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Analysis of Case-Control Age-at-Onset Data
Using a Modified Case-Cohort Method

Bin Nan and Xihong Lin

Abstract

Case-control designs are widely used in rare disease studies. In a typical case-
control study, data are collected from a sample of all available subjects who have
experienced a disease (cases) and a sub-sample of subjects who have not expe-
rienced the disease (controls) in a study cohort. Cases are often oversampled in
case-control studies. Logistic regression is a common tool to estimate the relative
risks of the disease and a set of covariates. Very often in such a study, informa-
tion of ages-at-onset of the disease for all cases and ages at survey of controls
are known. Standard logistic regression analysis using age as a covariate is based
on a dichotomous outcome and does not efficiently use such age-at-onset (time-
to-event) information. We propose to analyze age-at-onset data using a modified
case-cohort method by treating the control group as an approximation and show
that the asymptotic bias of the proposed estimator is small when the disease rate is
low. We evaluate the finite sample performance of the proposed method through a
simulation study and illustrate the method using a breast cancer case-control data
set.
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Summary. Case-control designs are widely used in rare disease studies. In a typical case-

control study, data are collected from a sample of all available subjects who have experienced

a disease (cases) and a sub-sample of subjects who have not experienced the disease (controls)

in a study cohort. Cases are often oversampled in case-control studies. Logistic regression is

a common tool to estimate the relative risks of the disease and a set of covariates. Very often

in such a study, information of ages-at-onset of the disease for all cases and ages at survey

of controls are known. Standard logistic regression analysis using age as a covariate is based

on a dichotomous outcome and does not efficiently use such age-at-onset (time-to-event)

information. We propose to analyze age-at-onset data using a modified case-cohort method

by treating the control group as an approximation of a subcohort assuming rare events. We

investigate the asymptotic bias of this approximation and show that the asymptotic bias of

the proposed estimator is small when the disease rate is low. We evaluate the finite sample

performance of the proposed method through a simulation study and illustrate the method

using a breast cancer case-control data set.

Key words: Age-at-onset, Asymptotic bias; Bootstrap; Case-cohort; Case-control; Rare dis-

ease.
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1 Introduction

Case-control designs are widely used as a cost-effective vehicle to study risk factors of a

rare disease. In a typical case-control study, data are collected from all available subjects

who have experienced a certain disease (cases) and a sub-sample of subjects who have not

experienced the disease (controls) in a study cohort. Cases are often oversampled in case-

control studies. Since the outcome-based biased sampling nature can be ignored (see e.g.

Prentice and Pyke, 1978), logistic regression is commonly used to estimate the associations

of the presence/absence of the disease and a set of covariates measured by odds ratios as

approximations of relative risks.

Age-at-onset of disease for all the cases and age at the survey for all the selected controls

are often known in case-control studies. A traditional analysis is to use age as a covariate

in logistic regression. A model that handles time-to-event data would be more natural and

appropriate, however, since it uses the information in the data more efficiently than simply

dichotomizing subjects according to the presence/absence of the disease at a certain time

point (see e.g. Cox and Oakes, 1984, Chapter 1), especially when censoring is present for

controls on ages-at-onset and censoring times vary between subjects.

If each case in a case-control study has one or more age matched controls whose ages

are the same as the age at disease of the case, then the regression parameters of exposure

variables in a Cox model can be estimated using the conditional likelihood method proposed

by Prentice and Breslow (1978). Such a conditional likelihood method has recently been

extended to family studies with correlated failure times, see Li, Yang, and Schwartz (1998),

Hsu et al. (1999), and Shih and Chatterjee (2002), among others.

