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Simultaneous estimation procedures and
multiple testing: a decision-theoretic
framework

Debashis Ghosh

Abstract

There is recent tremendous interest in statistical methods regarding the false dis-
covery rate (FDR). Two classes of literature on this topic exist. In the first, authors
have proposed sequential testing procedures that control the false discovery rate.
For the second, authors have studied the procedures involving FDR in a univariate
mixture model setting. We consider a decision-theoretic approach to the assess-
ment of FDR-based methods. In particular, we attempt to reconcile the current
literature on false discovery rate procedures with more classical simultaneous es-
timation procedures. Formulation of the link will allow us to apply results from
decision theory; we can then traverse between the two literatures. In particular,
we propose double shrinkage estimators for the location parameter in the multiple
testing problem for false discovery rates and provide conditions for obtaining min-
imaxity. We also describe a double shrinkage estimation procedure for p-values.
Simulation studies are used to explore the risk properties of existing statistical
methods and the potential gains of shrinkage. We then develop a procedure for
calculating double shrinkage estimators from observed data. The procedures are
applied to data from a gene expression profiling study in prostate cancer.
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Summary. There is recent tremendous interest in statistical methods regarding the false dis-
covery rate (FDR). Two classes of literature on this topic exist. In the first, authors have pro-
posed sequential testing procedures that control the false discovery rate. For the second,
authors have studied the procedures involving FDR in a univariate mixture model setting. We
consider a decision-theoretic approach to the assessment of FDR-based methods. In particu-
lar, we attempt to reconcile the current literature on false discovery rate procedures with more
classical simultaneous estimation procedures. Formulation of the link will allow us to apply re-
sults from decision theory; we can then traverse between the two literatures. In particular, we
propose double shrinkage estimators for the location parameter in the multiple testing problem
for false discovery rates and provide conditions for obtaining minimaxity. We also describe a
double shrinkage estimation procedure for p-values. Simulation studies are used to explore
the risk properties of existing statistical methods and the potential gains of shrinkage. We then
develop a procedure for calculating double shrinkage estimators from observed data. The
procedures are applied to data from a gene expression profiling study in prostate cancer.

Keywords: Estimation Target; Hypothesis Testing; James-Stein Estimation; Multiple Compar-
isons; Simultaneous Inference.

1. Introduction

Because of technological developments in scientific fields (e.g., high-throughput genomics),
experiments are now performed in which thousands of hypotheses are simultaneously tested.
In problems dealing with multiple testing, the usual quantity that has been is the familywise
error rate (FWER). One simple method for adjustment is Bonferroni’s correction; many
other methods are described by Westfall and Young (1993).

In the recent statistical literature, many authors have argued that control of the FWER
is too stringent. One quantity that has been argued for instead is the false discovery rate
(FDR), first proposed by Benjamini and Hochberg (1995).

The literature on false discovery rate procedures can be divided into two areas. For the
first, the emphasis is on procedures that control FDR. A very simple procedure based on
ordering the p-values of test statistics was proposed by Benjamini and Hochberg (1995),
which we will describe in detail in Section 2. It was later shown in Benjamini and Yeku-
tieli (2001) that the original Benjamini-Hochberg procedure controls FDR, under a certain
dependence. The Benjamini-Hochberg procedure is a step-down testing procedure; related
testing procedures have been studied by Benjamini and Liu (1999), Benjamini and Yeku-
tieli (2001) and Sarkar (2002). In much of this literature, the focus is on constructing a
sequential testing procedure and demonstrating that it controls the false discovery rate.

The second class of false discovery rate procedures is based on estimation of the false
discovery rate directly. This has been the approach adopted by Efron et al. (2001), Storey
(2002, 2003), and Genovese and Wasserman (2002). These two classes of methods have
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2 D. Ghosh

been unified by Storey et al. (2004) and Genovese and Wasserman (2004), who proposed
thresholding procedures based on the estimated distribution of the false discovery rate.

An attractive feature of the false discovery rate procedures mentioned is that it provides
the data analyst a post-data assessment of the strength of evidence available in the dataset.
To be concrete, based on the number of hypothesis the user rejects, the false discovery rate is
interpretable as the expected number of hypotheses that have been falsely rejected. Given
the number of hypotheses that are being tested in large-scale high-throughput scientific
studies, it seems natural that post-data assessments are of interest to investigators so that
they may determine which hypotheses should be followed up in further studies.

