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SPATIO-TEMPORAL ANALYSIS OF AREAL DATA AND

DISCOVERY OF NEIGHBORHOOD RELATIONSHIPS IN

CONDITIONALLY AUTOREGRESSIVE MODELS

Subharup Guha1 and Louise Ryan2

ABSTRACT. Outcome data in disease mapping problems consist of counts or

averages observed within areal units belonging to a geographical region. Condition-

ally autoregressive (CAR) models are often used to analyze these data. Although

they are computationally convenient, most CAR models implementations rely on

an assumed neighborhood structure, and account for spatio-temporal association

through area-specific random effects that do not interact with temporal trends.

The separability assumption and the ad-hoc definition of the neighborhood

structure may not be valid in practice. We propose a computationally feasible

Bayesian approach that simultaneously investigates the spatio-temporal variability

in the area-specific random effects and the latent neighborhood structure. Based

on the concept of generalized distances, the neighborhood structure is modeled by

a continuous-time Bernoulli process having Markovian dependence. Although ar-

eas separated by large generalized distances have small prior probabilities of being

neighbors, no assumption is made about the particular form of the relationship, e.g.

K nearest neighbors, sharing a common boundary. We describe an MCMC proce-

dure for simulation-based inference. The proposed model is applied to analyze heart

disease incidence rates in the Sydney Metropolitan Area of Australia, where we dis-

cover complex temporal trends in the random effects associated with the postcodes.

The estimated neighborhood structure also differs considerably from that assumed
1Postdoctoral Research Fellow, Department of Biostatistics, Harvard School of Public Health.
2Chair and Professor of Biostatistics, Harvard School of Public Health.
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in typical CAR model applications.

KEYWORDS. Adjacency matrix, disease mapping, epidemiology, Markov processes.

SHORT TITLE. CAR model extensions.

AMS CLASSIFICATION: Primary: 62M40; Secondary: 62M05.

1. Introduction. Outcome data in disease mapping problems consist of counts

or averages observed in a geographical area having n units (e.g. postcodes, counties)

with well-defined boundaries. Imagine that data on these areal units are observed

repeatedly over a number of time periods t1, . . . , tT . Denote the outcomes by Yit,

where area i ∈ D = {1, . . . , n} and time t ∈ T = {t1, . . . , tT }. Additional in-

formation is available as covariates measured on each areal units which may be

time-dependent. Often the data, possibly after some transformation, can be mod-

eled as normal random variables. We would then assume Yit
ind∼ N(ηit, σ

2), with the

linear predictor ηit defined as

ηit = oit + x′itβf + z′itβr + θi. (1)

In the above expression, oit is a known (possibly zero) offset, βf is the vector of

fixed effects and βr are random effects. Column vectors xit and zit denote the

observed covariates and the area-specific random effects θ = (θ1, . . . , θn) capture

the spatial variability.

When the data consist of disease or mortality counts for a rare disease, as in

disease mapping problems, we might assume the Poisson regression model: Yit ∼

Po(eηit), with the offset oit in (1) set equal to the log population at risk in area

i at time t. Alternatively, the data may represent binary outcomes (presence or
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absence of a particular condition) or continuous measurements for which the normal

assumption does not hold even after transformation.

Generalized linear mixed models (GLMMs) provide an elegant framework for

modeling these data (Zeger and Karim, 1991). The likelihood function of a GLMM

belongs to the exponential family: Yit | ωit, ς
ind∼ h(Yit, ς)·exp {(Yit ωit − b(ωit)) /a(ς)},

where ς is a dispersion parameter and the conditional expectation E[Yit | ωit, ς]

equals µit = b′(ωit) (McCullagh and Nelder, 1999, pp. 28). The conditional variance

V ar[Yit | ωit, ς] = Υ(ωit) a(ς), with the variance function Υ(ωit) defined as b′′(ωit).

For an appropriate link function g(·), the linear predictor ηit is related to the mean

µit as ηit = g(µit). The likelihood function may be expressed as a function of ηit

and the dispersion parameter ς:

Yit | ηit, ς
ind∼ h(Yit, ς) · exp {(Yit ω(ηit)− b(ηit) /a(ς)} (2)

The normal model is a special case with identity link and ς = σ2. Poisson regres-

sion corresponds to the log link and dispersion parameter ς = 1. Logistic regression

corresponds to a Bernoulli likelihood, logit link and dispersion parameter ς = 1 (Mc-

Cullagh and Nelder, 1999, p. 30). In Bayesian analyses, a normal prior is typically

assumed for the GLMM fixed effects: βr ∼ Np(µβ, Σβ). A prior for the precision

matrix of the random effects is D−1 ∼ Wishart (d0, R0), where the positive definite

matrix R0 is of order q and d0 ≥ q.

To achieve spatial smoothing, the region-specific random effects can be modeled

using a conditionally autoregressive (CAR) structure (Besag, 1974; Clayton and

Kaldor, 1987; Cressie and Chan, 1989; Besag et al., 1991; Bernardinelli et al., 1995;

Waller et al., 1997). Alterative approaches include those of Wakefield and Morris

(1999) and Banerjee et al. (2003), who propose a multivariate normal distribution
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for the random effects with the correlations determined by the intercentroidal dis-

tances. Böhning et al. (1999) propose using a discrete Poisson mixture. Knorr-Held

and Rasser (2000) and Giudici et al. (2000) partition the geographical domain into

a random number of clusters with constant relative risk.

CAR models are computationally convenient for analyzing areal data. The com-

monly used CAR formulation of Besag et al. (1991) relies on the assumption of a

neighborhood structure among the areal units (refer to Banerjee, Carlin and Gelfand,

2004, pp. 79). An n by n matrix W = (wij) called the adjacency matrix summarizes

the neighborhood relationships between the areas. For example,

wij =





1 if the areas i and j share a common boundary, i 6= j

0 otherwise.

