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Asymptotics of Cross-Validated Risk
Estimation in Estimator Selection and

Performance Assessment

Sandrine Dudoit and Mark J. van der Laan

Abstract

Risk estimation is an important statistical question for the purposes of select-
ing a good estimator (i.e., model selection) and assessing its performance (i.e.,
estimating generalization error). This article introduces a general framework for
cross-validation and derives distributional properties of cross-validated risk esti-
mators in the context of estimator selection and performance assessment. Arbi-
trary classes of estimators are considered, including density estimators and pre-
dictors for both continuous and polychotomous outcomes. Results are provided
for general full data loss functions (e.g., absolute and squared error, indicator,
negative log density). A broad definition of cross-validation is used in order to
cover leave-one-out cross-validation, V-fold cross-validation, Monte Carlo cross-
validation, and bootstrap procedures. For estimator selection, finite sample risk
bounds are derived and applied to establish the asymptotic optimality of cross-
validation, in the sense that a selector based on a cross-validated risk estimator
performs asymptotically as well as an optimal oracle selector based on the risk
under the true, unknown data generating distribution. The asymptotic results are
derived under the assumption that the size of the validation sets converges to in-
finity and hence do not cover leave-one-out cross-validation. For performance
assessment, cross-validated risk estimators are shown to be consistent and asymp-
totically linear for the risk under the true data generating distribution and confi-
dence intervals are derived for this unknown risk. Unlike previously published
results, the theorems derived in this and our related articles apply to general data
generating distributions, loss functions (i.e., parameters), estimators, and cross-
validation procedures.
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1 Introduction

1.1 Motivation

Risk estimation is an important statistical question for at least two purposes.
Risk estimation is used for: (i) estimator selection, or model selection, where
the “best” estimator is chosen to minimize risk over a given class of estima-
tors; (ii) estimator performance assessment, i.e., the estimation of generaliza-
tion error. These two fundamental problems have been referred to variously
in the statistical literature as “submodel selection and evaluation” (Breiman,
1992) and “choice and assessment of statistical predictions” (Stone, 1974).
For example, regression problems often involve the data-driven selection of
a predictor for an outcome Y given covariates W (e.g., linear model with k
explanatory variables, regression tree with k terminal nodes), with the inten-
tion of predicting the outcome of interest for future observations. A common
measure of performance in this context is the mean squared error between
predicted and true responses, i.e., the risk for the quadratic loss function.
An immediate difficulty is that the risk of a given estimator is the expected
value of a loss function under the typically unknown data generating distri-
bution. This means that the available data (i.e., the learning set or empirical
distribution) have to be used for both tasks (i) and (ii), that is, to select
a good estimator (specifically, estimate the risk criterion used to select the
estimator) and to assess the performance of this selected estimator.

A number of approaches have been proposed for selection and perfor-
mance assessment. As discussed by Breiman (1992) in the context of di-
mensionality selection in regression, criteria such as Mallow’s Cp, Akaike’s
information criterion (AIC), and the Bayesian information criterion (BIC),
do not account for the data-driven selection of the sequence of estimators
(i.e., submodels) and thus provide biased assessment of generalization error.
Instead, risk estimation methods based on sample reuse have been favored
in the recent literature. The main procedures include: leave-one-out cross-
validation, V -fold cross-validation (i.e., random partition of the learning set
into V mutually exclusive and exhaustive sets), Monte Carlo cross-validation
(i.e., repeated random splits of the learning set into a training and a valida-
tion set), the jackknife, and the bootstrap (Chapter 3, Breiman et al. (1984);
Breiman and Spector (1992); Breiman (1996a,b); Burman (1989); Devroye
et al. (1996); Efron (1983); Chapter 17, Efron and Tibshirani (1993); Geisser
(1975); Gong (1986); Chapters 7 and 8, Györfi et al. (2002a); Chapter 7,
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Hastie et al. (2001); Li (1987); McCarthy (1976); Picard and Cook (1984);
Chapter 3, Ripley (1996); Shao (1993); Stone (1974, 1977); Zhang (1993)).
Another important class of approaches for model selection, described in Bar-
ron et al. (1999), uses sieve theory to define penalized empirical loss criteria.
Connections with cross-validation methods are discussed in Birgé and Mas-
sart (1997).

A variety of cross-validation (CV) procedures are available for estimat-
ing the risk of a given estimator and for performing estimator selection. A
natural question then concerns the distributional properties of the resulting
risk estimators, i.e., their performances in terms of identifying a good estima-
tor (model selection) and as estimators of generalization error, and also the
impact of the particular cross-validation procedure (e.g., the choice of V in
V -fold cross-validation, the use of V -fold vs. Monte Carlo cross-validation).
Aside from empirical assessment of different cross-validation procedures, pre-
vious theoretical work has focused primarily on distributional properties for
leave-one-out cross-validation (Stone, 1974, 1977). However, this special form
of CV has well-known limitations, both theoretical and practical, and a num-
ber of authors have considered more general multifold cross-validation pro-
cedures (Breiman et al., 1984; Breiman and Spector, 1992; Burman, 1989;
Devroye et al., 1996; Geisser, 1975; Györfi et al., 2002a; McCarthy, 1976;
Picard and Cook, 1984; Ripley, 1996; Shao, 1993; Zhang, 1993). With the
exception of the general moment derivations of Burman (1989), theoretical
investigations of multifold cross-validation procedures have concentrated on
linear models (Li, 1987; Shao, 1993; Zhang, 1993). In particular, Li (1987) de-
rives asymptotic optimality results for leave-one-out cross-validation applied
to linear model selection using a squared error loss function. Optimality is
defined as convergence to one in probability of the ratio of the squared error
for the CV selector to the squared error for an optimal benchmark selector
based on the unknown mean parameter (Equation (1.6), p. 961, Li (1987)).
Again in the special case of linear models, Shao (1993) establishes consis-
tency results for Monte Carlo and balanced incomplete cross-validation, in
the sense that the probability of selecting the linear model with the best pre-
dictive ability converges to one. Using similar criteria as Shao (1993), Zhang
(1993) compares the performances of V -fold, Monte Carlo, and leave-one-out
cross-validation in variable selection for linear models. Results of Devroye
et al. (1996) and Györfi et al. (2002a) are discussed in Section 3.

Section 2, below, introduces our general loss-based framework for estima-
tor construction, selection, and performance assessment, and provides further
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motivation for the present investigation of cross-validation procedures for risk
estimation (van der Laan and Dudoit, 2003).

1.2 Outline

The present article proposes a general framework for cross-validation and
derives distributional properties of cross-validated risk estimators. This in-
vestigation of cross-validation was motivated by the development of a gen-
eral loss-based methodology for estimator construction, selection, and per-
formance assessment (Section 2). Arbitrary classes of estimators are con-
sidered, including density estimators (e.g., non-parametric kernel density
estimators, parametric maximum likelihood estimators) and predictors for
both continuous and polychotomous outcomes (e.g., estimators based on lin-
ear and non-linear models, classification and regression trees, support vector
machines). Results are derived for general full data loss functions, such as
the absolute and squared error loss functions for the prediction of continuous
outcomes, the indicator or general matrix loss functions for the prediction of
polychotomous outcomes, and the negative log density loss function for den-
sity estimation. A broad definition of cross-validation is considered in order
to cover leave-one-out cross-validation, V -fold cross-validation, Monte Carlo
cross-validation, and bootstrap procedures. In this general cross-validation
framework, the learning set is divided into a training set and a validation set
based on the value of a random split vector Bn. For a given Bn, the risk of
an estimator built using the training set is assessed by the empirical mean
of the loss function on the validation set. These individual risk estimators
are then averaged over Bn to yield the cross-validated risk estimator. The
particular distribution of the split vector Bn determines the flavor of the
cross-validation procedure.

For estimator selection, the asymptotic optimality of cross-validation pro-
cedures is established (Theorems 1 and 2, and Corollary 1), in the sense that
a selector based on a cross-validated risk estimator performs (in terms of risk)
asymptotically as well as an optimal benchmark or oracle selector based on
the risk under the true, unknown data generating distribution. Theorem
2 applies to general full data loss functions (e.g., truncated absolute and
squared error, matrix, and negative log density loss functions). In the spe-
cial case of the quadratic (i.e., squared error or L2) loss function, Theorem
1 provides a stronger convergence result than Theorem 2: for the L2 loss
function, the rate of convergence is shown to be O(log(Kn)/npn) rather than
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the slower O(log(Kn)/
√
npn) applicable to general loss functions, where pn

denotes the proportion of observations in the validation sets. Note that the
related article by van der Laan et al. (2004a) focuses on likelihood-based
cross-validation and derives, as in Theorem 1, a stronger O(log(Kn)/npn)
convergence result for the negative log density loss function. The asymptotic
results are derived under the assumption that the size of the validation sets
converges to infinity and hence do not cover leave-one-out cross-validation.
For estimator performance assessment, cross-validated risk estimators are
shown to be consistent and asymptotically linear for the risk under the true
data generating distribution (Theorems 3 and 4). The asymptotic linearity
result allows the derivation of confidence intervals for the unknown risk un-
der the true distribution (Section 4.3).