In this paper, we consider the use of decision theory to study the behavior of multiple
testing procedures. Some work has been made in this area by Storey (2003), Bickel (2003)
and Miiller et al. (2004). In Storey (2003, Section 6), a link between an FDR-related
quantity, the positive false discovery rate (pFDR), and classification theory is studied. The
pFDR is shown to be a Bayes rule in this setting. The work of Bickel (2003) is to estimate
another FDR-type quantity using principles of decision theory, while that of Miiller et al.
(2004) is to motivate sample size determination from a decision-theoretic point of view.
The approach in this paper is quite different from these works. First, we seek to unify
the current literature in false discovery rate estimation procedures with that of minimax
estimation (Brown, 1971; Stein, 1981; Lehmann and Casella, 1997). Second, the decision-
theoretic framework will allow to derive new procedures for testing multiple hypotheses that
have desirable risk properties. It should be noted that while we will make use of prior and
posterior distributions here, the decision-theoretic point of view taken in the paper is not
Bayesian. Rather, the use of such distributions helps us to assess risk properties of various
estimation procedures. The structure of the paper is as follows. Multiple testing concepts
and false discovery rate procedures are reviewed in Section 2. In Section 3, we propose a
two-stage model for estimation of the location parameter and relate it to false discovery
rates. This link allows for the applications of various decision theoretic notions, such as
minimaxity and Bayes rules, which are explored in Section 4. We also propose a construction
of double shrinkage estimators and study the potential for gains using shrinkage. In Section
5, we propose an estimation procedure for calculating double shrinkage estimators using
observed data. We illustrate this methodology using gene expression data from a microarray
experiment in Section 6. Finally, we conclude with some discussion in Section 7.

2. Multiple Testing Background

Suppose we have test statistics 71, ..., T, for testing hypotheses Hy;, i = 1,...,n. First, we
give a brief review of simultaneous hypothesis testing and the false discovery rate.

2.1. Multiple Testing Procedures

We wish to test a set of n hypotheses; of these n hypotheses, the number of true null
hypotheses is mg. Suppose we wish to cross-classify hypotheses based on whether or not
it is a true null and whether or not it is rejected using a statistical test. This can be
conceptualized using the following 2 x 2 contingency table:

[Note: Table 1 about here.]
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Multiple testing and shrinkage estimation 3

Based on Table 1, the FWER is defined as P(V > 1). Further dicussion for FWER-
controlling procedures can be found in Ge et al. (2003) and in a collection of papers by Van
der Laan and colleagues (Dudoit et al., 2004; van der Laan et al., 2004a,b).

The definition of false discovery rate (FDR) as put forward by Benjamini and Hochberg
(1995) is

FDREE[%|Q>O]P(Q>O).

The conditioning on the event [ > 0] is needed because the fraction V/Q is not well-
defined when @9 = 0. Methods for controlling the false discovery rate have been proposed
by several authors (Benjamini and Hochberg, 1995; Benjamini and Liu, 1999; Benjamini
and Yekutieli, 2001, Sarkar, 2002).

Storey (2002) suggests use of the positive false discovery rate (pFDR), defined as

pFDREE[%|Q>0}

Conditional on rejecting at least one hypothesis, the pFDR is defined to be the fraction of
rejected hypotheses that are in truth null hypotheses. Note that pFDR and FDR are linked

by the following relationship:

FDR
FDR= — —~ .
PFDR P(Q > 0)

2.2. Mixture Model Motivation of FDR
An alternative approach involving false discovery rate estimation procedures has been to

estimate the false discovery rate directly. Define indicator variables Hy, ..., H, correspond-
ing to T, ...,Ty, where H; = 0 if the null hypothesis is true and H; = 1 if the alternative
hypothesis is true. Assume that Hy,..., H, are a random sample from a Bernoulli distribu-

tion where P(H; = 0) = mp, i = 1,...,n. We define the densities fy and f; corresponding
to T;|H; = 0 and T;|H; = 1, (¢ = 1,...,n). The marginal density of the test statistics
Ti,...,Ty, is given by

f(t) = mofo(t) + (1 —mo) fi(t). (1)
The mixture model framework represented in (1) has been used by several authors to study

the false discovery rate (Efron et al., 2001; Storey, 2002; Genovese and Wasserman, 2004;
Storey et al., 2004; Cox and Wong, 2004). A result of Storey (2002) is the following:

pFDR(R) = P(H=0|T € R)
moP(T € R|H = 0)
P(T € R)

Provided one can estimate g, methods for false discovery rate estimation have been devel-
oped by several authors (Efron et al., 2001; Storey, 2002). In situations, for large n P(Q > 0)
will tend to one. Then the difference between pFDR and FDR should be asymptotically
negligible.

While we assume here that the test statistics are independent, authors such as Storey et
al. (2004) and Genovese and Wasserman (2004) have shown that the estimation procedure
for the false discovery rate will be asymptotically unbiased under various forms of depen-
dence. Intuitively, this makes sense because the the false discovery rate is a probability and
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hence a mean of an indicator function. Using probability tools such as ergodicity theory,
estimates of means are fairly robust to various forms of dependence.