(3)

Alternatively, we might set wij equal to a decreasing function (e.g. inverse) of the

intercentroidal distance between the areas, or let wij = 1 if the intercentroidal

distances fall within a certain threshold. Another possibility is to set wij = 1 for

the K nearest neighbors of each area.

Given the adjacency matrix W , the CAR model assumes that the distribution

of θi conditional on the remaining set of random effects θ−i depends only on the

neighbors of the area i. In particular, θi | θ−i ∼ N(
∑

j wij θj/wi+, σ2/wi+), where

wi+ =
∑

j wij is the total number of neighbors of area i. We denote the model as

CAR(W , σ−2). On applying Brook’s Lemma (Brook, 1964), it can be shown that

the full conditionals induce the joint distribution

[θ | W ] ∝ exp
{
− 1

2σ2
θ
′
(D −W ) θ

}
= exp



−

1
2σ2

∑

i<j

wij(θi − θj)2





where D is the diagonal matrix with elements wi+. The precision matrix Σ−1
θ =

D − W is singular and so the above joint distribution is improper. Since it is a
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prior on the unobserved random effects and not a stochastic mechanism for the data,

there are no conceptual problems for a Bayesian analysis if the posterior is proper.

However, it is often of interest to use a proper CAR model. Several modifications in

the literature remedy the prior impropriety, including Besag et al. (1991), Carlin and

Banerjee (2003), Cressie (1991) and Leroux, Lei and Breslow (1998). The proper

CAR model of Leroux et al. (1998) relies on the variance components ν = (σ−2, λ)

and assumes that

σ2Σ−1
θ = (1− λ)I + λW ∗, (4)

where 0 ≤ λ ≤ 1. When λ = 1, we obtain the improper CAR model in (4). The

precision matrix Σ−1
θ is non-singular when λ 6= 1. When λ = 0, we obtain the

independence model with no spatial structure.

We generically denote improper and proper CAR models by θ ∼ CAR(W , ν).

For a proper CAR model, the vector ν may include additional variance components

besides σ2. For example, for the CAR model of Leroux et al. (1998), ν = (σ2, λ).

Spatio-temporal modeling. In many applications, spatio-temporal analyses of

areal data include independent temporal terms (day-of-week effects or more sophis-

ticated time trends) as the fixed/random effects in the linear predictor (1). This

approach assumes separability of the spatial and temporal components, because the

residual spatial variability represented by θ is assumed to be unchanged over time.

The assumption may not be reasonable in practice, and we may wish to introduce

time dependent spatial random effects θitm , where i = 1, . . . , n and m = 1, . . . , T .

Health surveillance studies, where the random effects are important for detecting

and monitoring infectious disease outbreaks, are some important real life examples.

Kottas, Duan and Gelfand (2006) model the region-specific random effects us-
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ing a dynamic formulation of the spatial Dirichlet process (Gelfand, Kottas and

MacEachern, 2005). Within the CAR framework, Banerjee et al. (2004, pp. 284)

assume (θ1tm , . . . , θntm) ind∼ CAR(W , σ2
tm), where σ−2

tm

ind∼ gamma(c, d). In the afore-

mentioned CAR model-based approaches, the adjacency matrix W is assumed to

be time-invariant and is defined in an ad-hoc manner. There has been relatively

little work on discovering the latent neighborhood structure, even though inferences

on the remaining model parameters rely on the neighborhood assumption. More-

over, since they represent similar areas that spatially borrow strength, study of the

neighborhood relationships and their temporal variation can be useful for effective

detection and control of disease. In investigations where it is not directly relevant,

the underlying structure can be integrated out to estimate the parameters of interest.

Recently, Ma, Carlin and Banerjee (2006) have applied ideas related to statistical

social analysis (Wang and Wong, 1987; Hoff et al., 2002) to model the neighborhood

structure as wij |pij ∼ Bernoulli(pij), where pij = logit(r′ijφ) and rij is a vector of

covariates believed to influence the neighborhood relationship.

Section 2 of this paper proposes a computationally feasible approach for the si-

multaneously modeling of the spatio-temporal variability in the region-specific ran-

dom effects and the latent neighborhood structure. The technique is motivated by

the concept of generalized distances introduced in Section 2.1. Section 2.2 mentions

desirable properties of a reasonable spatio-temporal model for the adjacency indica-

tors. Section 2.3 develops the basic theoretical framework. Section 2.4 applies the

theoretical results to the disease mapping problem, and shows that the proposed

model satisfies the theoretical requirements listed in Section 2.2. Section 2.5 speci-

fies the Bayesian hierarchical model. An MCMC procedure is described in Section 3.

In Section 4, the inference procedure is applied to analyze data on emergency room
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visits due to ischemic heart disease.

2. A model for time dependent area-specific random effects. Let θ =

(θ1t1 , . . . , θ1tT , . . . , θnt1 , . . . , θntT ) be the vector of time dependent region-specific

random effects. Let W ∗ be the random adjacency matrix of dimension nT corre-

sponding to θ, so that

θ|W ∗, ν ∼ CAR(W ∗,ν), (5)

where, as before, vector ν denotes the variance components associated with a proper

CAR model. The adjacency matrix is symmetric because of the symmetry in the

neighborhood relationships.

Given an area i ∈ D and time t ∈ {t1, . . . , tm}, the temporal neighborhood T(i, t)

is assumed to be a subset of D × T , and the spatial neighborhood S(i, t) is taken to

be a random subset of D. The temporal and spatial neighborhoods jointly deter-

mine how the region-specific random effects mutually borrow strength. Specifically,

the conditional distribution of θit depends on θ − {θit} only through the subset

{
θjt′ | (j, t′) ∈ T(i, t)

} ∪ {
θjt′ | j ∈ S(i, t) and t′ = t

}
.