Many case-control studies are not age-matched, and yet the information of age-at-onset

of disease is available. Our research is motivated by a breast cancer case-control study con-

ducted at the University of Michigan (Beebe, 2002). The study consisted of 204 cases and
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246 controls who were postmenopausal women. The major question of interest was how

a woman’s weight change was associated with the risk of breast cancer. The investigators

collected ages at the breast cancer diagnosis for cases and ages at the survey for controls, but

ages were not individually matched between cases and controls. For this type of unmatched

(only for age) case-control studies, which is widely used in epidemiologic research, the con-

ditional likelihood approach does not apply, and we have not been aware of any methods

in the literature that can handle this type of data to estimate relative hazards of exposure

variables.

In this article, we propose to analyze such case-control age-at-onset data using a modified

case-cohort method by treating the group of controls as an approximation of a subcohort

under the assumption of a low population disease rate. In a case-cohort study (see e.g.

Prentice, 1986; Self and Prentice, 1988), complete information is collected for all cases and

all subjects in a subcohort that is a random sub-sample of the study cohort. The intuition

behind treating case-control data as approximated case-cohort data is that the number of

cases in the subcohort is close to zero for a rare disease study.

We introduce the proposed methed in Section 2. In Section 3, we perform an asymptotic

bias analysis of the proposed method and show that the asymptotic bias of the relative

risk estimator is very small when the disease rate is low, which is a common assumption

underlying case-control designs. Numerical examples are given in Section 4. Simulations

show that the proposed method works well for finite samples. We apply the method to the

Michigan breast cancer case-control study, followed by discussions in Section 5. We use a

nonparametric bootstrap method for variance estimation. As we point out in Section 5,

our approach is ready to be extended to covariate matched case-control designs and family

studies.

2
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2 The Modified Case-Cohort Method

2.1 The Case-Control Age-at-Onset Data

Consider a case-control study with n subjects. To follow the traditional notation used in

case-cohort data analysis as described in Section 2.2, let ∆i=1 if subject i is a case and 0

if a control, and Yi be his/her age and Zi be a vector of other covariates. Note that Yi is

age at disease diagnosis if subject i is a case and age at the survey if a control. Standard

logistic regression has been commonly used for analyzing such case-control data using ∆i as

a binary outcome and age Yi and covariates Zi as independent variables in the light of the

results of Prentice and Pyke (1978). Specifically, such a logistic model can be written as

logit(pi) = β0 + β1Yi + βT
2 Zi, (1)

where pi is the probability of being a case given a subject is sampled into the case-control

sample. The results of Prentice and Pyke (1978) show that parameters (β1, β2) are the odds

ratios and can be estimated by fitting such a logistic regression to the case-control data,

which are an approximation of the population relative risks.

Since this traditional logistic regression uses the dichotomous disease status ∆i as an

outcome and does not fully use age-at-onset information of cases and censoring information

of controls Yi, instead, the age-at-onset variable (subject to censoring) Yi is used as a covari-

ate in (1). Given such information, it is more natural to analyze such data as survival data

by treating age-at-disease-onset as a survival outcome and case-control status as a censoring

indicator. A major difficulty of such an analysis is the presence of biased sampling with un-

known selection probabilities in case-control data where cases are oversampled. To overcome

this, we view such data as an approximation of data from a case-cohort study assuming the

population disease rate is low and propose an analysis using a modified case-cohort method.
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2.2 The Estimation Method of a Case-Cohort Study

We first briefly review the estimating method of Self and Prentice (1988) for a case-cohort

study, then show how it can be modified to analyze case-control age-at-onset data in the next

subsection. Suppose a study cohort consists of m independent subjects. The disease status is

known for every subject in the cohort. In a case-cohort study, complete information including

covariates and event time subject to censoring is collected for all cases and all subjects in a

subcohort. Note that the cases in the subcohort are a subset of all the cases and hence the

intersection of the subcohort and the set of cases may not be empty.