To embed the Bejamini-Hochberg procedure within this estimation framework, Storey et
al. (2004) and Genovese and Wasserman (2004) consider a class of thresholding procedures.
Define the following threshold function:

ca(F) =sup{0 <t <1: F(t) <a},

where F'is a function. Based on an estimator of F, one obtains an estimator of the threshold-
ing function. Storey et al. (2004) and Genovese and Wasserman (2004) consider estimates
of F based on the estimated FDR. It can be shown that several methods of multiple testing
correction, such as Bonferroni’s method and the Benjamini-Hochberg method, can be ex-
pressed in terms of such a thresholding procedure. Asymptotic results for the thresholding
procedures are obtained by Storey et al. (2004) and Genovese and Wasserman (2004).

3. Decision Theory and False Discovery Rates: A Connection

Decision theory is an area with a long history in statistics (Raiffa and Schlaifer, 1961;
Ferguson, 1967). Much work has been focused on developing estimation procedures, or
more generally decision procedures, that have desirable risk properties. It is crucial to
think of estimators as estimating a population parameter; what decision theory allows for is
evaluation of risk properties of such estimators. Generically, we let 6 to be the population
parameter to be estimated, d an estimator and L(,d) the loss function. The risk function
is defined by
R(0,d) = E{L(8,d)},

where the expectation is taken with respect to the distribution of the data.
Let us start by considering the following two-stage model:

ind
Tilpi "~ N(ui,1)
i
H1y--e s Pn = F’ (2)

where p; is the mean of T;, and F' is some distribution function. Thus, model (2) specifies
a two-stage model for the joint distribution of (T%,...,T,). Note that while the first stage
of (2) specifies conditional independence of the T;, marginally the joint distribution has an
exchangeable correlation structure and hence are dependent. Also we are now viewing T;
as an estimator of y;, i =1,...,n.

Suppose we take F' to be the cumulative distribution function for a degenerate point
mass at u. Then Ti,...,T, represent a random sample from a normal distribution with
mean 4 and variance one. From a decision-theoretic point of view, this is a well-studied
problem in statistics; for squared error loss, the sample mean is known to be the minimax
estimator that is admissible (Lehmann and Casella, 1997, §5.1).

As an extension of the previous example, let us take F' in (2) to be a normal distribution
with mean p and variance 72, where 72 > 0 is known. This is the classical normal random
effects model for T. The effect of the second of this model is to shrink the estimates of
1; towards a common mean g by borrowing strength from other observations. A classical
estimator in this situation that performs well is the following estimator, proposed by Lindley

and Smith (1972):
1 1 -
pi=(1——— T+ ——=T,
fi ( 1+r2> iy
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Multiple testing and shrinkage estimation 5

where T, = n=' Y1 | T;. Note that there is shrinkage of the univariate statistic T; (i =
1,...,n) towards the population mean of the statistics, which is estimated based on the
sample using the sample mean.
Let us now take F' in (2) to be
F=71'0F”0 + (1_71—0)Fu17

where F),; and F),, are the cumulative distribution functions for the degenerate point mass
distributions at uo and p;. Plugging into (2), this implies that

T; ™ 70N (0, 1) + (1 — m0) N (11, 1). 3)

We have a special case of the mixture model for false discovery rate where fy and f; are
densities for N (ug,1) and N(u1,1) random variables, respectively. This model was studied
in some detail by Cox and Wong (2004).

In the multiple testing literature, model (3) would arise in a situation where we wished
to test m hypotheses of the form Hy : p = po versus Hy : yu = py, i.e. testing a simple
null hypothesis versus a simple alternative, where the distribution of the test statistic is
normal with mean p and variance one. This type of structure might also arise in testing
one-sided null hypotheses versus one-sided alternatives and simple null hypotheses versus
one-sided alternatives in the situation where the distribution of the T; exhibits the monotone
likelihood ratio property (Lehmann, 1986, p. 78).

We can generalize (3) to allow for unequal variances:

T; % N (o, 03) + (1 = mo)N (a, o). (4)

To extend the decision theoretic viewpoint here, what the mixture distribution for F' as
manifested in (3) and (4) does is to provide two targets for shrinkage: po and pg. Thus, the
multiple testing framework considered in the FDR literature provides a natural statistical
model for which to develop shrinkage estimators and to study their risk properties. Note
that a complication of this multiple testing framework is that we must shrink towards two
targets.

4. Simultaneous Estimation Procedures: Theoretical Results

An alternative to the FDR procedures that would address the multiple testing issue in (4)
is to construct shrinkage estimators that target the two distributions. We now demonstrate
how to do this using (4); note that we are considering T; (¢ = 1,...,n) to be estimators
of the location parameter pu. Assume that pg and p; are known and that the variances
are unknown. No shrinkage gains are possible in (3) because of the equal variances for the
two component distribution of the mixture model. Note that in order to apply the decision
theoretic framework, we have to view the statistics as estimating a population quantity.
We will first start by considering an estimation of the location parameter. Another point
of departure from previous work on FDR estimation is that we will assume that pg, p1, 7o
and 7; are known. We will study a procedure for data analysis where 7g is estimated in
Section 6.