The article is organized as follows. Section 2 introduces our general loss-
based estimation framework and cross-validation methodology for estimator
selection and performance assessment. Section 3 establishes distributional
properties and the asymptotic optimality of cross-validated risk estimators
in model selection. Section 4 concerns distributional properties of cross-
validated risk estimators of generalization error and derives confidence in-
tervals for the risk under the true, unknown data generating distribution.
Finally, Section 5 summarizes our findings and discusses related work. We
stress that, unlike previously published results, the theorems derived in this
and our related articles apply to general data generating distributions, loss
functions (i.e., parameters), estimators, and cross-validation procedures.

2 Framework for loss-based estimation with

cross-validation

2.1 Estimation road map

In a series of related articles, we have developed a unified loss-based cross-
validation methodology for estimator construction, selection, and performance
assessment in the presence of censoring. Our proposed estimation road map
can be stated in terms of the following three main steps.

Step 1. First, define the parameter of interest as the minimizer of the
expected loss, or risk, for a full (uncensored) data loss function chosen
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to represent the desired measure of performance. Apply the estimating
function methodology of van der Laan and Robins (2003) to map the
full data loss function into an observed (censored) data loss function
having the same expected value and leading to an efficient estimator of
this risk.

Step 2. Next, construct a finite collection of candidate estimators for the
parameter of interest, based on a sieve of increasing dimension approx-
imating the complete parameter space. For each element of the sieve,
the candidate estimator is chosen as the minimizer of the empirical risk.

Step 3. Apply cross-validation to select an optimal estimator among the
candidates and to assess the overall performance of the resulting esti-
mator.

The formulation, in Step 1, of the estimation problem in terms of a loss
function allows the unification and generalization of a broad range of prob-
lems that are traditionally treated separately in the statistical literature,
including density estimation and the prediction of both (possibly censored
and/or multivariate) polychotomous and continuous outcomes (i.e., classifi-
cation and regression, respectively). For example, for maximum likelihood
estimation one would use the negative log density loss function, for least
squares regression one would use the squared error (i.e., quadratic or L2)
loss function, and for classification one could use the indicator or a general
matrix loss function. In contrast to existing approaches, this unified loss-
based framework reconciles censored and full data estimation methods, in
the sense that standard full data estimators are recovered as special cases of
censored data estimators. The ability to select an appropriate loss function
and parameterization of the parameter space confers great flexibility and
generality to this approach.

For Step 2 of the road map, Sinisi and van der Laan (2004) propose
general Deletion/Substitution/Addition algorithms, or in short D/S/A algo-
rithms, for risk minimization over a given parameter subspace. Such D/S/A
algorithms are more flexible and aggressive than standard forward/backward
or tree-structured approaches and are especially well-suited to handle high-
dimensional estimation problems, with higher-order interactions among vari-
ables.

The present article is concerned with Step 3 of the road map in the
case of uncensored data, namely, cross-validation for estimator selection and
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performance assessment with full data loss functions that do not depend
on a nuisance parameter. It establishes finite sample and asymptotic op-
timality results for the cross-validated selector, for general data generating
distributions, full data loss functions (i.e., parameters), estimators, and cross-
validation procedures. The results apply, in particular, to regression, classifi-
cation, and density estimation. The asymptotic optimality results state that
the cross-validated selector performs (in terms of risk) asymptotically as well
as an optimal oracle selector based on the true, unknown data generating
distribution.

The general loss-based estimation framework and its theoretical foun-
dations are established in van der Laan and Dudoit (2003). Special cases
and applications are described in a collection of related articles: estima-
tor selection with censored data (Keleş et al., 2004); likelihood-based cross-
validation (van der Laan et al., 2004a); cross-validated adaptive ε–net es-
timation (van der Laan et al., 2004b); tree-based estimation with censored
data (Molinaro et al., 2004); D/S/A algorithm for generating candidate es-
timators (Dudoit et al., 2003; Molinaro and van der Laan, 2004; Sinisi and
van der Laan, 2004).

2.2 Loss-based parameter definition

Model. Consider a full data structure X = (W,Y ), consisting of two com-
ponents, an (polychotomous or continuous) outcome Y ∈ IR (i.e., dependent
variable, response) and a J–dimensional covariate vector W = (W (j) : j =
1, . . . , J) ∈ IRJ (i.e., independent, explanatory, or predictor variables). As-
sume that the data generating distribution P belongs to a statistical model
M (i.e., a set of possibly non-parametric distributions): X ∼ P ∈M.

Parameters. For data generating distributions P ∈M, define a parameter
mapping, Ψ : M → D(X ), from the model M into a space D(X ) of real-
valued functions defined on a (J + 1)–dimensional Euclidean set X ⊆ IRJ+1.
A parameter value (or in short, parameter) is a realization, ψ ≡ Ψ(P ), of Ψ
for a given P ∈M. Thus, the parameter ψ ∈ D(X ) is a function, ψ : X → IR,
from X ⊆ IRJ+1 into the real line IR. The parameter space, corresponding to
the parameter mapping Ψ, is Ψ ≡ {Ψ(P ) : P ∈M} ⊆ D(X ).

Loss functions and risk. A loss function, L : (X,ψ) → L(X,ψ) ∈ IR, is a
real-valued function of a parameter value ψ ∈ Ψ and an observation X ∼ P .
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For a given loss function L, with ψ ∈ Ψ and X ∼ P , the risk is the expected
value of L(X,ψ) with respect to (w.r.t.) P ,

Θ(ψ, P ) ≡
∫
L(x, ψ)dP (x) = E[L(X,ψ)]. (1)

It is assumed that given X ∼ P and a parameter value ψ, one can identify
a loss function L(X,ψ), so that ψ can be defined as the risk minimizer for
this loss function, that is,

ψ = Ψ(P ) ≡ argminψ′∈ΨΘ(ψ′, P ) = argminψ′∈Ψ

∫
L(x, ψ′)dP (x). (2)

Denote the optimal risk, corresponding to the parameter ψ = Ψ(P ), by θ,
that is,

θ ≡ Θ(ψ, P ) = min
ψ′∈Ψ

Θ(ψ′, P ) = min
ψ′∈Ψ

∫
L(x, ψ′)dP (x). (3)

For example, in regression, the conditional expected value, ψ(W ) =
E[Y |W ], of an outcome Y given covariates W , is the risk minimizer for the
quadratic loss function (i.e., L2 or squared error loss function), L(X,ψ) =
(Y − ψ(W ))2. In classification, the Bayes classifier, ψ(W ) = argmaxy
Pr(y|W ), is the risk minimizer for the indicator loss function, L(X,ψ) =
I(Y 6= ψ(W )). The optimal risk θ is then referred to as the Bayes risk. In
maximum likelihood and density estimation, one uses the negative log den-
sity loss function, L(X,ψ) = − logψ(X) (cf. entropy, Kullback-Leibler di-
vergence). For censored data, van der Laan and Dudoit (2003) apply the
estimating function methodology of van der Laan and Robins (2003) to map
the full data loss function into a censored data loss function having the same
expected value and leading to an efficient estimator of this risk. Unlike the
uncensored data loss functions considered in the present article, censored data
loss functions depend on a nuisance parameter. Table 1 provides examples
of loss functions for a variety of common full data estimation problems.

2.3 Loss-based estimation

Suppose one has available as learning set a random sample, Ln = {X1, . . . , Xn},
of n independent and identically distributed (i.i.d.) random variables, Xi ∼
P ∈ M, i = 1, . . . , n. Our goal is to use the learning set Ln to estimate a
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parameter ψ = Ψ(P ) of the unknown data generating distribution P . Let
Pn denote the empirical distribution of the learning set, which places prob-
ability 1/n on each Xi, i = 1, . . . , n. An estimator mapping Ψ̂ is a function
from empirical distributions to the parameter space Ψ. An estimator value
(or in short, estimator) is a realization of this mapping corresponding to a
particular empirical distribution Pn and is denoted by ψn ≡ Ψ̂(Pn). Note
that estimator mappings Ψ̂ can be viewed simply as black box algorithms
one applies to data, i.e., to empirical distributions Pn.

Given an estimator ψn ∈ Ψ of a parameter ψ = Ψ(P ), the conditional risk
is defined as the risk of ψn with respect to the true, unknown data generating
distribution P , that is,

θ̃n ≡ Θ(ψn, P ) =

∫
L(x, ψn)dP (x). (4)

Note that the conditional risk is a random variable, as it depends on the
data, X1, . . . , Xn, via the empirical distribution Pn on which ψn is based.

