = 5, n2 = 15
Dj 0.21 0.025 0.085
Tj 0.020 0.025 0.020
n1 = 9, n2 = 11
Dj 0.13 0.050 0.065
Tj 0.015 0.065 0.015
n1 = 10, n2 = 10
Dj 0.17 0.060 0.070
Tj 0.020 0.055 0.035

Table 7: Estimates α̂ of the error rate Pr(V > 10) over I = 200 independent
simulated data sets with p = 100 genes for permutation, non-parametric
bootstrap and parametric bootstrap null distributions of Dj and Tj . In
each case, Equation (13) was used to adjust for multiple tests. The target
error rate is α = 0.05

that under weak conditions, a class of estimators of the test statistic null
distribution provides asymptotic control of most type I error rates for any
data generating distribution P . A standard bootstrap method produces one
such estimator. In particular, the bootstrap approach does not require the
subset pivotality condition. Using a data null distribution P0 to obtain a
test statistic null distribution, in contrast, only provides asymptotic control
when the subset pivotality condition of Westfall and Young [1993] holds, or
according to our formal definition, when Σ(P ) = Σ(P0).

In the context of testing for a difference in means in the two sample prob-
lem, we have illustrated that the commonly used method of estimating a test
statistic null distribution Qn(P0n) via a permutation data null distribution
P0n indeed has the correct covariance if Σ(P ) = Σ(P0) or, interestingly, if
the design is balanced (i.e.: equal sample sizes in the two groups). It is a
very powerful fact that whenever n1 = n2, the permutation method provides
an estimated test statistic null distribution which is asymptotically correct
and may in fact be more efficient for small sample sizes (by using pooled
estimates of the covariance matrix). However, the permutation method suf-
fers from a bias that depends on the observed difference in the means. In
our limited simulation study, the standardized t-statistic Tn worked poorly
compared to Dn when sd(µn) was variable (e.g.: non-parametric bootstrap
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with a small sample size).
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APPENDIX: Derivations of formulas in Section 4.3

The derivations of expressions for (i) the variances of Dj (j = 1, 2) and
(ii) the covariance of (D1, D2) are similar, and both make use of the double
expectation theorem. For simplicity, assume that the null hypotheses hold
for both variables, so that the means for the two populations are zero vectors
µ1 = µ2 = (0, 0). Consider variable j.

Recall the models P1 and P2 defined in Section 4.1. The distribution
P b ∈ P1 is defined by Xb | Lb = 1 ∼ P1 and Xb | Lb = 2 ∼ P2. The
distribution P ∗ ∈ P2 is defined by X∗ ∼ P0, L∗ ⊥ X∗, and P (L∗ = 1) = 0.5.
Let Db

j denote the test statistic based on n i.i.d. observations of (Xb, Lb) ∼
P b ∈ P1. Let D∗

j denote the test statistic based on n i.i.d. observations
of (X∗, L∗) ∼ P ∗ ∈ P2. Asymptotically, the distribution of D∗

j equals the
distribution of the permutation test statistic. Our bootstrap estimate of
the distribution of Dj (Section 2.7.2) converges to the distribution of Db

j ,
while the permutation estimate of the distribution of Dj converges to the
distribution of D∗

j .
The variance of the difference in means test statistic Dj under P b is:

V ar(Db
j) = E((Db

j)
2)− E(Db

j)
2

= E((Db
j)

2)

= E

(
n∑

i=1
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+
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Similarly, the variance of the test statistic Dj under P ∗ is:

V ar(D∗
j ) = E((D∗

j )
2)− E(D∗

j )
2
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j )
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.

Note that in this derivation, the variance of X∗ is 1
n(σ2

1,jn1+σ2
2,jn2) for both

values of L∗, since X∗ is independent of L∗. It is interesting to note that
the final expression for the variance of D∗

j resembles that of the variance of
Dj , except with the roles of n1 and n2 reversed.
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Now, consider the covariance between the test statistics for the two genes.
Under P b we have:
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Under P ∗ we have:
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Note that in the permutation derivation, the covariance of X∗
1 and X∗

2 is
1
n(φ1n1 +φ2n2) for both values of L∗, since Z∗ is independent of L∗. Again,
it is interesting to note that the final expression for the covariance under P ∗

resembles that under P b, except with the roles of n1 and n2 reversed.
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