Because of the one-dimensional nature of time, the temporal neighborhoods can

be defined in a straightforward manner and may be assumed to be known. In

order to achieve sparsity in the adjacency matrix W ∗, we assume that at time t1,

T(i, t1) = {(i, t2)} for i ∈ D. This implies that the conditional distribution of the

random effect θit1 depends only on θit2 and the spatial neighbors {θjt1 | j ∈ S(i, t1)}

at time t1. Similarly, when m > 1, we assume that T(i, tm) = {(i, tm−1), (i, tm+1)},

implying that the conditional distribution of θitm depends on θitm−1 , θitm+1 and the

spatial neighbors {θjtm | j ∈ S(i, tm)} at time tm.

There is considerable amount of flexibility in the definition of the spatial neigh-
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borhoods, and ad-hoc neighborhood structures like (3) are often used in practice.

It is this component of the neighborhood structure that we regard as unknown and

therefore random. It is convenient to represent the spatial neighborhoods at time t

as the random adjacency matrix W t = (Wijt), where

Wijt =





1 if (j, t) ∈ S(i, t)

0 otherwise.

(6)

The proposed model for the adjacency indicators {Wijt : t ≥ 0, fixed i, j ∈ D}

involves the concept of “generalized distance”, which is defined below.

2.1. Generalized distance. Two areal units are considered to be “neighbors”

if they are similar in some manner. Physical proximity is an important factor,

although other factors like similarity in socioeconomic status, population densities,

etc., may also play an important role. In the latter case, the neighborhood status

may change as the demographic characteristics of the areas change over time. For

example, two areal units that share a common boundary may initially have very

similar patterns of demographic covariates and hence be regarded as neighbors.

Subsequently, if the living conditions in one area changes drastically relative to the

other (for example, if there is a flu outbreak, or a rapid decline in the standard

of living due to the construction of a new highway), the areas may no longer be

neighbors in the general sense because they have ceased to resemble each other with

respect to the demographic characteristics.

For i = 1, . . . , n and time t ∈ T , let rit = (rit1, . . . , ritp) denote the set of p

covariates that influence the neighborhood relationship. The (time-invariant) coor-

dinates of the centroids of the areas, or some other measure of the position of the

areal units, are typically included in the vector rit. For continuous covariates, the
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generalized distance ∆ijt between the areas i and j at time t may be defined as

∆ijt =
p∑

m=1

φm|rimt − rjmt| (7)

for some positive constants φ = (φ1, . . . , φp). Another option in the case of continu-

ous covariates is the Mahalanobis distance,
(∑p

m=1 φm (rimt − rjmt)
2
)1/2

. If some of

the covariates are discrete, we may use a different distance measure (e.g. Manhattan

distance) and combine the distances corresponding to the different types of covari-

ates to obtained the overall generalized distances. For times t ≥ 0, the generalized

distances are positive and uniformly bounded away from zero if the intercentroidal

distances are included in (7).

2.2. Properties of a reasonable model. For any given pair of areas i and

j, we model the adjacency indicators {Wijt : t ≥ 0} as time-dependent Bernoulli

random variables. Due to the symmetry of the neighborhood relationships, we have

wijt = wjit. The adjacency matrix W ∗ corresponding to θ therefore consists of

n(n − 1)/2 · T free parameters. We expect the adjacency indicators to possess the

following distributional properties:

(i) The neighborhood relationships should evolve “smoothly” over time, in the

sense that areas that are (not) neighbors at time t tend (not) to be neighbors

at time t +4t when the difference 4t is small. This is formally expressed by

stating that for any given distinct times 0 ≤ t < s and pairs of areas i and j,

we expect that lims↓t Pr (Wijs = w2 | Wijt = w1) equals 1 when w1 = w2, and

equals 0 if w1 6= w2, for all w1, w2 ∈ {0, 1}.

(ii) Information about the value of Wijt should convey progressively little infor-

mation about Wijs as the difference s− t increases.

9
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(iii) For a given pair of areas i and j, suppose that that the adjacency variable Wijt

is marginally distributed as ρ(ij)(t) so that Wijt = w with probability ρ
(ij)
w (t),

where w = 0, 1. The probability ρ
(ij)
1 (t) should be a decreasing, continuous

function of the generalized distance ∆ijt.

Section 2.3 introduces a general class of binary valued non-homogenous Markov

processes that satisfy Property (i)–(ii). Section 2.4 applies the processes to disease

mapping problems and demonstrates that Property (iii) is satisfied.

2.3. A non-homogeneous Markov process for adjacency indicators. Let

{Ut : t ≥ 0} be a family of random variables taking values in the finite state space

S = {0, 1}. The process {Ut : t ≥ 0} is a Markov process if

Pr
(
Utn = w | Ut1 = w1, . . . , Utn−1 = wn−1

)
= Pr

(
Utn = w | Utn−1 = wn−1

)

for all w,w1, . . . , wn−1 ∈ S and any sequence of times t1 < . . . < tn. For any given

pair of times 0 ≤ t ≤ s, the transition probability matrix P (t, s) has the typical

element

P w1,w2(t, s) = Pr (Us = w2 | Ut = w1) , w1, w2 ∈ S.