A naive risk estimator is the resubstitution or empirical risk estimator,
which replaces the unknown data generating distribution P , in Equation (4),
by the known empirical distribution Pn,

θ̄n ≡ Θ(ψn, Pn) =

∫
L(x, ψn)dPn(x) =

1

n

n∑
i=1

L(Xi, ψn). (5)

A corresponding naive estimator for the parameter ψ is the resubstitution or
plug-in estimator, which seeks to minimize the empirical risk,

ψ̄n = Ψ̄(Pn) ≡ argminψ′∈ΨΘ(ψ′, Pn) = argminψ′∈Ψ

n∑
i=1

L(Xi, ψ
′). (6)

The special cases of the quadratic and negative log density loss functions
correspond, respectively, to least squares estimation (LSE) and maximum
likelihood estimation (MLE). However, unless one considers small enough
parameter spaces Ψ (e.g., corresponding to very specific models M, such
as linear models in regression or exponential families in density estimation),
minimizing risk over the entire parameter space can result in highly-variable
and possibly ill-defined estimators (cf. over-fitting).

Instead, according to Step 2 of the above road map and other common
estimation approaches (e.g., tree-based estimation), one approximates the

9
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parameter space Ψ by a sequence of Kn subspaces of increasing dimension
and generates candidate estimators, {ψk,n = Ψ̂k(Pn) : k = 1, . . . , Kn}, as
the empirical risk minimizers for each subspace (van der Laan et al., 2004b;
Molinaro et al., 2004; Molinaro and van der Laan, 2004; Sinisi and van der
Laan, 2004). The optimal estimator is then defined as the conditional risk
minimizer among the Kn candidates.

Accurate risk estimation is therefore a key aspect of the above estimation
approaches for two purposes: for selecting an optimal minimum risk estima-
tor and for assessing the overall performance of this “final” estimator, i.e., its
generalization error. Specifically, given a candidate estimator ψn = Ψ̂(Pn) of
a parameter ψ = Ψ(P ), our main task is to derive an accurate estimator of
the conditional risk θ̃n of ψn, as defined in Equation (4), above. A naive risk
estimator is the resubstitution risk estimator θ̄n of Equation (5). However,
this estimator can be severely biased downward due to over-fitting. Cross-
validation, described next, provides a general and accurate approach for risk
estimation.

2.4 Cross-validation

2.4.1 Cross-validated risk estimation

The main idea in cross-validation (CV) is to divide the available learning set
into two sets: a training set and a validation set. Observations in the training
set are used to compute (or train) the estimator(s) and the validation set is
used to assess the risk of (or validate) this estimator(s).

To derive a general representation for cross-validation, we introduce a
binary random n–vector, or split vector, Bn = (Bn(i) : i = 1, . . . , n) ∈
{0, 1}n, independent of the empirical distribution Pn. A realization of Bn

defines a particular split of the learning set of n observations into a training
set and a validation set,

Bn(i) ≡
{

0, ith observation Xi is in the training set,
1, ith observation Xi is in the validation set.

(7)

Let P 0
n,Bn

and P 1
n,Bn

denote, respectively, the empirical distributions of the
training and validation sets, and let n1 ≡

∑
iBn(i) and p = pn ≡

∑
iBn(i)/n

denote, respectively, the number and proportion of observations in the val-
idation sets. A general definition of the cross-validated risk estimator for
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ψn = Ψ̂(Pn) is

θ̂pn,n ≡ EBnΘ(Ψ̂(P 0
n,Bn

), P 1
n,Bn

) (8)

= EBn

∫
L(x, Ψ̂(P 0

n,Bn
))dP 1

n,Bn
(x)

= EBn

1

n1

∑
{i:Bn(i)=1}

L(Xi, Ψ̂(Pn,B0
n
)),

where Ψ̂(P 0
n,Bn

) denotes the estimator of the parameter ψ based only on the
training set.

The particular distribution of the split vector Bn defines the type of cross-
validation procedure. This representation covers a broad class of approaches,
including the following.

Leave-one-out cross-validation (LOOCV). Each observation in the learning
set is used in turn as the validation set and the remaining (n− 1) ob-
servations are used as the training set. The corresponding distribution
of Bn places mass 1/n on each of the n binary vectors, bn = (bn(i) :
i = 1, . . . , n), such that

∑
i bn(i) = 1. The proportion of observations

in the validation sets is pn = 1/n.

V –fold cross-validation. The learning set is randomly partitioned into V
mutually exclusive and exhaustive sets of approximately equal size.
Each set is then used in turn as a validation set. The corresponding
distribution of Bn places mass 1/V on each of V binary vectors, bvn =
(bvn(i) : i = 1, . . . , n), v = 1, . . . , V , such that

∑
i b
v
n(i) ≈ n/V ∀ v and∑

v b
v
n(i) = 1 ∀ i. The proportion of observations in the validation sets

is pn ≈ 1/V .

Monte Carlo cross-validation. The learning set is repeatedly and randomly
divided into two sets, a training set of n0 = n(1 − pn) observations
and a validation set of n1 = npn observations. The split vectors Bn

are drawn at random with replacement from a distribution that places
mass 1/

(
n
npn

)
on each binary vector such that

∑
i bn(i) = npn.

Bootstrap-based cross-validation. The training sets are based on bootstrap
samples of the learning set and the validation sets on the corresponding
left-out samples (cf. the .632 bootstrap estimator, Efron (1983)). The
proportion pn of observations in the validation sets is a random variable,
such that E[pn] = E[

∑
iBn(i)/n] = (1− 1/n)n ≈ e−1 ≈ .368.
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2.4.2 Cross-validated estimator selection

As mentioned above, Step 3 of our road map (Section 2.1), and many
other statistical inference problems, involve selecting an optimal estimator
(in terms of risk) among a collection of Kn candidate estimators, {ψk,n =

Ψ̂k(Pn) : k = 1, . . . , Kn}, for a parameter ψ = Ψ(P ). For instance, k could
index the number of variables in a regression model, the number of terminal
nodes in a classification or regression tree, or the bandwidth for a kernel
density estimator.

Specifically, the estimator selection problem involves choosing a data-
adaptive kn = K(Pn), so that the risk difference or distance,

Θ(ψkn,n, P )−Θ(ψ, P ) =

∫
(L(x, ψkn,n)− L(x, ψ)) dP (x) (9)

converges to zero at asymptotically optimal rate. Ideally, one would like to
obtain the optimal benchmark or oracle selector, k̃n = K̃(Pn), which mini-
mizes this distance, i.e., which minimizes risk with respect to the true data
generating distribution P ,

k̃n = K̃(Pn) ≡ argmink∈{1,...,Kn}Θ(ψk,n, P ). (10)

However, P is usually unknown and the selection problem involves estimating
the conditional risk,

θ̃n(k) ≡ Θ(ψk,n, P ) =

∫
L(x, ψk,n)dP (x), (11)

for each candidate estimator ψk,n = Ψ̂k(Pn), k = 1, . . . , Kn. A selector kn =
K(Pn) is said to be asymptotically equivalent with the optimal benchmark
k̃n, if the ratio of risk differences with the optimal risk θ = Θ(ψ, P ) converges
to one in probability, i.e.,

θ̃n(kn)− θ

θ̃n(k̃n)− θ
=

Θ(ψkn,n, P )−Θ(ψ, P )

Θ(ψk̃n,n
, P )−Θ(ψ, P )

P→ 1 as n→∞. (12)

In particular, then kn is said to be asymptotically optimal.
As detailed in Sections 3 and 4, below, cross-validation is a general ap-

proach for risk estimation and estimator selection that yields optimal selec-
tors. Specifically, cross-validation provides the following risk estimators for
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the candidates ψk,n,

θ̂pn,n(k) ≡ EBnΘ(Ψ̂k(P
0
n,Bn

), P 1
n,Bn

) = EBn

∫
L(x, Ψ̂k(P

0
n,Bn

))dP 1
n,Bn

(x).

(13)
The cross-validated selector k̂pn,n = K̂pn(Pn) corresponds to the estimator
ψk,n with minimum cross-validated risk,

k̂pn,n = K̂pn(Pn) ≡ argmink∈{1,...,Kn}θ̂pn,n(k). (14)

That is, the cross-validated estimator ψk̂pn,n,n
is chosen to have the best

performance on the validation sets.
To obtain a commensurate optimal benchmark for the cross-validated se-

lector k̂pn,n, we also define the conditional risks (averaged over Bn) of esti-

mators Ψ̂k(P
0
n,Bn

), based on cross-validation training sets of size n(1 − pn),

θ̃pn,n(k) ≡ EBnΘ(Ψ̂k(P
0
n,Bn

), P ) = EBn

∫
L(x, Ψ̂k(P

0
n,Bn

))dP (x), (15)

and corresponding minimizer,

k̃pn,n = K̃pn(Pn) ≡ argmink∈{1,...,Kn}θ̃pn,n(k). (16)

To simplify notation, as in the proofs of Theorems 1 and 2, we may drop
the subscripts n and/or pn, and use the shorter notation p = pn, k̂ = k̂p,n =

k̂pn,n, and k̃ = k̃p,n = k̃pn,n. When needed, however, we distinguish between
k̃pn,n and k̃n = k̃0,n, the minimizers of the conditional risks θ̃pn,n(k) and
θ̃n(k) = θ̃0,n(k), for estimators based on training sets of size n(1 − pn) and
on the entire learning set of size n (special case pn = 0), respectively (cf.
Corollary 1).