To construct a shrinkage estimator of p in model (4), we calculate it relative to each of
the component of the mixture distribution and then mix the estimators with weights. With
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6 D. Ghosh

respect to the first component, a shrinkage estimator is given by

n—2
Ty =T; — [m 2] (T; — o), (5)

> i1 (Ti — o)
while for the second component, a shrinkage estimator is given by
n—2

Yo (Ti — p)?

for i = 1,...,n. A shrinkage estimator combining (5) and (6) is then given by 7/S =
WO(Ti)TOJiS + m (TZ)TIJlS, 1= ]., Y 1N where

TS =T, — [1 A ] (T; — 1) (6)

T f1(T3)
w0 fo(T3) + 71 fr(T)

and fo and f; refer to the marginal densities of the distribution of the test statistics under
the null and alternative hypotheses from (1). We will refer to this as a double shrinkage
estimator. Note that T; is shrunk towards both o and p; by construction. Let us consider
(7) further with k£ = 0. If mo and m4 equal fo and f1 in (1), then for £ = 0, (7) represents the
local false discovery rate (Efron and Tibshirani, 2002). There is thus an intimate connection
between the double shrinkage estimators with the false discovery rate; in particular, the
shrinkage weights are based on the local false discovery rate. This interpretation does not
exist when fy and f; are not density functions corresponding to the null and alternative
hypotheses.
Efron et al. (2001) considered the following test statistic in the microarray setting:

Wk(T,') =

(7)

7 num
. T

izma(lzla“wn) (8)
where T/"*™ and T" represent the numerator and denominator of the ith statistic, and
ag is a percentile of the empirical distribution of Tge, ..., T", We can view T, ..., T, as
estimators of ft1, . .., ftn. The adjustment in the denominator in the test statistics 71, ..., T,
achieves shrinkage for the multiple testing situation; however, the “fudge factor” in (8) is
not based on a formal probabilistic model. By contrast, the statistical framework described
for the construction of T{®,...,T:79 leads to shrinkage in a more principled manner.

To guide us in the construction of double shrinkage estimators, it is necessary to think
of available optimality properties. The first optimality property to consider is Bayes rules.
Bayes rules or Bayes estimators minimize the posterior expected loss, conditional on data,
with respect to some prior distribution. Note that the definition of Bayes rules is contingent
on the choice of loss function used. For squared error loss of a functional of parameter p,
9(u), the Bayes rule is given by the posterior mean E[g(u)|T], while for L; error, the Bayes
rule is given by the posterior median of g(u), conditional on data.

The mixture model for false discovery rates is (2) with F being a mixture of two dis-
tributions, i.e. F = moFy + m F1. We can then construct a Bayes estimator of g(u) by
finding the Bayes estimator with respect to Fy and F; and convolving the result. Let go(u)
and §;(u) denote the Bayes estimators of g(u) with respect to Fy and F;. Then the Bayes
estimator of g(u) with respect to F' is given by

9(1) = mo{go(1) }go (1) + (1 — mo{Jo (1) }) g1 (1)-

http://biostats.bepress.com/umichbiostat/papers4



Multiple testing and shrinkage estimation 7

For example, if we take Fj to be the cdf for a normal random variable with mean 6, and
variance n2 and F; that for a normal random variable with mean 6, and variance n?, then
under both squared error loss and Ly loss, the Bayes estimator of p is

| Ziea T+ o/ - >ia Ti+ /i
T, | Zi= 1— T, i= .
o (Z ’) n+1/nk + o ZZZI ’ n+1/n?

i=1

Another optimality property that can be used to evaluate estimators is minimaxity. As
described in Lehmann and Casella (2002, §5.1, p. 309), an estimator 6™ of g(u) which
minimizes the maximum risk (expected loss), i.e. which satisfies

inf sup R{g(u), 6} = sup R{g(n),"},
© ©

is said to be minimax. We focus on the situation where g is the identity function and the
loss function is quadratic and seek to characterize the class of minimax estimators. To do
this, we need some more mathematical background. Define m to be a function from R"™ to
R. We define the differential operator Vm = (Vim, ..., V,m) to be the function from R"
to R such that for all z € R,

m(t + z) — m(t) =/0 t'Vm(t + yz)dy.

A function is superharmonic if
n
Vem(t) = Vim(t) <0.
i=1

We consider estimators of the following form:
Ty = T; + Viogmi(Ty), i=1,...,n;k=0,1 (9)

where mo and m; are functions that are twice differentiable. As shown in Brown (1971),
estimators of the form (9) generate a wide class of rules, as it contains Bayes and admissible
rules. A generalized double shrinkage estimator is given by

Ti = ch(Ti)Tki (10)

where
mrmy (1)

Womo(Ti) + mimy (TZ) ’

(11)

cx(Ts) =

fori=1,...,nand k=0,1.