Suppose there are n subjects in the case-cohort study. For subject i, let Yi ≡ min(Ti, Ci)

be the observed time where Ti is the failure time and Ci is the censoring time, ∆i ≡ I(Ti ≤ Ci)

the failure indicator, and Zi a vector of covariates. Assume the population follows the Cox

model

λ(t|Z) = λ0(t)exp(θ′Z). (2)

where λ(·) is the hazard function and λ0(·) is the baseline hazard function of the failure

time. Self and Prentice (1988) proposed to estimate the regression coefficients θ by solving

the following estimating equation

1

m

m∑
i=1

∫ {
Zi −

∑
j∈SC I(Yj ≥ t)Zjexp(θ′Zj)∑

j∈SC I(Yj ≥ t)exp(θ′Zj)

}
dNi(t) = 0, (3)

where SC denotes the subcohort, Ni(t) ≡ ∆iI(Yi ≤ t) is the failure counting process for

subject i, and m is the total number of subjects in the study cohort. Self and Prentice

(1988) proved that the estimator obtained from equation (3) is consistent and asymptotically

normal. If SC is the entire cohort, equation (3) becomes the partial likelihood estimating

equation for cohort data.

The subcohort SC in equation (3) is a simple random sample of the study cohort. One

can easily see that the ratio inside the integral of equation (3) is an estimator of the following

4
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quantity

E0

{
I(Y ≥ t)Zexp(θ′Z)

}

E0

{
I(Y ≥ t)exp(θ′Z)

} , (4)

where E0 denotes the expectation taken under the Cox model (2) at the true parameter

value. The uniform consistency of the ratio in equation (3) to (4) can be shown by standard

empirical process arguments under the assumptions in the Appendix (see e.g. van der Vaart

and Wellner, 1996).

2.3 The Modified Case-Cohort Method for the Case-Control Age-
at-Onset Data

In a case-control study, it is common that age-at-disease-onset is available for all cases and

age at the survey is available for all controls. Hence it is natural to treat such data as survival

data by assuming the population follows the Cox model (2). However, since a case-control

sample is not a random sample of a study cohort due to oversampling of cases, a direct

application of the standard Cox model (2) to case-control data would yield a severely biased

relative risk estimator.

For a rare disease, the number of cases would be very small comparing to the number

of controls in a subcohort if it were available. We thus can treat the group of all available

controls in a case-control study as the controls arising from an underlying subcohort SC.

Under the rare disease assumption, we can use controls to approximately estimate (4). This

view allows us to treat case-control data as approximated case-cohort data and estimate the

regression coefficients θ by approximating the ratio in the case-cohort estimating equation

(3) using only controls.

Specifically, assuming the underlying population that the case-control data are generated

from follows the Cox model (2), based on estimating equation (3) we propose the following

5
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estimating equation for case-control data

1

m

m∑
i=1

∫ {
Zi −

∑
j∈SC(1−∆j)I(Yj ≥ t)Zjexp(θ′Zj)∑

j∈SC(1−∆j)I(Yj ≥ t)exp(θ′Zj)

}
dNi(t) = 0, (5)

where m indicates the underlying cohort size, SC denotes the “underlying” subcohort, Yi is

the age of subject i, ∆i = 1 if subject i is a case and 0 if a control. This notation is consistent

with that in Section 2.1. Note that (5) differs from the case-cohort estimating equation (3)

by the additional factor (1−∆i) in both the numerator and the denominator of the second

term in the integrand. Since 1−∆j = 1 for controls and 0 for cases, one can easily see that

the numerator and the denominator of the ratio on the left hand side of (5) only sum over

controls and are hence fully determined by the observed case-control data.

The underlying cohort size m is often unknown for case-control studies. Equation (5),

however, is completely determined since only the summands with dNi(t) = 1 contribute to

the left hand side of (5) and all these subjects are cases and hence fully observed. We keep m

in the formula just for notational convenience and ease of describing asymptotic properties.

For implementation purpose, denoting the set of cases by C in the case-control sample, and

the set of controls who are at risk for case i by Ri, equation (5) can be simplified to

∑
i∈C

{
Zi −

∑
j∈Ri

Zjexp(θ′Zj)∑
j∈Ri

exp(θ′Zj)

}
= 0.