The remainder of this article is concerned with deriving optimality re-
sults for cross-validation in the context of estimator selection (Section 3) and
performance assessment (Section 4).

3 Results for estimator selection

We derive two main results concerning the asymptotic optimality of the cross-
validated estimator selectors described in Section 2.4.2. In this context, the

13
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centered conditional risk for the cross-validated selector k̂ = k̂pn,n is compared
to the centered conditional risk for the optimal oracle selector k̃ = k̃pn,n, that

is, one compares the two risk differences θ̃pn,n(k̂)− θ and θ̃pn,n(k̃)− θ. Finite
sample bounds are obtained for the expected value of the predictive loss,
i.e., the expected value of the difference, θ̃pn,n(k̂) − θ̃pn,n(k̃), between the
conditional risks for the cross-validated and oracle selectors. These bounds
imply convergence to zero in expectation and in probability of the predictive
loss, at rate O(log(Kn)/npn) for quadratic loss functions (Theorem 1) and
at the slower rate O(log(Kn)/

√
npn) for general loss functions (Theorem 2).

Consequently, if E[θ̃pn,n(k̃)− θ] converges to zero slower than at these rates,

then E[θ̃pn,n(k̂)− θ̃pn,n(k̃)]/E[θ̃pn,n(k̃)− θ] converges to zero and the ratio of

expected risk differences, E[θ̃pn,n(k̂) − θ]/E[θ̃pn,n(k̃) − θ], converges to one.
Convergence in probability of the ratio of risk differences follows from Lemma
2, below.

Theorem 1 in van der Laan and Dudoit (2003) provides similar results as
the present Theorem 1, for general quadratic loss functions that may depend
on a nuisance parameter to handle censored data. The reader is referred
to van der Laan et al. (2004a) for a sharper O(log(Kn)/npn) bound, as in
Theorem 1, for likelihood-based cross-validation.

Note that Theorem 2 applies to general full data loss functions, including
the (truncated) absolute error loss function commonly-used for regression
with continuous outcomes, indicator and matrix loss functions for classifica-
tion with polychotomous outcomes, and the negative log density loss function
used in density estimation.

Both Theorems 1 and 2 consider general distributions for the split vector
Bn, i.e., general cross-validation procedures with an arbitrary proportion pn
of observations included in the validation sets. While the finite sample results
hold for any pn, the asymptotic results are derived under the assumption that
the size npn of the validation sets converges to infinity and hence do not cover
leave-one-out cross-validation.

An important and practical issue is the impact of the validation set pro-
portion pn on risk estimation and estimator selection. In practice, we have
found that averaging over split vectors Bn can significantly reduce the sen-
sitivity of the cross-validated selector k̂pn,n to the choice of pn, compared to
single-split validation (Keleş et al., 2004; van der Laan et al., 2004a). Section
4.4, below, presents a theoretical justification for this behavior in the case of
non-quadratic loss functions.

14
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The proofs of Theorems 1, 2, and 3, rely on Bernstein’s Inequality, which
we state here as Lemma 1 for ease of reference. A proof is given in Györfi
et al. (2002a), Lemma A.2, p. 594.

Lemma 1 Bernstein’s Inequality. Let Zi, i = 1, . . . , n, be independent real-
valued random variables, such that Zi ∈ [a, b] with probability one. Let 0 <∑n

i=1 V ar[Zi]/n ≤ σ2. Then, for all ε > 0,

Pr

(
1

n

n∑
i=1

(Zi − E[Zi]) > ε

)
≤ exp

(
−1

2

nε2

σ2 + ε(b− a)/3

)
. (17)

This implies

Pr

(
1

n

∣∣∣∣∣
n∑
i=1

(Zi − E[Zi])

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−1

2

nε2

σ2 + ε(b− a)/3

)
. (18)

Theorems 1 and 2 first establish convergence in expectation of the con-
ditional risk of the cross-validated selector to that of the oracle selector.
Convergence in probability follows from Lemma 2, below.

Lemma 2 Consider a sequence of random variables Z1, Z2, . . ., with finite
expected value, E|Zn| = O(g(n)), for a positive function g(n). Then, Zn =
OP (g(n)).

Proof of Lemma 2. We wish to show that ∀ ε > 0, ∃ N and B > 0, such
that Pr(|Zn|/g(n) > B) < ε, ∀ n ≥ N . Since E|Zn| = O(g(n)), then ∃ N
and C > 0, such that E|Zn|/g(n) < C, ∀ n ≥ N . Thus, letting B = C/ε and
appealing to Markov’s Inequality, one has

Pr

(
|Zn|
g(n)

> B

)
≤ E|Zn|
Bg(n)

≤ C

B
= ε, ∀ n ≥ N.

2

3.1 Quadratic loss function

In this section, we prove that for the full data quadratic (i.e., squared er-
ror or L2) loss function, the ratio of expected risk differences, E[θ̃pn,n(k̂) −
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θ]/E[θ̃pn,n(k̃) − θ], converges to one at rate O(log(Kn)/npn). The proof is
based on that of Theorem 7.1, p. 101, in Györfi et al. (2002a), which concerns
single-split validation (i.e., no averaging over split vectors Bn). However, we
modify the proof of Györfi et al. (2002a) do deal with the fact that their
H is a random variable in the expressions for Pr(T1,n ≥ s|Dnl

) on the last
line of p. 102 and the first line of p. 103. Our results in Theorem 1, below,
are more general than the single-split results of Györfi et al. (2002a), as we
consider risk estimators based on multiple random splits of the learning set
based on random vectors Bn. An extra term similar to T1,n is introduced to
account for the expected value over Bn. Finally, we point out that a finite
sample result similar to that in Equation (7.5) of Györfi et al. (2002a) implies
the asymptotic optimality of the cross-validated selector k̂ under appropriate
conditions.

Theorem 1 Let X1, . . . , Xn be a random sample from a data generating dis-
tribution P , where each Xi = (Wi, Yi) consists of two components, a J–
dimensional covariate vector Wi ∈ IRJ and a univariate outcome Yi ∈ IR.
Let {ψk,n = Ψ̂k(Pn) : k = 1, . . . , Kn} denote a sequence of Kn candidate
estimators for the conditional mean parameter, ψ(W ) = E[Y |W ], which is
the risk minimizer for the quadratic loss function, L(X,ψ) = (Y − ψ(W ))2.
Consider the following three risk quantities: the optimal risk θ, corresponding
to the parameter of interest ψ,

θ ≡ min
ψ′∈Ψ

∫
L(x, ψ′)dP (x),

the conditional risk θ̃pn,n(k̂pn,n), for the cross-validated selector k̂ = k̂pn,n,

θ̃pn,n(k̂pn,n) ≡ EBn

∫
L(x, Ψ̂k̂pn,n

(P 0
n,Bn

))dP (x),

and the conditional risk θ̃pn,n(k̃pn,n), for the optimal oracle selector k̃ = k̃pn,n,

θ̃pn,n(k̃pn,n) ≡ min
k∈{1,...,Kn}

EBn

∫
L(x, Ψ̂k(P

0
n,Bn

))dP (x).

Assumptions. Suppose that |Y | ≤ M < ∞ a.s. and supW,ψ∈Ψ |ψ(W )| ≤
M <∞ a.s., where the supremum is over a support of the distribution of W .
Finite sample result. Let M1 ≡ 8M2, M2 ≡ 16M2, and

c(M, δ) ≡ 2(1 + δ)2

(
M1

3
+
M2

δ

)
. (19)
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Then, for any δ > 0, one has

0 ≤ E[θ̃pn,n(k̂pn,n)− θ] ≤ (1 + 2δ)E[θ̃pn,n(k̃pn,n)− θ] + 2c(M, δ)
1 + log(Kn)

npn
.

(20)
Asymptotic results. The finite sample result in Equation (20) has the

following asymptotic implications. If log(Kn)

(npn)E[θ̃pn,n(k̃pn,n)−θ] → 0 as n → ∞,

then
E[θ̃pn,n(k̂pn,n)− θ]

E[θ̃pn,n(k̃pn,n)− θ]
→ 1. (21)

Similarly, if log(Kn)

(npn)(θ̃pn,n(k̃pn,n)−θ)
P→ 0 as n→∞, then

θ̃pn,n(k̂pn,n)− θ

θ̃pn,n(k̃pn,n)− θ

P→ 1. (22)

The proof of Theorem 1 relies on Bernstein’s Inequality and the following
special property of random variables Zk = L(X, Ψ̂k(P

0
n,Bn

))−L(X,Ψ(P )) for
the quadratic loss function.