The next step is to characterize the class of minimax double shrinkage estimators. We
have the following theorem from George (1986):
Theorem 1: Define Ty; as in (9). If my and V'my, are differentiable, my, is superharmonic
and satisfies the following conditions:

E|Vimi(T)/m(T)| < o0, i=1,...,n (¢)
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8 D. Ghosh

and
E||Vlogmy(T)|” < oo (44),

then for a fized k, Ty; (i =1,...,n) is minimaz.

Theorem 1 provides sufficiency conditions to check for the minimaxity of Ty; (i =
1,...,n) for a given k. The conditions that my (k = 0,1) must satisfy in Theorem 1 are
very similar to the regularity conditions that densities must satisfy for the usual asymptotic
results for maximum likelihood estimation procedures. Recall, however, that the mixture
model for false discovery rate consists of two components and that we want to perform
shrinkage in two directions, corresponding to each component of the mixture. The follow-
ing lemma is immediate from Theorem 1.

Lemma 1: If Tk,- satisfy the conditions of Theorem 1, and mgy and m; are superharmonic,
then T}, defined in (10) is minimax.

Proof: Note that if mo and m; are superharmonic, then 211920 mpmy, will also be super-
harmonic. By Theorem 1, (10) will be minimax.

Based on the results of Theorem 1 and Lemma 1, we have constructed a class of esti-
mators that are optimal in the sense of minimizing the worst-case risk scenario. This can
be viewed as providing some robustness to the estimation procedure.

To study the potential gains of shrinkage, we performed a simulation study. We con-
sidered estimation of the location parameter. The two-group problem was studied in which
measurements on m = 10 individuals for each group was generated from a normal distribu-
tion; the distribution for group ¢ is normal with mean 7; and variance one, ¢ = 0,1. Note
that the target estimand in this setting is yu = 1, — 7. In this setting, we took 79 = 0.1,0.5
and 0.8. We considered three situations:

e Small: We take p to be 0.25 with probability 0.75 and 0.5 with probability 0.25.
e Medium: We take u to be 0.25 with probability 0.5 and 0.5 with probability 0.5.
e Large: We take u to be 0.5 with probability one.

The proposed method of Efron et al. (2001) was used, along with the double shrinkage
estimators. However, the true value of 7y was used for the for the weights, i.e. m(t) = mo
instead of (7). Thus, we are not incorporating the data-adaptive nature of the weights at
this stage; how to estimate this is considered further in Section 5. With regards to the
target in the double shrinkage estimators, we considered two situations. The first is where
the true target is used and the second where the target is misspecified. The misspecified
target is taken to be one. The mean-squared error results are shown in Table 1. Based on
the true target results, there is a major increase in risk by using the Efron et al. (2001)
statistics. Even when the target is misspecified, the double shrinkage estimator leads to a
risk reduction relative to the Efron et al. statistic. Note that the risk reduction occurs even
when using non-data-adaptive weights. This suggests that shrinkage towards two targets
offers advantages relative to shrinkage towards one in this multiple testing framework.

5. Double shrinkage estimation

We now seek to construct a double shrinkage estimator using the observed data. While
George (1986) discusses theoretical aspects of multiple shrinkage estimators, he does not
give methods for their calculation using data. Note that estimation of a double shrinkage
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Multiple testing and shrinkage estimation 9

estimator requires that the distribution of the test statistic under the null and alternative
hypotheses be estimated, as well as mg. One method would be to assume parametric forms
for the component densities in (1) and to fit a finite mixture model to T3, ...,T,. However,
we seek more flexible models that attempt to use as much of the data distribution for the
test statistics as possible. To do this, we utilize a density estimation method proposed by
Efron (2004). He was not addressing the problem of construction of shrinkage estimators
for multiple testing but rather the issue of estimating effect sizes in a false discovery rate
framework.
Note from (1) that we have

mfi(t) = f(8) — mo fo(t).

We can estimate f(t) by applying density estimation methods to the “data” T1,...,T,. For
estimation of 7 fo(t), the zero assumption in Efron (2004) is utilized. What this means is
that most test statistics with a value near zero comes from the null distribution component.
The assumption implies that one can use a normal-based moments matching technique as
described in Efron (2004) to obtain an estimate of mg and fo(t). Given the estimate of
f(t) and 7o fo(t), we then obtain an estimate of m; and f;(t) by simple subtraction. In the
example presented in the next section, we utilized this procedure. The interested reader is
referred to Efron (2004) for numerical details.