In a case-cohort study, the proportion of the subcohort size in the whole cohort is needed

for estimating the variance of the estimator of θ obtained from solving equation (3), see e.g.

Self and Prentice (1988). Such information, however, is usually unknown for a case-control

age-at-onset data. We propose to use nonparametric bootstrap to estimate the variance of

θ̂ obtained by solving equation (5).

Since the ratio in equation (5) is a biased estimator of (4), the resulting estimator θ̂ would

be asymptotically biased. However, when the disease rate is low, we have 1 − ∆ = 1 with

a high probability in the underlying subcohort SC, i.e., the probability of being a control in

6
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SC is close to 1. Hence the bias of the ratio in equation (5), which estimates (4), is almost

negligible. It follows that the bias of θ̂ is practically negligible. To justify this intuitive

argument, we perform an asymptotic analysis in Section 3 to investigate the asymptotic bias

of θ̂ for case-control age-at-onset data.

Note that estimating equation (5) can be reduced from equation (3.5) of Chen and Lo

(1999) by taking the population case percentage to be zero, which in fact can be traced back

to the weighted estimating method of Kalbfleisch and Lawless (1988). The asymptotic result

of Chen and Lo (1999), however, does not apply because (i) their corresponding asymptotic

variance given in (3.6c) would contain a division of 1/0 if a zero case percentage were plugged

in, and (ii) their asymptotic variance in (3.6c) seems to be incorrect since it yields an over

100% asymptotic relative efficiency (see the last row of column 2 in their Table 1.) The

estimator obtained from their equation (3.5) should not be superefficient.

3 The Asymptotic Bias of the Modified Case-Cohort

Estimator

It is of significant practical interest to investigate the performance of the case-cohort ap-

proximation for case-control age-at-onset data. We here study the asymptotic bias of the

estimator obtained from equation (5). Denote by θ̂ the solution of equation (5), and by θ0

the true value of θ.

Let

η(t; θ) =
E0

{
(1−∆)I(Y ≥ t)Zexp(θ′Z)

}

E0

{
(1−∆)I(Y ≥ t)exp(θ′Z)

} . (6)

We show in the Appendix that the left hand side of the estimating equation (5) is asymp-

totically equivalent to

1

m

m∑
i=1

∫
{Zi − η(t; θ)}dNi(t) =

1

m

m∑
i=1

{Zi − η(Yi; θ)}∆i, (7)
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which converges to

ψ(θ) = E0[{Z − η(Y ; θ)}∆] (8)

in probability uniformly, where the expectation E0(·) is taken under the true model that

the data (Y, ∆, Z) follow, i.e. the Cox model (2). The asymptotic limit θ∗ of θ̂ hence solves

ψ(θ∗) = 0.

Specifically, under the Cox model (2), let F0(·|z) and G0(·|z) denote the conditional

distribution functions of T and C given Z = z, respectively, and f0(·|z) and g0(·|z) the

corresponding density functions. Let h0(·) be the density function of Z. Assuming T and C

are independent conditional on Z, i.e., independent censoring, the joint density function of

(Y, ∆, Z) is

p0(y, δ, z; θ0, λ00) =
[{

1−G0(y|z)
}
f0(y|z)

]δ [{
1− F0(y|z)

}
g0(y|z)

]1−δ
h0(z),

where θ0 denotes the true value of θ, λ00(·) denotes the true baseline hazard, F0(t|z) =

exp{−Λ00(t)exp(θ′0z)} and Λ00(t) is the true cumulative baseline hazard. Hence equation (8)

can be written as

ψ(θ; θ0, λ00) =
1∑

δ=0

∫ ∫
{z − η(y; θ)}δp0(y, δ, z; θ0, λ00)dydz

=

∫ ∫
{z − η(y; θ)}{1−G0(y|z)}f0(y|z)h0(z)dydz.