Lemma 3 Consider the same set-up and assumptions as in Theorem 1.
Conditional on the training set empirical distribution P 0

n,Bn
and split vec-

tor Bn, define random variables Zk ≡ L(X, Ψ̂k(P
0
n,Bn

))− L(X,Ψ(P )), where
L denotes the quadratic loss function, L(X,ψ) = (Y − ψ(W ))2. Then,

V ar[Zk|P 0
n,Bn

, Bn] ≤M2E[Zk|P 0
n,Bn

, Bn]. (23)

Proof of Lemma 3. For the quadratic loss function, ψ(W ) = E[Y |W ] and

Zk =
(
Ψ(P )(W )− Ψ̂k(P

0
n,Bn

)(W )
)(

2Y − Ψ̂k(P
0
n,Bn

)(W )−Ψ(P )(W )
)
.

Thus,

E[Zk|P 0
n,Bn

, Bn] = E
[
E[Zk|P 0

n,Bn
, Bn,W ]|P 0

n,Bn
, Bn

]
= E

[(
Ψ(P )(W )− Ψ̂k(P

0
n,Bn

)(W )
)

(
2E[Y |W ]− Ψ̂k(P

0
n,Bn

)(W )−Ψ(P )(W )
)
P 0
n,Bn

, Bn

]

= E

[(
Ψ(P )(W )− Ψ̂k(P

0
n,Bn

)(W )
)2

P 0
n,Bn

, Bn

]
.
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Hence, using the fact that |2Y − Ψ̂k(P
0
n,Bn

)(W )−Ψ(P )(W )| ≤ 4M a.s. and
letting M2 = (4M)2, one has

V ar[Zk|P 0
n,Bn

, Bn] ≤ E[Z2
k |P 0

n,Bn
, Bn]

≤ (4M)2E

[(
Ψ(P )(W )− Ψ̂k(P

0
n,Bn

)(W )
)2

P 0
n,Bn

, Bn

]
= M2E[Zk|P 0

n,Bn
, Bn].

2

Proof of Theorem 1. Adopt the shorter notation k̂ = k̂pn,n and k̃ = k̃pn,n.
Finite sample result. We have

0 ≤ θ̃pn,n(k̂)− θ (24)

= EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x)

− (1 + δ)EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

+ (1 + δ)EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

≤ EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x)

− (1 + δ)EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

+ (1 + δ)EBn

∫ (
L(x, Ψ̂k̃(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

= EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x)

− (1 + δ)EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

+ (1 + δ)EBn

∫ (
L(x, Ψ̂k̃(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

− (1 + 2δ)EBn

∫ (
L(x, Ψ̂k̃(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x)

+ (1 + 2δ)EBn

∫ (
L(x, Ψ̂k̃(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x),
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where the first inequality follows by definition of the optimal risk θ and the
second by definition of k̂, such that θ̂pn,n(k̂) ≤ θ̂pn,n(k), ∀ k. Denote the
first two terms in the last expression of Equation (24) by Rk̂,n and the third
and fourth terms by Tk̃,n; the last term is the benchmark risk difference

(1 + 2δ)(θ̃pn,n(k̃)− θ). Hence,

0 ≤ θ̃pn,n(k̂)− θ ≤ (1 + 2δ)(θ̃pn,n(k̃)− θ) +Rk̂,n + Tk̃,n. (25)

In the sequel, we show that E[Rk̂,n + Tk̃,n] ≤ 2c(M, δ)(1 + log(Kn))/npn.
For convenience, introduce the following notation,

H̃k ≡
∫ (

L(x, Ψ̂k(P
0
n,Bn

))− L(x,Ψ(P ))
)
dP (x), (26)

Ĥk ≡
∫ (

L(x, Ψ̂k(P
0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x),

Rk,n(Bn) ≡ (1 + δ)(H̃k − Ĥk)− δH̃k,

Tk,n(Bn) ≡ (1 + δ)(Ĥk − H̃k)− δH̃k,

where, by definition of ψ = Ψ(P ) as the risk minimizer, H̃k ≥ 0, ∀ k. One can
then rewrite Rk,n and Tk,n as Rk,n = EBn [Rk,n(Bn)] and Tk,n = EBn [Tk,n(Bn)],
respectively. Note that

Pr(Rk̂,n(Bn) > s P 0
n,Bn

, Bn)

= Pr

(
H̃k̂ − Ĥk̂ >

1

1 + δ
(s+ δH̃k̂) P

0
n,Bn

, Bn

)
≤ Kn max

k∈{1,...,Kn}
Pr

(
H̃k − Ĥk >

1

1 + δ
(s+ δH̃k) P

0
n,Bn

, Bn

)
.

Conditional on P 0
n,Bn

and Bn, consider the random variables

Zk ≡ L(X, Ψ̂k(P
0
n,Bn

))− L(X,Ψ(P )).

Let Zk,i, i = 1, . . . , npn, denote the npn i.i.d. copies of Zk corresponding with

the validation set, i.e., with {Xi : Bn(i) = 1}. Note that Ĥk =
∑npn

i=1 Zk,i/npn
and H̃k = E[Zk|P 0

n,Bn
, Bn], so that H̃k−Ĥk = E[Zk|P 0

n,Bn
, Bn]−

∑npn

i=1 Zk,i/npn
represents an empirical mean of npn centered i.i.d. random variables. For
the quadratic loss function, the random variables Zk are bounded, with
|Zk| ≤ 4M2 a.s.
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Next, we apply Bernstein’s Inequality (Lemma 1) to the centered empir-
ical mean H̃k − Ĥk and exploit the special property of Zk derived in Lemma
3 for the quadratic loss function, to obtain an exp(−(npn)s/c) bound for tail
probabilities ofRk,n(Bn) and Tk,n(Bn), instead of the usual exp(−(npn)s

2/(a+
bs)), for some constants a, b, c < ∞. This shows that the risk differences
converge at O(log(Kn)/npn) rate instead of the slower O(log(Kn)/

√
npn) rate

derived in Theorem 2, below, for general loss functions. Specifically, from
Lemma 3,

σ2
k ≡ V ar[Zk|P 0

n,Bn
, Bn] ≤M2E[Zk|P 0

n,Bn
, Bn] = M2H̃k.

For s > 0 and M1 = 8M2, Bernstein’s Inequality then yields

Pr(Rk,n(Bn) > s P 0
n,Bn

, Bn)

= Pr

(
H̃k − Ĥk >

1

1 + δ
(s+ δH̃k) P

0
n,Bn

, Bn

)
≤ Pr

(
H̃k − Ĥk >

1

1 + δ
(s+ δσ2

k/M2) P
0
n,Bn

, Bn

)
≤ exp

(
− npn

2(1 + δ)2

(s+ δσ2
k/M2)

2

σ2
k + M1

3(1+δ)
(s+ δσ2

k/M2)

)
.

Note that

(s+ δσ2
k/M2)

2

σ2
k + M1

3(1+δ)
(s+ δσ2

k/M2)
=

(s+ δσ2
k/M2)

σ2
k

s+δσ2
k/M2

+ M1

3(1+δ)

≥ (s+ δσ2
k/M2)

M2

δ
+ M1

3

≥ s
M2

δ
+ M1

3

.

This shows that, for s > 0,

Pr(Rk̂,n(Bn) > s|P 0
n,Bn

, Bn) ≤ Kn exp

(
− npn
c(M, δ)

s

)
,

where c(M, δ) = 2(1+δ)2
(
M1

3
+ M2

δ

)
, with M1 = 8M2 and M2 = 16M2. The

same bound applies to the marginal probabilities Pr(Rk̂,n(Bn) > s).
For each u > 0, we have

E[Rk̂,n] ≤ u+

∫ ∞

u

Kn exp

(
− npn
c(M, δ)

s

)
ds.
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The function of u on the right-hand side of the above inequality achieves a
minimum value of c(M, δ)(1+log(Kn))/(npn) at un = c(M, δ) log(Kn)/(npn).
Thus,

E[Rk̂,n] ≤ c(M, δ)
1 + log(Kn)

npn
.

The same bound applies to E[Tk̃,n]. Taking the expected values of the quan-
tities in Equation (25) yields the finite sample result in Equation (20).

Asymptotic results. Convergence to one of the ratio of expected risk
differences, in Equation (21), follows trivially from the finite sample result of
Equation (20). Convergence in probability, as in Equation (22), follows from
convergence in expectation by Lemma 2.