A set of transition matrices {P (t, s) : 0 ≤ t ≤ s} satisfies the following proper-

ties: (i) P (t, s) should be row-stochastic, (ii) P (t, t) = I, where I is the identity

matrix of order K, and (iii) the matrices should satisfy the Chapman-Kolmogorov

equation, P (t, s) = P (t, u) · P (u, s), for all 0 ≤ t ≤ u ≤ s. A homogenous Markov

process is one for which P (t, s) = P (0, s − t) for all 0 ≤ t ≤ s. Grimmett and

Stirzaker (2001, pp. 256) discusses homogenous Markov processes in detail. Relax-

ing the homogeneity assumption can lead to some very difficult problems (e.g. refer

to Grimmett and Stirzaker, 2001, pp. 274–281).
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Let λ0(t) and λ1(t) be two positive, continuous functions such that limt→0 λw(t) <

∞ for w ∈ S. For w1, w2 ∈ S, we assume that the transition probabilities of the

Markov process {Ut : t ≥ 0} satisfy

P w1,w2(t, t + h) =





λw1(t) · h + o(h) if w1 6= w2

1− λw1(t) · h + o(h) if w1 = w2

(8)

The main result relies on the following indefinite integrals:

Λw(t) =
∫

λw(s) ds, and

Πw(t) =
∫

eΛ0(s)+Λ1(s) λw(s) ds, w ∈ S.

Proposition. Let λw(t) be a positive, continuous function such that limt↓0 λw(t) is

finite for w ∈ S. For the Markov process (8), the diagonal elements of the transition

matrix P (0, t) are given by

Pw,w(0, t) = e−Λ0(t)−Λ1(t) (Π1−w(t) + cw) , w ∈ S,

where the constant cw is determined by the boundary condition: Pw,w(0, 0) = 1.

Proof. Let G(t) be a 2× 2 matrix with element Gw1,w2(t) = λw1(t) if w1 6= w2 and

Gw1,w2(t) = −λw1(t) if w1 = w2, where w1, w2 ∈ S. Clearly,

G(t) = lim
h↓0

1
h

(P (t, t + h)− I) .

The matrices {P (0, t) : t ≥ 0} satisfy Kolmogorov’s forward equation, d
dtP (0, t) =

P (0, t) ·G(t). Therefore, for w ∈ S, we obtain the ordinary differential equation

d

dt
Pw,w(0, t) = − (λ0(t) + λ1(t)) · Pww(0, t) + λ1−w(t)

whose solution has the afore-mentioned form.
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Corollary 1. When λw(t) ≡ λw is a fixed, positive number for w ∈ S, we obtain

the two-state alternating Markov process. The diagonal elements of the transition

matrix P (0, t) are then

Pw,w(0, t) =
λ1−w

λ0 + λ1
+

λw

λ0 + λ1
e−(λ0+λ1)t w ∈ S,

Given the vector ρ0 of marginal probabilities of U0, we can compute the vector

of marginal probabilities of Ut as ρt = P T (0, t)·ρ0. For any 0 ≤ t < s, the transition

matrix P (t, s) = P−1(0, t) · P (0, s) by the Chapman-Kolmogorov equation.

Since P (t, s) varies continuously as a function of t and s, lims↓t P w1,w2(t, s)

equals 1 if w1 = w2, and equals 0 if w1 6= w2 (Property (i) of Section 2.2 ). Prop-

erty (ii) of Section 2.2 is guaranteed under the further assumption that
∫∞
0 λw(s) ds =

∞ for w ∈ S, as stated in the following result.

Corollary 2. Suppose that
∫∞
0 λw(s) ds = ∞ for w ∈ S. Then

lim
t→∞P 0,w(0, t)/P 1,w(0, t) = 1, w ∈ S.

Proof. We have limt→∞ Λw(t) = ∞. Therefore, when w = 0,

lim
t→∞P 0,0(0, t)/P 1,0(0, t) = lim

t→∞
e−Λ0(t)−Λ1(t) (Π1(t) + c0)

1− e−Λ0(t)−Λ1(t) (Π0(t) + c1)

= lim
t→∞

e−Λ0(t)−Λ1(t) ·Π1(t)
1− e−Λ0(t)−Λ1(t) ·Π0(t)

= 1,

since Π0(t) + Π1(t) = eΛ0(t)+Λ1(t) + c, where c does not depend on t. The case is

similarly proved when w = 1.

An alternative interpretation. The Markov process (8) is equivalent to the

following stochastic mechanism. Suppose Ut = wt1 at time t1. Due to the Markov
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assumption, the values of the adjacency variables previous to the time t1 do not affect

the future evolution of the process. Let t2 > t1 be the first instance (downstream

of t = t1) that the process switches to the state 1 − wt1 . Then the difference

t2 − t1 is distributed as the first arrival time of a non-homogenous Poisson process

with intensity function λw1(t). At time t = t2, the system switches to the Poisson

process with intensity function λ1−w1(t).

2.4. Application to disease mapping problems. For every pair of areas i

and j belonging to the region D and separated by a generalized distance of ∆ijt at

time t, we set

λ
(ij)
0 (t) = γe−∆ijt and λ

(ij)
1 (t) = γ

(
1− e−∆ijt

)
, (9)

for some γ > 0. When the intercentroidal distance is included in (7), the intensity

functions λ
(ij)
0 (t) and λ

(ij)
1 (t) satisfy the conditions stated in the Proposition and

its corollaries because the generalized distance is uniformly bounded above zero.

We assume that the process {Wijt : t ≥ 0 and i, j fixed} is distributed according

to the Markov process (8) corresponding to functions (9). The prior specification

is completed by assuming independent distributions for the initial variables {Wij0 :

i, j ∈ D}. The Markov process depends on the vector γ and vector φ appearing in

(7), and is denoted byMij(γ, φ). The adjacency indicators wij = (Wijt1 , . . . , WijtT )

are regarded as realizations of Mij(γ, φ) at the times t1, . . . , tT .