Based on the estimates of fo(t), f1(t) and 7o, we can estimate T/°,..., T.75 by
T8 = #to(T)) T3, + {1 — #0(T:)}T5;°, (12)
where
Ty =T; - [1 A #ﬁﬂoy] (T — fro),
TS =T, - [1 A #111)2] (Ti — f1),
i fi (1)

7/%15: (t) =T ~ A ’

o fo(t) + (1 — 7o) f1(t)

o=/ tdEy(t) and fy, = I tdF} (t). Thus, we have provided a method for practical imple-
mentation of double shrinkage estimators for test statistics. We reiterate that in George
(1986), no algorithms for estimating (7) or uo and u are given. In addition, we have linked
up the double shrinkage estimators to the multiple testing problem.

6. P-values: Theoretical Considerations and Double Shrinkage Estimation

In the original paper by Storey (2002), the test statistics used for testing the hypotheses
H,,..., H, were the p-values. The false discovery rate was estimated on the basis of the
p-values and estimating 7o, the proportion of true null hypotheses, using a permutation
scheme.

It is a bit more problematic to come up with a population “parameter” estimated by a
p-value. We follow the approach of Hwang et al. (1990) and consider the p-value to be an
estimator of the probability of the null hypothesis. Equivalently, we can consider estimators
of the expected value for the indicator function corresponding to the null hypothesis being
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10 D. Ghosh

true. If we let py,...,p, denote the p-values for testing Hyy,...,Hon, then the model
induced by (3) is

iid
D1,---3,Pn < 71—O-FIU%—(1_71—0)‘F1V7 (13)

where Fy is the cdf of a U = Uniform(0,1) random variable and Fy is that of a random
variable stochastically smaller than U.

To cast these statistics into a decision theoretic framework, we consider a multivariate
generalization of the work of Hwang et al. (1990), who considered a decision-theoretic ap-
proach to the hypothesis testing problem. Suppose that the null and alternative hypotheses
can be phrased as

Hy : p € O versus Hy : u € O°.

Our target parameter to estimate is I(u € 0), i.e. the indicator function for the param-
eter being in the set described by the null hypothesis. A loss function that is a natural
multivariate generalization of that of Hwang et al. (1990) is

n

L(u,d) = Y |I(n; € ©) — d(T)|* (14)

i=1

for £k = 1,2; the choices of k correspond to L; and Ly error loss functions. If were to
look for Bayes rules with respect to (14) under the assumption that the p; (i = 1,...,n)
are independent but not identically distributed, then the Bayes rules are the usual com-
ponentwise Bayes rules. For L loss, the Bayes rule is P(u; € ©|T;) and for L; loss, it is
I{P(u; € ©|T;) > 1/2},i=1,...,n. If we were to construct Bayes rules with the fact that
ui = p and that the T; are iid, then the Bayes rules under L; and L error are P(u € O|T)
and I{P(u € O|T) > 1/2}. Storey (2003) derived this type of result for L; error with
a slightly different conditioning event. Note that the Bayes rules for Ly error is simply
the local false discovery rate (Efron and Tibshirani, 2002). The Bayes rules for L; error
loss have implicitly assumed that the cost of a Type I error and Type II error are equal;
generalization to the situation of unequal costs is easy. It is interesting to note, however,
that the L; loss function is not a proper scoring loss function (Schervish, 1989); we thus
focus attention on Lo loss.

Mimicking what was done in the earlier sections, an approach to constructing double

shrinkage estimators for I(u; € ©) is to calculate for i =1,...,n,
p/® = mmi)py; + {1 — mo(pa)} pi, (15)
where ( )
7S n—1
S_—p |1 i —1/2 16
A == [ sl | 1o
JS (n =)oy,
pii =pi— 1IN | (Bi — > 17
1 == [1n st - ) an)
Top
T =
o(?) mop + (1 = mo) Fy (p)
(p1,..-,pn) are the n p-values, and py and o are the mean and variance of the p-values

under the alternative hypothesis. Note that the 1/2 and 1/12 refer to the mean and variance
of a Uniform(0,1) distribution. These adjusted p-values are shrunken p-values that account
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for the multiple testing problem. The mixture distribution of the p-values is providing two
targets for shrinkage.

We sought to study the potential gains in risk from adopting a double shrinkage estima-
tion framework using simulation studies. Here, p-values were generated from model (3) with
Fp being the cdf for a uniform [0,1] distribution and F; being the cdf for a Beta distribution.
As in the previous paragraph, for each simulation setting, we generated 1000 datasets; each
simulated dataset consisted of n = 10000 values. Again, both true and misspecified targets
were used. The misspecified target was taken to be a mean of 0.2 with a variance of 0.01.
We let mg = 0.2,0.5 and 0.8. In this setting, we took mp = 0.2,0.5 and 0.8. We considered
three situations:

e Small: Beta distribution with parameters & = 3 and 8 = 4. This choice of parameters
gives a mean of 3/7 and a variance of 3/98 for the distribution of p-values under the
alternative hypothesis. We term this a Beta(3,4) distribution.

e Medium: A mixture of a Beta(3,4) and Beta(3,15) distribution with mixing pro-
portions 0.5 and 0.5, respectively.

e Large: A Beta(3,15) distribution. This gives a mean of 3/18 and a variance of f for
the distribution of p-values under the alternative hypothesis.