It follows that the asymptotic limit θ∗ solves ψ(θ∗; θ0, λ00) = 0 and hence θ∗ is a function

of the true values (θ0, λ00). Numerical integration can be used to calculate η(·) and ψ(·) and

the Newton-Raphson algorithm can be used to numerically solve the equation.

We now numerically calculate the asymptotic bias of θ̂. We assume the baseline failure

time T has an exponential distribution with constant hazard rate λ00. Thus Λ00(t) = λ00t.

Assume the censoring time C follows a uniform distribution in (0, c0) and the follow-up ends

at a fixed time τ with τ < c0, and the covariate is binary, i.e., Z ∈ {0, 1}. We choose τ = 1,

8
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c0 = 2, and pr(Z = 1) = 0.5. We choose different values of λ00 corresponding to different

values of the disease rate d00 of the Z = 0 group at time τ in absence of censoring. In other

words, λ00 = −log(1 − d00). We calculate the asymptotic relative bias assuming the true

value of θ0 is ±log2 ≈ ±0.693, 0, ±log3 ≈ ±1.099, which correspond to hazard ratios 2 and

1/2, 1, and 3 and 1/3. The asymptotic relative bias is defined as (θ∗−θ0)/|θ0|. When θ0 = 0,

the relative bias is calculated as θ∗ − θ0.

Under the assumed model, the function η(t; θ) can be calculated analytically using the

above joint density function p0(·). We then calculate the function ψ(θ) and its derivative

with respect to θ using numeric differentiation, and use the Newton-Raphson algorithm to

search for the root of ψ(θ∗) = 0. We find the derivative of ψ(θ) is always negative, and

thus ψ(θ) decreases monotonically and the root of ψ(θ∗) = 0 is unique. Figure 1 presents

the asymptotic relative bias as a function of the baseline disease rate for the five values of

θ0. We vary the baseline disease rate from close to 0% to 5%. The 5% baseline disease rate

corresponds to the population disease rate 9.6%, 7.4%, 5%, 3.8%, and 3.3% for θ0 =log3,

log2, 0, -log2, and -log3, respectively. The results in Figure 1 show that the asymptotic

bias of θ̂ is anti-conservative, and the relative bias is very small and is up to 4% when the

population disease rate is less than 10%.

4 A Simulation Study

We have conducted a simulation study to investigate the finite sample performance of the

proposed method. Data are generated from the same distribution as that used in the above

theoretical asymptotic bias calculation. For each pair of the baseline disease rate d00 and θ0,

we randomly generate a large cohort and randomly select 100 failures (cases) prior to time

τ = 1 and 100 controls. The baseline disease rate is set to be 0.5% and 2.5%. They correspond

to the population disease rate between 0.3% to 4.9% when θ varies between -log(3) and

9

http://biostats.bepress.com/umichbiostat/paper66



log(3). For each parameter configuration, we simulate 1000 data sets, and analyze each data

set using the proposed modified case-cohort method by solving equation (5). The numerical

implementation follows the method proposed by Therneau and Li (1999). For comparison

purpose, we have also performed a standard logistic regression using the case/control status

as a binary outcome and the binary indicator Zi and time (age) Yi as covariates. We use

100 bootstrap runs to calculate the bootstrap variance of θ̂ under the modified case-cohort

analysis, where cases and controls are re-sampled without replacement separately.

Table 1 reports the empirical bias, the empirical standard error, and the average of

the bootstrap standard errors of the modified case-cohort analysis and the average of the

model-based standard errors of the logistic regression. The theoretical asymptotic bias for

the modified case-cohort analysis is also reported. The results in Table 1 suggest that the

proposed modified case-cohort method performs well for analyzing case-control age-at-onset

data. The empirical bias is very small and agrees with the asymptotic bias reasonably well.

The bootstrap standard errors agree with their empirical counterparts. The empirical biases

and standard errors of the modified case-cohort survival analysis are smaller than those from

standard case-control logistic analysis, especially when the disease rate is lower, indicating

a superior performance of the proposed modified case-cohort method for rare diseases.