Invoking the afore-mentioned interpretation in terms of arrival times of non-

homogenous Poisson processes, we see why specification (9) is appropriate. Suppose

the generalized distance between areas i and j increases gradually with time as the

demographic conditions change, so that the areas grow increasingly “dissimilar”. For

large t, we have λ
(ij)
0 (t) < λ

(ij)
1 (t), and so the process {Wijt : large t and i, j fixed}

13
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tends to stay for longer durations in the state 0 (“not neighbors”) than in the state 1

(“neighbors”). The marginal probabilities ρ
(ij)
0 (t) > ρ

(ij)
1 (t) for large t, and Property

(iii) of Section is satisfied. The process similarly adapts to non-monotone changes

in generalized distance.

As a second example, imagine that the generalized distances between the n

areal units remain constant over time. Consider pairs of areas (i, j) and (i, j′) such

that ∆ijt < ∆ij′ t for all t. (For instance, the intercentroidal distance is the only

covariate involved in definition (7), and area j′ is situated farther away from area

i than area j.) Then the intensity functions in (9) satisfy λ
(ij)
0 (t) > λ

(ij
′
)

0 (t) and

λ
(ij)
1 (t) < λ

(ij
′
)

1 (t) for all t. Therefore, the process {Wij
′
t : t ≥ 0 and i, j

′
fixed}

has a greater tendency than the process {Wijt : t ≥ 0 and i, j fixed} to stay in the

state 0. The marginal probabilities satisfy ρ
(ij)
0 (t) < ρ

(ij′)
0 (t). This is precisely the

requirement of Property (iii) of Section 2.2.

The intensity functions (9) satisfy λ
(ij)
0 (t) + λ

(ij)
1 (t) = γ, which results in the

following simplifications:

P
(ij)
0,0 (0, t) = e−γt

(
γ

∫ t

0
eγu

(
1− e−∆iju

)
du + 1

)
,

P
(ij)
1,1 (0, t) = e−γt

(
γ

∫ t

0
eγue−∆ijudu + 1

)
.

In real applications, the generalized distances and intensity functions are only

available at the times t1, . . . , tT . The intensity functions may be assumed to be

piecewise constant or they may be linearly interpolated. More sophisticated inter-

polation techniques may be used if necessary.

Special cases. When the data are observed at uniformly spaced time intervals,

it is convenient to rescale the time axis and parameters of the Markov process

14
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so that T = {1, . . . , T}. Additionally, if the generalized distance depends only

on the intercentroidal distances dij between areas i and j, we have ∆ijt = φdij .

Then the intensity functions λ
(ij)
0 (t) and λ

(ij)
1 (t) are time invariant and we obtain

a homogeneous continuous-time Markov process in (8). For any t ∈ {1, . . . , T − 1},

the transition matrix P (ij)(t, t + 1) equals P (ij)(1, 2). The off-diagonal elements of

the matrix P (ij)(1, 2) are given by

P
(ij)
0,1 (1, 2) = e−φdij

(
1− e−γ

)
,

P
(ij)
1,0 (1, 2) =

(
1− e−φdij

)
· (1− e−γ

)
. (10)

Further, if the initial marginal distribution ρ(ij)(1) at time t = 1 is taken to be the

stationary distribution of the Markov chain, then we obtain for any t:

ρ
(ij)
0 (t) = 1− e−φdij , ρ

(ij)
1 (t) = e−φdij .

The apriori probability of the areas i and j being neighbors does not depend on

the time t or on γ, and it decreases as the distance dij increases (Property (iii) of

Section 2.2 ).

2.5. The Bayesian hierarchical model. For areas i, j ∈ D = {1, . . . , n} and

times t ∈ T = {t1, . . . , tT }, we assume

Yit | ηit, ς
ind∼ h(Yit, ς) · exp {(Yit ω(ηit)− b(ηit) /a(ς)}

ηit = oit + x′itβf + z′itβr + θit

βr ∼ Np(µβ,Σβ) (11)

θ | W ∗,ν ∼ CAR(W ∗,ν)

(Wijt1 , . . . ,WijtT ) ind∼ Mij(γ, φ)

Flat priors are assumed for the fixed effects βf , log γ, log φ and variance compo-

nents ν.
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3. Simulation-based inference. Conditional on the remaining model parame-

ters, the fixed and random effects are updated using the Metropolis-Hastings pro-

cedure of Zeger and Karim (1991). Conditional on the adjacency matrix W ∗, the

variance components ν of the proper CAR model are similarly updated by making

normal proposals within Metropolis-Hastings steps. Some components of ν may

be transformed so that the conditional posterior more closely resembles a normal

distribution.

Updating the adjacency matrix W ∗

The prior distribution of the adjacency indicator Wijtm , for tm ∈ T − {t1, tT }

and any pair of areas i, j ∈ D, is

Pr (Wijtm = w | W ∗ − {Wijtm},γ, φ)

= Pr
(
Wijtm = w | Wijtm−1 = wm−1,Wijtm+1 = wm+1, γ, φ

)

∝ P (ij)
wm−1,w(tm−1, tm) · P (ij)

w,wm+1
(tm, tm+1), w ∈ S. (12)

Similar expressions are obtained when t = t1 or t = tT . Let F = (1−λ)(D∗−

W ∗) + λI, where D∗ is the diagonal matrix of the row sums of W ∗. For the

proper CAR model (4), we have

[θ | Wijtm = w,W ∗ − {Wijtm},ν] ∝ |F | · exp
{
− 1

2σ2
w(θi − θj)2

}
, w ∈ S.