2

Theorem 1 provides a finite sample bound, 2c(M, δ)(1 + log(Kn))/(npn),
for comparing the performance of the cross-validated selector k̂pn,n to that of
the commensurate optimal oracle selector k̃pn,n based on n(1 − pn) training

observations. However, one would like the cross-validated selector k̂pn,n to
perform as well as an oracle selector k̃n = k̃0,n based on the entire learning
set of size n, rather than smaller training sets of size n(1−pn) as above. The
following is a corollary of Theorem 1, which relates the conditional risk of
the cross-validated selector, θ̃pn,n(k̂pn,n), to that of the oracle selector based
on n observations, θ̃n(k̃n).

Corollary 1 Denote the conditional risk of an estimator Ψ̂k(Pn), based on
the entire learning set of size n, by

θ̃n(k) ≡
∫
L(x, Ψ̂k(Pn))dP (x)

and let
k̃n ≡ argmink∈{1,...,Kn}θ̃n(k)

denote the corresponding risk minimizer. As before, let k̃pn,n denote the min-

imizer for the conditional risk θ̃pn,n(k) of estimators Ψ̂k(P
0
n,Bn

), based on
cross-validation training sets of size n(1− pn).
Assumptions. As in Theorem 1, suppose that |Y | ≤ M < ∞ a.s. and
supW,ψ∈Ψ |ψ(W )| ≤M <∞ a.s., where the supremum is over a support of the
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distribution of W . Further assume that, as n→∞, pn → 0, log(Kn)/(npn) →
0, log(Kn)

(npn)(θ̃pn,n(k̃pn,n)−θ)
P→ 0, and

θ̃n(k̃n)− θ

θ̃pn,n(k̃pn,n)− θ

P→ 1. (27)

Asymptotic result. Then,

θ̃pn,n(k̂pn,n)− θ

θ̃n(k̃n)− θ

P→ 1. (28)

Sufficient condition. A sufficient condition for Equation (27) is that there
exists γ > 0 such that(

nγ
(
θ̃n(k̃n)− θ

)
, (n(1− pn))

γ
(
θ̃pn,n(k̃pn,n)− θ

))
L⇒ (Z,Z), (29)

for a random variable Z with Pr(Z > a) = 1 for some a > 0. In particular,
for single-split validation, where Pr(Bn = b) = 1 for some b ∈ {0, 1}n, it

suffices to assume that there exists γ > 0 such that nγ
(
θ̃n(k̃n)− θ

)
L⇒ Z,

for a random variable Z with Pr(Z > a) = 1 for some a > 0.

Proof of Corollary 1.
Asymptotic result. The main statement of the corollary, in Equation (28),
follows immediately from Theorem 1 by noting that

θ̃pn,n(k̂pn,n)− θ

θ̃n(k̃n)− θ

θ̃n(k̃n)− θ

θ̃pn,n(k̃pn,n)− θ

P→ 1.

Sufficient condition. We now show that the assumption in Equation (27)
holds under the first sufficient condition in Equation (29). Define Z1,n ≡
nγ(θ̃n(k̃n) − θ) and Z2,n ≡ (n(1 − pn))

γ(θ̃pn,n(k̃pn,n) − θ). If (Z1,n, Z2,n)
L⇒

(Z,Z), then, by the Continuous Mapping Theorem, Z1,n/Z2,n
L⇒ 1. However,

note that
Z1,n

Z2,n

=
1

(1− pn)γ
θ̃n(k̃n)− θ

θ̃pn,n(k̃pn,n)− θ
,

which yields Equation (27) if pn → 0. For single-split validation, i.e., Pr(Bn =

b) = 1 for some b ∈ {0, 1}n, then Z1,n
L
= Z2, n

1−pn
, and hence Z1,n

L⇒ Z implies
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(Z1,n, Z2,n)
L⇒ (Z,Z). This completes the proof of Corollary 1.

2

Previous results for the quadratic loss function. In Corollaries 7.1 –
7.3, Györfi et al. (2002a) apply their Theorem 7.1 to kernel, partitioning, and
nearest neighbor estimators, respectively. Finite sample bounds are derived
for the expected risk difference E[θ̃pn,n(k̂) − θ] of the single-split selector

k̂, based on previously derived estimator-specific bounds for the benchmark
E[θ̃pn,n(k̃)− θ].

Devroye et al. (2003) establish rate of convergence results for estimators of
the optimal risk θ for the quadratic loss function. Building on results in Antos
et al. (1999), they show that one cannot estimate θ with guaranteed rate of
convergence (Theorem 2.1). However, by imposing certain conditions on the
data generating distribution P , such as Lipschitz continuity of the regression
function ψ(W ) = E[Y |W ], they derive non-trivial rates of convergence for
two classes of estimators, based on single-split validation (Theorem 3.1) and
first nearest neighbor cross-validation (Theorem 4.1).

3.2 General loss function

In this section, we derive an analog of Theorem 1 for general full data
loss functions, whereby the ratio of expected risk differences, E[θ̃pn,n(k̂) −
θ]/E[θ̃pn,n(k̃) − θ], is shown to converge to one at rate O(log(Kn)/

√
npn)

rather than the faster O(log(Kn)/npn) applicable to quadratic loss functions.

Theorem 2 Let X1, . . . , Xn be a random sample from a data generating dis-
tribution P . Let {ψk,n = Ψ̂k(Pn) : k = 1, . . . , Kn} denote a sequence of Kn

candidate estimators for the parameter ψ = Ψ(P ), where ψ is a risk mini-
mizer for the loss function L(X,ψ). Consider the same three risk quantities,
θ, θ̃pn,n(k̂pn,n), and θ̃pn,n(k̃pn,n), as in Theorem 1.
Assumptions. Suppose that supX,ψ∈Ψ L(X,ψ) ≤ M < ∞ a.s., where the
supremum is over a support of the distribution of X.
Finite sample result. Let m ≡ 2M and v ≡M2, and define

f(M,Kn, npn) ≡ 2

[
un +

∫ ∞

un

Kn exp

(
−1

2

(npn)x
2

v +mx/3

)
dx

]
, (30)
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where

un ≡
m log(Kn)/3 +

√
(m log(Kn)/3)2 + 2(npn)v log(Kn)

npn
. (31)

Then, one has the following finite sample result

0 ≤ E[θ̃pn,n(k̂pn,n)− θ] ≤ E[θ̃pn,n(k̃pn,n)− θ] + f(M,Kn, npn). (32)

Asymptotic results. Suppose that log(Kn)/
√
npn → 0 as n → ∞. Then,

f(M,Kn, npn) = O(log(Kn)/
√
npn) and hence E[θ̃pn,n(k̂pn,n)−θ] = E[θ̃pn,n(k̃pn,n)−

θ] + O(log(Kn)/
√
npn). In particular, θ̃pn,n(k̂pn,n) − θ = θ̃pn,n(k̃pn,n) − θ +

OP (log(Kn)/
√
npn). If log(Kn)

√
npnE[θ̃pn,n(k̃pn,n)−θ] → 0 as n→∞, then

E[θ̃pn,n(k̂pn,n)− θ]

E[θ̃pn,n(k̃pn,n)− θ]
→ 1. (33)

Similarly, if log(Kn)
√
npn(θ̃pn,n(k̃pn,n)−θ)

P→ 0 as n→∞, then

θ̃pn,n(k̂pn,n)− θ

θ̃pn,n(k̃pn,n)− θ

P→ 1. (34)

Note that Corollary 1 also applies in this setting, with suitable mod-
ifications to reflect the assumptions of Theorem 2 and the slower rate of
convergence.

Proof of Theorem 2. As in the proof of Theorem 1, adopt the shorter
notation k̂ = k̂pn,n and k̃ = k̃pn,n.
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Finite sample result. We have

0 ≤ θ̃pn,n(k̂)− θ (35)

= EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x)

− EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

+ EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x)

≤ EBn

∫ (
L(x, Ψ̂k̂(P

0
n,Bn

))− L(x,Ψ(P ))
)
d(P − P 1

n,Bn
)(x)

+ EBn

∫ (
L(x, Ψ̂k̃(P

0
n,Bn

))− L(x,Ψ(P ))
)
d(P 1

n,Bn
− P )(x)

+ EBn

∫ (
L(x, Ψ̂k̃(P

0
n,Bn

))− L(x,Ψ(P ))
)
dP (x),

where the first inequality follows by definition of the optimal risk θ and the
second by definition of k̂, such that θ̂pn,n(k̂) ≤ θ̂pn,n(k), ∀ k. For convenience,
introduce the following notation,

H̃k ≡
∫ (

L(x, Ψ̂k(P
0
n,Bn

))− L(x,Ψ(P ))
)
dP (x), (36)

Ĥk ≡
∫ (

L(x, Ψ̂k(P
0
n,Bn

))− L(x,Ψ(P ))
)
dP 1

n,Bn
(x),

Tk,n(Bn) ≡ H̃k − Ĥk,

Tk,n ≡ EBn [Tk,n(Bn)].