5 Analysis of the Breast Cancer Case-Control Data

We have applied the proposed method to analyzing data from the Michigan breast cancer

case-control study (Beebe, 2002). The study consisted of 204 cases and 246 controls who

were postmenopausal women. Cases were identified from patients’ records at the University

of Michigan Breast Cancer Center, who were diagnosed with primary breast cancer between

January 1, 1996 and December 31, 1999. The major question of interest was how a woman’s

weight change was associated with the risk of breast cancer. The investigators collected

10
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ages at the breast cancer diagnosis for cases and ages at the survey for controls. All the

participants were white. The ages of the participants ranged between 50 and 70 with the

median equal to 59. The covariate of main interest was the change of body mass index

between age 20 to 50. Each woman was asked to report her weights at age 20 and 50,

marital status, smoking status, family history of breast cancer and birth of a child. Body

mass indexes (BMI) at age 20 and 50 were calculated (weight/height2, kg/m2), and the

change of BMI between age 50 and 20 was calculated. Among those 450 cases and controls,

21 women with missing information on either weight change or height were excluded from

the analysis. One additional extremely short woman (40 inches high, which was likely to be

a coding error) was also excluded.

We analyzed the data using the modified case-cohort method under the Cox model by

solving (5), where ages of cases were used as event times and ages of controls were used

as censoring times. The breast cancer prevalence percent of January 1, 2003 of SEER 11

population diagnosed in the previous 10 years for white women aged between 50 and 70 is

less than 3% (see Ries et al., 2006). The prevalence rate for the University of Michigan

breast cancer data set should be even smaller because of shorter cancer diagnostic period.

Hence our rare disease assumption is appropriate. Our asymptotic bias analysis (Section

3) and simulation results (Section 4) show that the proposed modified case-cohort method

is expected to work well for such a rare disease. We calculated standard errors using 1000

bootstraps. The covariates included in the model were change of BMI, baseline BMI, marital

status (yes/no), current smoking status (yes/no), family history (yes/no) and birth of a child

(yes/no). The results are presented in Table 2. The change in BMI did not show a significant

association with the risk of breast cancer. Smoking and family history of breast cancer

significantly increased the risk of breast cancer. While marriage only marginally decreased

the risk (with p-value < 0.1), child birth significantly decreased the risk of breast cancer.

11
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No significant relationship was found between baseline BMI, BMI change and breast cancer.

We also did a stratified analysis with a 10-year age window as a stratum to take into

account the possible birth cohort effect, and found similar results as the non-stratified results

given in Table 2. Thus we only report the non-stratified analysis in this article.

6 Discussions

The modified case-cohort survival analysis provides an attractive procedure for analyzing

case-control age-at-onset data when the disease rate is low. Unlike the standard logistic

regression used for case-control data, this analysis naturally uses age at disease onset as a

survival outcome and is easy to implement. Our simulation results show that the proposed

method outperforms standard case-control logistic regression when the disease rate is low.

In view of the lack of the sampling fraction of controls in case-control data, we propose

to estimate standard errors using bootstrap. It is of future research interest to develop

an alternative analytic standard error estimator. The proposed approach can handle time-

dependent covariates without any added difficulty.

We restrict in this paper on classical case-control data where ages are not matched. The

proposed method can also be generalized to exposure covariate matched case-control data

and family case-control data. For the exposure covariate matched case-control data, each

group of cases and controls with matched covariates consists a stratum. Then a stratified

Cox regression can be implemented together with the method of Therneau and Li (1999),

which assumes each stratum has its own baseline hazard function. For the correlated family

data, the method of Cai and Prentice (1995) may apply to improve estimation efficiency for

hazard ratio parameters. Note that the cumulative baseline hazard function is not estimable

from case-control data where age is not matched because the sampling fraction of controls

is unknown.
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Appendix

Proof of the Asymptotic Limit of Equation (5)