The g-value estimation procedure proposed by Storey (2002) was used; the shrunken p-
value (15) was also used with the true my. The mean-squared error results are shown in
Table 3. We found the g-value method to be very competitive with the double shrinkage
estimator for the p-value. Given that the g-value method is based on the pFDR, which is a
Bayes rule under L; error loss (Storey, 2003), its performance is not surprising. The g-value
appears to work well when 7o is relatively large. However, it appears that for my being
small, there are potential gains to be had by using the double shrinkage adjusted p-value.
These results seem quite consistent across the various effect size situations. Note that an
adaptive weight for 7y was not used; this suggests that there will be major risk gains by
using a data-dependent estimator of q().

For implementing the shrunken p-value procedure with observed data, estimators of mg
and Fy (p) are needed. To estimate these quantities, observe the following relationship

Fp(p) = mop + (1 — mo) Fv (p),

where Fp(p) is the cumulative distribution function for py,...,p,. Solving for Fy, we get
F _
Fy(p) = 7”1@) 0P (18)
— 0

We can estimate Fp using the empirical distribution function of the observed p-values.
Provided we can estimate my, we can estimate the cdf of V. There exist many choices of
estimators for 7 in the literature. Due to its popularity in the area of genomic data analysis,
we choose the Q-VALUE algorithm by Storey and Tibshirani (2003). It is summarized as
follows:

(a) Order the G p-values as p(1) < p2) < -+ < P(a)-
(b) Construct a grid of L X values, A1,...,Ar and calculate

o) = P23,
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l=1,...,L.
(c¢) Fit a cubic smoothing spline to the values {\;, 7o (N)}, I =1,..., L.
(d) Estimate mg by the interpolated value at A = 1.

Based on the resultant estimator of mg, g, we can estimate Fy (p) by

; Fp(p) — #op
Fy(p) = T l-70

Then an estimator of the shrunken p-value is given by

b7 = #o(p)pay + {1 — #o(ps)} HYY (19)
where
A2
. JS (n — I)Upl N
=P [ INm 5 | (i — ;
plz pi l Zizl (pz _ /J,V)2 (p’l MV)
. T
#o(p) = o (20)

#op + (1 — 7o) Fy ()

and fiy and &gl) are the estimated mean and variance of V. Thus, we have constructed a
double shrinkage estimator for p-values. One difference for the double shrinkage estimator
in this situation relative to that for the test statistics is that the distribution of the p-values
under the null hypothesis is completely independent of parameters. Thus, only the mean
and variance of the p-values under the alternative hypothesis needs to be estimated here.
If we took the density functions instead of the cdf of the component distributions in (20),
then we would have the local false discovery rate using the p-value.

Note that we are implicitly assuming a squared error loss function here. While this
is natural for estimators of the mean, it might not be as appropriate for p-values. If the
shrunken p-value is less than zero, we will threshold it at zero. One tempting alternative
is to try a transformation of the p-values that unconstrains the range (e.g. log(-log(1-
pvalue)) ), calculate the double shrinkage estimator for the transformed p-value and then
backtransform. The problem with this approach is that the uniform(0,1) distribution of
the p-value under the null hypothesis is lost, and the null distribution of the transformed
p-value will not in generally be analytically tractable. This remains a topic for further
study.

7. Microarray example

We now apply the proposed methodology to a microarray profiling experiment in prostate
cancer (Dhanasekaran et al., 2001; Varambally et al., 2002), Using 10K ¢cDNA microarrays,
the investigators have profiled tissue samples from various stages of prostate cancer (nor-
mal adjacent prostate, benign prostatic hyperplasia, localized prostate cancer, advanced
metastatic prostate cancer). In addition to the gene expression profiles for a sample, the
investigators have access to several other clinical parameters, such as Gleason score, sur-
vival time and status, and time to PSA recurrence. Throughout the profiling studies, one
of the hypotheses made by investigators is that there exists a set of genes that distinguish
aggressive prostate cancer from non-lethal prostate cancer. To begin to address this, a fairly
standard analysis would be to determine which genes are differentially expressed between
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aggressive prostate cancer from nonaggressive prostate cancer. While various definitions
of aggressiveness could be considered, we will focus on finding genes that are differentially
expressed between metastatic prostate cancer (i.e., cancer that has spread to other organ
sites) versus localized prostate cancer.