Then, the first two terms in the last expression of Equation (35) are Tk̂,n and

−Tk̃,n, respectively; the last term is the benchmark risk difference (θ̃pn,n(k̃)−
θ). Hence,

0 ≤ θ̃pn,n(k̂)− θ ≤ θ̃pn,n(k̃)− θ + Tk̂,n − Tk̃,n. (37)

In the sequel, we show that both |ETk̂,n| and |ETk̃,n| are bounded by
f(M,Kn, npn)/2, so that E[Tk̂,n − Tk̃,n] ≤ f(M,Kn, npn). Note that

Pr(Tk̂,n(Bn) > s P 0
n,Bn

, Bn) = Pr
(
H̃k̂ − Ĥk̂ > s P 0

n,Bn
, Bn

)
≤ Kn max

k∈{1,...,Kn}
Pr
(
H̃k − Ĥk > s P 0

n,Bn
, Bn

)
.
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Conditional on P 0
n,Bn

and Bn, consider the random variables

Zk ≡ L(X, Ψ̂k(P
0
n,Bn

))− L(X,Ψ(P )).

Let Zk,i, i = 1, . . . , npn, denote the npn i.i.d. copies of Zk corresponding with

the validation set, i.e., with {Xi : Bn(i) = 1}. Note that Ĥk =
∑npn

i=1 Zk,i/npn
and H̃k = E[Zk|P 0

n,Bn
, Bn], so that H̃k−Ĥk = E[Zk|P 0

n,Bn
, Bn]−

∑npn

i=1 Zk,i/npn
represents an empirical mean of npn centered i.i.d. random variables. The
random variables Zk are bounded, with |Zk| ≤M a.s. and V ar[Zk|P 0

n,Bn
, Bn] ≤

v = M2. Thus, from Bernstein’s Inequality (Lemma 1), for s > 0,

Pr
(
H̃k − Ĥk > s P 0

n,Bn
, Bn

)
≤ exp

(
−1

2

(npn)s
2

v +ms/3

)
,

where m = 2M . This proves that, for s > 0,

Pr(Tk̂,n(Bn) > s|P 0
n,Bn

, Bn) ≤ Kn exp

(
−1

2

(npn)s
2

v +ms/3

)
.

The same bound applies to the marginal probabilities Pr(Tk̂,n(Bn) > s).
Now note that, for any random variable Z,

E[Z] ≤ E[I(Z > 0)Z] =

∫ ∞

0

Pr(Z > z)dz.

Thus, for each u > 0, we have

E[Tk̂,n] = E[EBn [Tk̂,n(Bn)]] ≤
∫ ∞

0

Pr(Tk̂,n(Bn) > x)dx (38)

≤ u+

∫ ∞

u

Kn exp

(
−1

2

(npn)x
2

v +mx/3

)
dx.

The quantity un in Equation (31) corresponds with the minimizer of the func-
tion of u on the right-hand side of Equation (38). In particular, un is a solu-
tion of the equation obtained by setting the derivative of this term with re-
spect to u equal to zero. The same bound can be derived for −E[Tk̂,n], by ap-

plying Bernstein’s Inequality to Ĥk−H̃k. Hence, |ETk̂,n| ≤ f(M,Kn, npn)/2.
A similar proof as above shows that |ETk̃,n| ≤ f(M,Kn, npn)/2. Thus, tak-
ing the expected values of the quantities in Equation (37) yields the finite
sample result

0 ≤ E[θ̃pn,n(k̂)− θ] ≤ E[θ̃pn,n(k̃)− θ] + f(M,Kn, npn),
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where

f(M,Kn, npn) ≡ 2

[
un +

∫ ∞

un

Kn exp

(
−1

2

(npn)x
2

v +mx/3

)
dx

]
.

Asymptotic results. The remaining statements of the theorem involve
proving that, when log(Kn)/

√
npn → 0 as n → ∞, then f(M,Kn, npn) =

O(log(Kn)/
√
npn). First, note that un = O(

√
log(Kn)/npn). Next, using

the substitution x = (log(Kn)/
√
npn)y, the integral in f(M,Kn, npn) can be

rewritten as∫ ∞

un

Kn exp

(
−1

2

(npn)x
2

v +mx/3

)
dx

=
log(Kn)√

npn

∫ ∞

√
npn

log(Kn)
un

Kn exp

−1

2

y2 log2(Kn)

v + m log(Kn)
3
√
npn

y

 dy.

The integrand in the definition of f(M,Kn, npn), in Equation (30), is a de-
creasing function of x for x > 0, which achieves a value of one at x = un
(by definition of un) and tends to zero as x approaches ∞. Hence, for
y > (

√
npn/ log(Kn))un, the integrand in the last expression is bounded

above by one. Since un = O(
√

log(Kn)/npn), then ∃ N1 > 0 and some con-
stant 1 < A < ∞, such that (

√
npn/ log(Kn))un ≤ A, ∀ n ≥ N1. Thus, for

n ≥ N1, ∫ ∞

un

Kn exp

(
−1

2

(npn)x
2

v +mx/3

)
dx

=
log(Kn)√

npn

∫ A

√
npn

log(Kn)
un

Kn exp

−1

2

y2 log2(Kn)

v + m log(Kn)
3
√
npn

y

 dy

+
log(Kn)√

npn

∫ ∞

A

Kn exp

−1

2

y2 log2(Kn)

v + m log(Kn)
3
√
npn

y

 dy

≤ log(Kn)√
npn

A+

∫ ∞

A

Kn exp

−1

2

y2 log2(Kn)

v + m log(Kn)
3
√
npn

y

 dy

 .
Consider now the second term in the above expression. Since log(Kn)/

√
npn →

0 as n → ∞, then ∃ N2 > 0 such that m log(Kn)/3
√
npn < ε, ∀ n ≥ N2.
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Hence, for n ≥ N2 and 1 < A < y,

y2

v + m log(Kn)
3
√
npn

y
>

y2

v + εy
>

y

v + ε
.

Let g(y) ≡ y/(v + ε). Then, for n ≥ max(N1, N2),∫ ∞

un

Kn exp

(
−1

2

(npn)x
2

v +mx/3

)
dx

≤ log(Kn)√
npn

[
A+

∫ ∞

A

Kn exp

(
−1

2
log2(Kn)g(y)

)
dy

]
.

The above expression will be O(log(Kn)/
√
npn), as desired, if the integral is

uniformly bounded in n. The integrand may be rewritten as K
1− 1

2
g(y) log(Kn)

n

and is decreasing in Kn for each y. To see this, let Kn > Kn′ ≥ 1 and note
that 0 < g(A) < g(y) for y > A. Then,

K
1− 1

2
g(y) log(Kn′ )

n′

K
1− 1

2
g(y) log(Kn)

n

≥
(
Kn′

Kn

)1− 1
2
g(y) log(Kn)

≥
(
Kn

Kn′

) 1
2
g(A) log(Kn)−1

,

which is greater than one for each y > A, whenA is chosen so that 1
2
g(A) log(K0) >

1 for a constant K0 < Kn. It remains to show that the integral is finite for
some Kn, which is immediate from∫ ∞

A

Kn exp

(
−1

2
log2(Kn)g(y)

)
dy

=

∫ ∞

A

Kn exp

(
−1

2

log2(Kn)

v + ε
y

)
dy

=
2(v + ε)Kn

log2(Kn)
exp

(
−1

2

log2(Kn)

v + ε
A

)
<∞.

Thus, f(M,Kn, npn) = O(log(Kn)/
√
npn). By definition of k̃, θ̃pn,n(k̃) ≤

θ̃pn,n(k̂), and from the finite sample result in Equation (32), it follows that

E[θ̃pn,n(k̂)− θ] = E[θ̃pn,n(k̃)− θ] +O

(
log(Kn)√

npn

)
.
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Convergence in probability follows from Lemma 2. This completes the proof
of Theorem 2.

2

Bound for f(M,Kn, npn). We now present a simpler bound for f(M,Kn, npn).
Let c ≡ 2(v + m/3) and Φ(x) = 1√

2π

∫ x
−∞ exp(−u2/2)du be the standard

normal cumulative distribution function (c.d.f.). By using the facts that
(npn)x

2/(v+mx/3) ≥ (npn)x/(v+m/3) for x ≥ 1 and (npn)x
2/(v+mx/3) ≥

(npn)x
2/(v+m/3) for x ≤ 1, f(M,Kn, npn) can be bounded by the following

analytical expression,

f(M,Kn, npn) ≤ 2

[
un +Kn

c

npn
exp

(
−npn

c
max(1, un)

)
(39)

+ I(un ≤ 1)Kn

√
cπ

npn

(
Φ

(√
2npn
c

)
− Φ

(√
2npn
c

un

))]
.

Although we are concerned with risk estimation for the purpose of estima-
tor selection for arbitrary loss functions and estimators ψk,n, we refer below
to previous work on risk estimation for specific classes of loss functions and
estimators.