(13)

The full conditional of Wijtm is therefore

Pr (Wijtm = w | W ∗ − {Wijtm},θ, ν, γ,φ)

∝ [θ | Wijtm = w,W ∗ − {Wijtm},ν]·Pr (Wijtm = w | W ∗ − {Wijtm},γ, φ) , w ∈ S.

(14)
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When n and T are small, we can evaluate the full conditional of Wijtm using the

above expressions and update the adjacency indicators using Gibbs sampling.

The calculation can be intensive when nT is large because of the determinant

involved in (13). Therefore, for large nT , we assume

[θ | Wijtm = w, W ∗ − {Wijtm},θ, ν] ≈ exp
{
− 1

2σ2
w(θi − θj)2

}
,

which corresponds to an improper CAR model (Ma, Carlin and Banerjee,

2006). We then have the following approximation to the full conditional:

Pr (Wijtm = w | W ∗ − {Wijtm},θ, ν, γ,φ)

≈ exp
{
− 1

2σ2
w(θi − θj)2

}
·Pr (Wijtm = w | W ∗ − {Wijtm},γ, φ) , w ∈ S.

(15)

Approximation (15) drastically reduces the computational cost of generating

proposals because it avoids the computation of determinants. All n2 adjacency

indicators for a given value of t ∈ T are jointly proposed by this method, and

accepted or rejected in a single Metropolis step. The acceptance rates exceed

70% in most applications.

For a more formal description of the Metropolis Hastings step, let W ∗
1 be

the augmented adjacency matrix corresponding to the joint proposals and

W ∗
0 be the current value of the adjacency matrix. Let q(W ∗

1 | W ∗
0) be the

probability of proposing W ∗
1 from W ∗

0 based on approximation (15). Let

F 1 = (1 − λ)(D∗
1 − W ∗

1) + λI, where D∗
1 is the diagonal matrix of the row

sums of W ∗
1. Similarly, define the matrices D∗

0 and F 0 corresponding to the

matrix W ∗
0. Then the proposed move is accepted with probability

$(W ∗
0,W

∗
1) = min



1,

q(W ∗
0 | W ∗

1) · |F 1|1/2 · exp
{
− 1

2σ2 θ
′
F 1θ

}

q(W ∗
1 | W ∗

0) · |F 0|1/2 · exp
{
− 1

2σ2 θ
′
F 0θ

}
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Computing the determinants of F 0 and F 1 can be intensive when dimension

nT is large. Section A1 of the Appendix describes an efficient technique.

Updating the region-specific random effects

The following description assumes the proper CAR model of Leroux, Lei and

Breslow (1998). The updates are similarly derived for other versions of the

CAR model. Let the square matrix W tm of dimension n, consisting of only ze-

ros and ones, summarize the purely spatial neighborhood relationships among

the n areal units at time tm. Assume that the ith element of the diagonal

matrix Dtm equals the total number of neighbors (spatial as well as temporal)

of the area i at time tm. Define Σ−1
tm = σ−2 [(1− λ) · (Dtm −W tm) + λ · I ].

Define εtmi = θit2 if m = 1 and εtmi = θitm−1 + θitm+1 if m > 1 . Let the ith

element of the vector αtm equal σ−2(1− λ) · εtmi.

Applying the Laplace approximation (expression (18) of Section A2 in the

Appendix), it can be shown that for m = 1, . . . , T , the posterior distribution of

the block θtm = (θ1tm , . . . , θntm)′, conditional on the remaining random effects,

is approximately multivariate normal with precision U−1
tm + Σ−1

tm , where U tm

is the diagonal matrix of working weights corresponding to θtm . Therefore,

for m = 1, . . . , T :

(i) Let θ0
tm be the current value of θtm . Compute the precision (U0

tm)−1 +

Σ−1
tm and generate the proposal θ∗tm ∼ Nn

(
θ0

tm , c2
n

[
(U0

tm)−1 + Σ−1
tm

]−1
)
.

The constant cn is chosen so that the acceptance rates in step (ii) are

approximately 25% (Gelman, Roberts and Gilks, 1995).

(ii) Using the proposal θ∗tm , compute (U∗
tm)−1+Σ−1

tm and vector α∗tm . Accept

18
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the proposal with probability

$(θ0
tm , θ∗tm) =

min



1,

[Yit | η∗it, ς] ·Nq

(
θ∗tm |Σ0

tm ·α0
tm ,Σ0

tm

) ·Nq

(
θ0

tm | θ∗tm ·, c2
q

[
(U∗

tm)−1 + Σ−1
tm

]−1
)

[Yit | η0
it, ς] ·Nq

(
θ0

tm |Σ∗
tm ·α∗tm ,Σ∗

tm

) ·Nq

(
θ∗tm | θ0

tm ·, c2
q

[
(U0

tm)−1 + Σ−1
tm

]−1
)





Updating the parameters of the Markov process

It is convenient to work with the transformation ζ = (log γ, log φ), since the

posterior more closely resembles a (p + 1)-variate normal distribution. Con-

ditional on the adjacency indicators, the posterior density [ζ | W ∗] equals

[W ∗ | ζ] due to the flat priors for ζ. With L denoting the conditional poste-

rior [ζ | W ∗], the Metropolis-Hastings updates consist of the following steps:

(i) Let ζ0 denote the current value of ζ. Generate the proposal ζ1 ∼

Np+1

(
ζ0, c

2
p+1V 0

)
, where V −1

0 = −∂2L/∂ζ2 |ζ0
and constant cp+1 is

chosen so that the acceptance rates in step (ii) are approximately 25%.

(ii) Accept the proposal with probability

$(ζ0, ζ1) = min



1,

[W ∗ | ζ1] ·Np+1

(
ζ0 | ζ1, c

2
p+1V 1

)

[W ∗ | ζ0] ·Np+1

(
ζ1 | ζ0, c

2
p+1V 0

)




where V −1
1 = ∂2L/∂ζ2 |ζ1

.