Measurements were made on n = 9984 genes for 79 individuals. There are 59 localized
prostate cancers and 20 metastatic prostate cancer samples. Before analyzing the data, we
took the following preprocessing steps:

(a) Genes that were reported as missing in more than 10% of samples were filtered out.
(b) Genes that had a sample variation less than 0.05 across all samples were filtered out.

This left a total of n = 6040 genes available for analysis.

We first calculated t-statistic numerators comparing gene expression in localized versus
metastatic prostate cancer samples. Note that this corresponds to estimating the population
quantity of the mean difference in expression between two groups. We then applied the Efron
(2004) procedure for estimating the distribution of the null density fo(t); the results are
given in Figure 1. The red line represents the empirical null density of Efron (2004), which
we take to be our estimate of fo(t). The blue line is the density of the observed t-statistic
numerators, which is our estimate of f(t). We also estimate my to be 0.995. Based on
the estimates of fy, f, and mo, we can calculate fi(¢) in (3) by subtraction. The resulting
shrunken statistics, compared to the original statistics, are given in Figure 2. Note that the
shrinkage estimation works in this example like shrinkage towards one target because the
estimate of ¢ is large.

The methodology using shrunken p-values is illustrated next. We first calculated t-
tests comparing gene expression in localized versus metastatic prostate cancer samples; we
assumed unequal variances between the two groups. For the purposes of illustration, we used
a normal approximation to calculate the p-values. The estimate of 7y using the QVALUE
algorithm of Storey and Tibshirani is approximately 0.30. Based on this, we estimate Fy;
the mean and variance are given by 0.17 and 0.07. We can then construct shrunken p-value
estimators using (19). Histograms of the original and the shrunken p-values are provided
in Figure 3. Note that we have some estimated negative p-values, so we treat them as zero.
Because of the shrinkage, many p-values that were initially nonsignificant now become
significant.

8. Discussion

In this article, we have provided a reinterpretation of the multiple testing problem in terms
of estimation targets that allows for consideration of a decision-theoretic framework. This
framework also motivates the double shrinkage methods proposed in this article. In par-
ticular, shrunken t-statistics and shrunken p-values, which are analogs of James-Stein esti-
mators, are considered. It is shown that shrinkage towards the two targets that comprise
the mixture distribution potentially leads to better risk behavior than existing procedures.
While shrinkage towards multiple targets was studied from a risk point of view by George
(1986), in this paper, we extend that view to the study of p-values and to actual computation
using observed data.

With the explosion of high-dimensional hypothesis testing problems, we find that there
is a great opportunity for pooling information across hypotheses using the mixture model
framework described here. The shrinkage provides a natural method for adjusting for the
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multiple testing problem. While we have focused primarily on using t-statistics in this
paper, the methodology is fairly flexible and could work with any Wald-type statistic.

We also find in our examination that there is a natural connection between the false
discovery rate with weight functions for the shrinkage estimators. This gives a natural intu-
ition as to why shrinkage of estimators will work for the multiple testing problem considered
here.

Finally, this study also provides further justification of the optimality of posterior prob-
abilities of hypotheses, conditional on data. The results in this paper complement those of
Storey (2003) and Miiller et al. (2004).
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Table 1. Outcomes of n tests of hypotheses

Accept | Reject | Total
True Null U A% mo
True Alternative T S mi
Y% Q n

Table 2. Simulation results for location estimators

True Misspecified

Effect o Efron DSE Efron DSE
Small 0.1 0.250 0.001 0.258 0.011
0.5 0.256  0.002 0.257 0.015

0.8 0.254 0.001 0.254 0.018

Medium 0.1 0.253  0.002 0.274 0.062
0.5 0.260 0.002 0.260 0.142

0.8 0.253  0.001 0.256 0.164

Large 0.1 0.304 0.000 0.250  0.200
0.5 0.274 0.003 0.253 0.195

0.8 0.260 0.006 0.252 0.197

Table 3. Simulation results for strength of evidence methods

True Misspecified

Effect o Q-value DSE Q-value DSE
Small 0.2 0.303 0.173 0.402 0.181
0.5 0.264 0.253 0.350 0.302

0.8 0.164 0.266 0.280 0.311

Medium 0.2 0.341 0.179 0.398 0.186
0.5 0.266 0.252 0.346 0.289

0.8 0.166 0.253 0.279 0.308

Large 0.2 0.302 0.166 0.173 0.164
0.5 0.266 0.254 0.275 0.296

0.8 0.166 0.266 0.310 0.312
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Fig. 1. Plot of empirical (blue line) and null (red line) densities using local false discovery rate
estimation method of Efron (2004).
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Fig. 2. Histogram of original estimators (numerator of t-statistics) in upper plot and double shrinkage
estimators in lower plot.
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Fig. 3. Histogram of original p-values in upper plot and doubly shrunken p-values in lower plot.
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