Let

η̂(t; θ) =

∑
j∈SC(1−∆j)I(Yj ≥ t)Zjexp(θ′Zj)∑

j∈SC(1−∆j)I(Yj ≥ t)exp(θ′Zj)
. (9)

Suppose the parameter space Θ is compact, and the study ends at a fixed time τ with

pr(C ≥ τ) = pr(C = τ) > 0 while pr(T > τ) > 0. Then all functions 1−∆, I(Y ≥ t), Z and

exp(θ′Z) are well-behaved and belong to the Donsker class. Hence both summands in the

numerator and the denominator in η̂(t, θ) are in the Donsker class and thus in the Glivenko-

Cantelli class (van der Vaart and Wellner, 1996). It follows that η̂(t, θ) converges to η(t; θ)

in probability uniformly in [0, τ ] × Θ when the size of control group approaches to infinity,

i.e., as m →∞, given that the denominator is bounded away from zero in probability. Then

the left hand side of equation (5) is asymptotically equivalent to (7) uniformly in Θ since

∣∣∣∣∣
1

m

m∑
i=1

∫
{η̂(t; θ)− η(t; θ)}dNi(t)

∣∣∣∣∣ ≤ sup
t,θ
|η̂(t; θ)− η(t; θ)| · 1

m

m∑
i=1

∆i → 0

in probability by the uniform convergence of η̂. By the permanence of the Donsker property

for convex hulls of van der Vaart and Wellner (1996), it can be shown that {η(t; θ)} is also

Donsker and thus a Glivenko-Cantelli class given that the denominator is bounded away

from zero. Hence the right hand side of (7) converges to ψ(θ) in equation (8) in probability

uniformly in Θ.
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Figure 1: Asymptotic bias of θ as a function of the baseline disease rate at different values
of θ0: - - - θ0 =-ln(3); ... θ0 =-ln(2); —— θ0 = 0; – – – θ0=ln(2); — — — θ0=ln(3).
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Table 1: Biases and standard errors based on 1000 simulations with 100 cases and 100
controls in each data set using the modified case-cohort (MCC) analysis equation (5) and
the standard logistic regression (SLR)

Baseline disease rate = 0.5%

Population Bstrp. SE
θ0 disease rate Method Asym. bias Empr. bias Empr. SE Model SE

MCC -0.001 -0.026 0.317 0.328−log(3) 0.3%
SLR —— -0.047 0.344 0.351

MCC -0.001 -0.002 0.307 0.311−log(2) 0.4%
SLR —— -0.017 0.335 0.332

MCC 0 0.006 0.301 0.302
0 0.5%

SLR —— 0.009 0.331 0.322

MCC 0.002 0.008 0.313 0.312
log(2) 0.7%

SLR —— 0.009 0.345 0.333

MCC 0.004 0.012 0.323 0.327
log(3) 1%

SLR —— 0.035 0.359 0.350

Baseline disease rate = 2.5%

Population Bstrp. SE
θ0 disease rate Method Asym. bias Empr. bias Empr. SE Model SE

MCC -0.008 -0.043 0.323 0.328−log(3) 1.7%
SLR —— -0.044 0.365 0.350

MCC -0.006 -0.001 0.318 0.311−log(2) 1.9%
SLR —— -0.006 0.351 0.332

MCC 0 -0.009 0.303 0.303
0 2.5%

SLR —— -0.012 0.329 0.321

MCC 0.011 0.017 0.308 0.313
log(2) 3.7%

SLR —— 0.012 0.340 0.331

MCC 0.023 0.026 0.328 0.327
log(3) 4.9%

SLR —— 0.026 0.359 0.348
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Table 2: Modified Case-Cohort Analysis of the Michigan Breast Cancer Case-Control Data

Variable Coefficient SE
Change in BMI 0.03 0.09
BMI at Age 20 -0.05 0.04
Marital Status -0.67 0.39
Smoking Status 0.90 0.32
Family history 1.26 0.39
Child Birth -1.07 0.42
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