Posterior inference. The post–burn-in MCMC sample can be used to estimate

various features of the posterior distribution. For example, by focussing only on the

simulated values of the fixed effects, we compute the Monte Carlo average, Ê[βf |Y ].

This estimate of the fixed effects marginalizes over the remaining model parameters,

including the neighborhood structure. The adjacency indicators can be estimated

as follows. For the areas i, j ∈ D and time t ∈ T , let the kth MCMC iterate of
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Wijt be denoted by w
(k)
ijt . A simulation-based estimate of the posterior probability

P (Wijt = 1 | Y ) is then

P̂ (Wijt = 1 | Y ) =
1
N

N∑

k=1

w
(k)
ijt

We declare Ŵijt = 1 if P̂ (Wijt = 1 | Y ) > 0.5, and declare Ŵijt = 0 otherwise. The

procedure is applied to estimate all random elements of the matrix W ∗.

4. Illustration. The Spatial Environmental Epidemiology in New South Wales

project yielded outcome data on ischemic heart disease (IHD) abstracted from daily

separation records from all public and private hospitals in New South Wales, Aus-

tralia, during the period July 1, 1996 to June 30, 2001. Population data were

obtained from census information collected by the Australian Bureau of Statistics

(ABS) and inter-censal estimates, called Estimated Residential Populations (ERPs),

provided for July 1st of each non-census year. Patient reported residential postcode

was used to assign the geographical location of hospitalization for IHD. Available

data included the postcode of residence, date of hospitalization, patient age and pa-

tient gender. Patient age was grouped into one of the following categories: younger

than 20 years, 13 different 5-year intervals (20-24 years, 24-29 years etc. up to 80-84

years), plus a 15th category of 85 years or older.

In this investigation, we focus on the Sydney Metropolitan Area consisting of 249

postcodes. In addition to estimating the neighborhood structure and the random

effects associated with the postcodes, we wish to explore the association of IHD with

an index of socioeconomic disadvantage called the SEIFA (Socio-Economic Indexes

for Areas), provided for each postcode by ABS. A low SEIFA score reflects relatively

low educational attainment and income, high unemployment, and jobs in relatively
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unskilled occupations. The SEIFA scores are re-centered around zero to justify

the specification of independent priors on the fixed effects. Available information

includes the location of the postcode centroids. Refer to Burden et al. (2005), Guha

and Ryan (2006) and Guha et al. (2006) for analyses relying on adjacency matrix (3).

We partition the 1820-day interval into 20 “quarters” consisting of 91 days each.

The random effect associated with postcode i (i = 1, . . . , 249) is assumed to remain

constant during each quarter. We denote by θit the random effect associated with

postcode i during quarter t (t = 1, . . . , 20). Let j (j = 1, . . . , 1820) index the day of

the five-year period and k (k = 1, . . . , 30) index the social categories consisting of

unique combinations of age category and gender.

Denote by Yijk the number of IHD hospitalizations in the ith postcode (i =

1, . . . , 249), among the Nijk subjects at risk on day j and belonging to the kth social

category. Let seifaij and densij respectively denote the SEIFA index and population

density of postcode i on day j. We assume a Poisson GLMM with log link:

Yijk ∼ Po(µijk),

log(µijk) = log(Nijk) + δk + αw + β0 + β1k · seifaij + β2 · densij + θit,

where δk is the fixed effect associated with the kth social category (with δ1 being

the reference group), αw is the fixed effect of the wth day of the week (with w = 1

representing Mondays being the reference group), β0 is the model intercept, β1k is

the interaction term between socioeconomic status and the kth social category, and

β2 is the linear predictor associated with the population density.

Assuming the proper CAR model of Leroux, Lei and Breslow (1998) with pre-

cision matrix (4), we define the generalized distance between areas i and i′ as

∆ii′t = φdii′ where dii′ is the intercentroidal distance. We also assume that the
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Parameter Mean SD

intercept -17.98 0.005
density/105 -1.210 0.1146

Variance components
σ−2 13.20 1.072
λ 0.13 0.023

Markov process parameters
γ 0.03 0.009
φ 21.88 5.881

Table 1: Estimated posterior means and standard deviations of selected model (16)

parameters.

marginal distribution ρ(ij)(1) at quarter 1 equals the stationary distribution of the

Markov process Mij(γ, φ). The hierarchical model is then

Yit | ηit
ind∼ Po(eηijk)

ηit = log(Nijk) + δk + αw + β0 + β1k · seifaij + β2 · densij + θit

θ | W ∗, ν ∼ CAR(W ∗, ν) (16)

(Wij,1, . . . , Wij,20)
ind∼ Mij(γ, φ)

ν = (σ−2, λ)

σ−2 ∼ gamma(1, 1)

Flat priors are assumed for the fixed effects, τ = log(λ/(1−λ)), log γ and log φ. The

MCMC algorithm described in Section 3 is applied to simulate posterior samples.

An initial set of 10,000 draws was discarded as burn-in and the remaining 100,000

samples were used for inference.

Table 1 displays the estimates and posterior standard deviations for the model

intercept β0, coefficient β2 associated with the population density, variance compo-

nents ν = (σ−2, λ) of the CAR model of Leroux et al. (1998), and parameters φ

and γ related to the latent Markov process.
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For any given quarter, the posterior probabilities that two postcodes are neigh-

bors decreases rapidly with their intercentroidal distance. This is seen in the upper

panel of Figure 1, where we observe that most of the postcodes are separated by

distances greater than 20 kilometers (km), but the posterior probabilities of being

neighbors tend to be very small at these distances. During quarter 1, the barplot on

the bottom left panel of Figure 1 shows that there are 536 postcode pairs estimated

as neighbors (Ŵij1 = 1) at intercentroidal distances less than 8 km, but only 15 pairs

are estimated as neighbors at distances exceeding 22 km. For comparison, the 249

postcodes in the Sydney Metropolitan Area correspond to a total of 30,876 distinct

postcode pairs. The results are similar for the remaining quarters 2 through 20.

The solid line in the bottom right panel of Figure 1 represents the average num-

ber of neighbors per postcode for quarters 1 through 20. In contrast, the dashed line

represents the time-independent average number of neighbors per postcode corre-

sponding to neighborhood structure (3), suggesting that the estimated neighborhood

structure considerably differs from standard neighborhood assumptions.

Figure 2 plots the estimated random effects for four randomly selected postcodes.

The dashed lines represent margins of two posterior standard deviations. The graph

indicates that arbitrary temporal trends in the region-specific random effects are

captured by the proposed model, unlike models that account for temporal variation

by including a linear or quadratic term in the mean structure.

The left panel of Figure 3 plots the estimated main effects of the age/gender

categories with the youngest age group of the male subpopulation as the reference

group. The IHD rates increase sharply with age. Although the estimates follow

similar trends in both genders, males typically have higher IHD rates than females

of the same age. The day-of-week effects are plotted in the right panel of Figure
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3. The effect for Monday, the reference group, is found to be significantly higher

than the remaining days of the week. Possible explanations for the sharp decrease

over the weekend include job-related stress on weekdays, and the fact that people

tend to ignore warning health signs during weekends, resulting in a high number of

emergency room visits on Mondays.

Figure 4 displays the estimated interactions of age/gender category and SEIFA

for males. The estimates for females had a very similar trend. Most of the interaction

terms are negative indicating that people with high socioeconomic disadvantage (i.e.

smaller SEIFA values) are at higher risk for IHD. The interactions increase with age

until they are positive for the older age groups. The increase reflects the greater

susceptibility to IHD for older people, for whom socioeconomic status appears to

play a lesser role in determining the risk of heart disease.

5. Conclusion. The paper proposes an extension to the CAR model that simulta-

neously allows the spatio-temporal analysis of areal data and the discovery of neigh-

borhood relationships among areal units in a domain. The neighborhood structure

is modeled as a continuous-time Bernoulli process with Markovian dependence. The

hierarchical model has several desirable theoretical properties, flexibly captures time

trends in spatially correlated data, and is especially useful in applications like health

surveillance where the study of spatial relationships and area-specific random effects

influences the effective detection and control of disease. In investigations where the

latent neighborhood structure is not directly relevant, it is marginalized to estimate

the parameters of interest. The methodology is applied to analyze outcome data on

ischemic heart disease in the Sydney Metropolitan Area, where the temporal trends

in the spatial random effects and the estimated neighborhood structure differ con-
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siderably from the assumptions made in typical CAR analyses.
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APPENDIX

A1. Computing the determinant of matrix F . Let F = (1 − λ)(D∗ −

W ∗) + λI, where W ∗ is the augmented adjacency matrix of dimension nT and

D∗ is the diagonal matrix of row sums of W ∗. For m = 1, . . . , T , let W m be the

spatial adjacency matrix of the n areas at time tm and Dm be the diagonal matrix

consisting of the row sums of W m. Define the matrices R1 = (1−λ)(D1−W 1)+I,

Rm = (1 − λ)(Dm − W m) + (2 − λ)I − (1 − λ)2R−1
m−1 for m = 2, . . . , T , and

RT = (1− λ)(DT −W T ) + I − (1− λ)2R−1
T−1. Then

|F | =
T∏

m=1

|Rm|.

A2. Laplace approximation. For models belonging to the exponential family,

the Laplace approximation applies a linearized version of the link function g(·) to

the data Y1t1 , . . . , YntT . The working value for each case is defined as

yitm = ηitm +
∂ηitm

∂µitm

· (Yitm − µitm), i = 1, . . . , n and m = 1, . . . , T. (17)

The working weight is defined as uitm = {Υ(µitm)}−1 (∂µitm/∂ηitm)2 where the

variance function Υ(·) is defined in Section 1. With these definitions, we obtain

(Harville, 1997) the following approximation:

yitm
ind∼ N

(
ηitm , u−1

itm

)
(18)
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where (y1t1 , . . . , yntm) represents the vector of working values, and not the data. For

the special case of normal likelihoods, the approximation is exact with Yitm = yitm .
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Figure 1: The upper left panel displays the histogram of intercentroidal distances for post-

codes belonging to the Sydney Metropolitan Area. For every pair of postcodes belonging to

the Sydney Metropolitan Area, the upper right panel plots the estimated posterior probabil-

ity of adjacency during quarter 1 versus the intercentroidal distance. The bottom left panel

displays a barplot of the estimated number of adjacent postcodes for different categories of

intercentroidal distances. The solid line in the bottom right panel represents the number

of neighbors per postcode for quarters 1 through 20, while the dashed line represents the

corresponding value for neighborhood structure (3).
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Figure 2: Estimated random effects for quarters 1 through 20 for four randomly

chosen postcodes belonging to the Sydney metropolitan area. The dashed lines

indicate margins of two posterior standard deviations.
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Figure 3: The left panel plots the estimated effects of social category for the 15

age groups of both genders. The open circles represent males and the solid circles

represent females. The right panel displays the estimated day-of-week effects. Mon-

day is the reference group. The lines represent intervals of two posterior standard

deviations.
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Figure 4: Estimated SEIFA interactions for the 15 age groups of the male subpop-

ulation. The lines represent margins of two posterior standard deviations.
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