Previous results for the indicator loss function. The special case of
the indicator loss function used in classification is treated in detail in De-
vroye et al. (1996), Chapters 8, 22, 23, 24, and 31. For binary classification,
Antos et al. (1999) show that the Bayes risk (i.e., the optimal risk θ for the
indicator loss function) cannot be estimated with guaranteed rate of conver-
gence. Specifically, for any estimator θn of the Bayes risk θ and any sequence
of positive numbers {an} converging to zero, one can find a data generat-
ing distribution P such that E|θn − θ| ≥ an infinitely often, i.e., ∀ m > 0,
∃ n ≥ m, such that E|θn − θ| ≥ an.

Previous results for the L1 and L2 norms. Györfi et al. (2002b) derive
relative stability results for certain classes of density and regression estima-
tors. Given an estimator ψn of the parameter ψ, the estimation error is
measured by ‖ψn − ψ‖, where ‖ · ‖ is the L1 norm in density estimation
and the L2 norm in regression. For histogram and kernel density estimators,
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Györfi et al. (2002b) show that the L1 error ‖ψn − ψ‖ is relatively stable, in
the sense that the ratio ‖ψn−ψ‖/E[‖ψn−ψ‖] converges to one in probabil-
ity. Similar results are derived for the L2 error of partitioning, kernel, and
nearest neighbor regression estimators.

4 Results for performance assessment

4.1 Asymptotic linearity of the cross-validated risk es-
timator

We first derive a consistency and asymptotic linearity result for the cross-
validated estimator θ̂pn,n of the conditional risk θ̃pn,n for estimators Ψ̂(P 0

n,Bn
)

based on cross-validation training sets of size n(1− pn).

Theorem 3 Let X1, . . . , Xn be a random sample from a data generating
distribution P . Let ψn = Ψ̂(Pn) denote an estimator for the parameter
ψ = Ψ(P ), where ψ is a risk minimizer for the loss function L(X,ψ). Con-
sider the following three risk quantities: the optimal risk θ, corresponding to
the parameter of interest ψ,

θ ≡ min
ψ′∈Ψ

∫
L(x, ψ′)dP (x),

the conditional risk θ̃pn,n, for the estimator mapping Ψ̂ applied to cross-
validation training sets of size n(1− pn),

θ̃pn,n ≡ EBn

∫
L(x, Ψ̂(P 0

n,Bn
))dP (x),

and the cross-validated risk estimator,

θ̂pn,n ≡ EBn

∫
L(x, Ψ̂(P 0

n,Bn
))dP 1

n,Bn
(x).

Assumptions. Suppose that supX,ψ∈Ψ L(X,ψ) ≤ M < ∞ a.s., where the
supremum is over a support of the distribution of X, 1/(pn

√
n) → 0, and

1
√
pn
EBn

√∫ (
L(x, Ψ̂(P 0

n,Bn
))− L(x,Ψ(P ))

)2

dP (x) = oP (1). (40)
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Asymptotic linearity result. Then,

θ̂pn,n − θ̃pn,n =
1

n

n∑
i=1

(L(Xi,Ψ(P ))− θ) + oP (1/
√
n). (41)

Proof of Theorem 3. We have

θ̂pn,n − θ̃pn,n

= EBn

∫ (
L(x, Ψ̂(P 0

n,Bn
))− L(x,Ψ(P ))

)
d(P 1

n,Bn
− P )(x)

+ EBn

∫
L(x,Ψ(P ))d(P 1

n,Bn
− P )(x).

By virtue of the expected value w.r.t. the split vector Bn, the second term
equals ∫

L(x,Ψ(P ))d(Pn − P )(x) =
1

n

n∑
i=1

(L(Xi,Ψ(P ))− θ).

Denote the first term by Tn = EBn [Tn(Bn)]. We wish to show that Tn is
oP (1/

√
n). Conditional on P 0

n,Bn
and Bn, consider the random variable

Zn ≡ L(X, Ψ̂(P 0
n,Bn

))− L(X,Ψ(P )),

and let Zn,i, i = 1, . . . , npn, denote the npn i.i.d. copies of Zn corresponding
with the validation set, i.e., with {Xi : Bn(i) = 1}. Then, Tn(Bn) can
be written as an empirical mean,

∑npn

i=1 Zn,i/npn − E[Zn|P 0
n,Bn

, Bn], of npn
centered random variables, with |Zn| < M a.s. Let

σ2
n(Bn) ≡ max

{
(npn)

−1, E[Z2
n|P 0

n,Bn
, Bn]

}
.

Then, V ar[Zn|P 0
n,Bn

, Bn] ≤ σ2
n(Bn). From Bernstein’s Inequality, with W =

2M ,

Pr(|Tn(Bn)| > x|P 0
n,Bn

, Bn) ≤ 2 exp

(
−1

2

(npn)x
2

σ2
n(Bn) +Wx/3

)
.

Thus,

EBn|Tn(Bn)| = EBn

∫ ∞

0

Pr(|Tn(Bn)| > x|P 0
n,Bn

, Bn)dx

≤ EBn

∫ ∞

0

2 exp

(
−1

2

(npn)x
2

σ2
n(Bn) +Wx/3

)
dx

= EBn

σn(Bn)√
npn

∫ ∞

0

2 exp

(
−1

2

y2

1 + W
3
√
npnσn(Bn)

y

)
dy,
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where we carried out the substitution x = (σn(Bn)/
√
npn)y. Since σn(Bn) ≥

1/
√
npn, the integral is bounded uniformly in n by

C =

∫ ∞

0

2 exp

(
−1

2

y2

1 +Wy/3

)
dy.

By the assumption in Equation (40),

1
√
pn
EBn

√
E[Z2

n|P 0
n,Bn

, Bn] = oP (1),

and since 1/(pn
√
n) → 0, then

EBn|Tn(Bn)| ≤
C

√
npn

EBnσn(Bn) = oP (1/
√
n).

2

Note that by Jensen’s Inequality, applied to the concave square root func-
tion, a sufficient condition for the assumption in Equation (40) is

1

pn
EBn

∫ (
L(x, Ψ̂(P 0

n,Bn
))− L(x,Ψ(P ))

)2

dP (x) = oP (1). (42)

The argument in Section 4.4, concerning the impact of the validation
set proportion pn for non-quadratic loss functions, suggests that the risk
difference θ̃pn,n − θ̃n is zero in first order. Thus, by virtue of the expectation

w.r.t. to Bn, one expects the cross-validated risk estimator θ̂pn,n to also
be a decent approximation of the conditional risk θ̃n, for a fixed validation
proportion pn ∈ (0, 1).

4.2 Asymptotic linearity of the resubstitution risk es-
timator

The previous asymptotic linearity result for the cross-validated risk estimator
θ̂pn,n also applies to the resubstitution estimator θ̄n, but under different con-
ditions. In addition, the proof follows a different approach than the proofs
of Theorems 1, 2, and 3, and relies on the weak convergence theory for em-
pirical processes and the definition of a P -Donsker class (van der Vaart and
Wellner, 1996).
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Theorem 4 Let X1, . . . , Xn be a random sample from a data generating
distribution P . Let ψn = Ψ̂(Pn) denote an estimator for the parameter
ψ = Ψ(P ), where ψ is a risk minimizer for the loss function L(X,ψ). Con-
sider the following three risk quantities: the optimal risk θ, corresponding to
the parameter of interest ψ,

θ ≡ min
ψ′∈Ψ

∫
L(x, ψ′)dP (x),

the conditional risk θ̃n, for the estimator mapping Ψ̂ applied to the entire
learning set of size n,

θ̃n ≡
∫
L(x, Ψ̂(Pn))dP (x),

and the resubstitution risk estimator,

θ̄n ≡
∫
L(x, Ψ̂(Pn))dPn(x).

Assumptions. Suppose C is a class of functions of X so that Pr(ψn ∈ C) →
1,
∫

(L(x, ψn)− L(x, ψ))2dP (x) = oP (1), and F ≡ {x→ L(x, ψ′)− L(x, ψ) :
ψ′ ∈ C} is a P -Donsker class.
Asymptotic linearity result. Then,

θ̄n − θ̃n =
1

n

n∑
i=1

(L(Xi,Ψ(P ))− θ) + oP (1/
√
n). (43)

Proof of Theorem 4. We have

θ̄n − θ̃n =

∫
(L(x, ψn)− L(x, ψ)) d(Pn − P )(x) (44)

+

∫
L(x, ψ)d(Pn − P )(x).

The second term is the desired linear component,
∑n

i=1(L(Xi, ψ)− θ)/n. In
order to show that the first term is oP (1/

√
n), we appeal to Lemma 2.3.11,

p. 115, in van der Vaart and Wellner (1996). Consider the empirical process

Gn(f) ≡
∫
f(x)d

√
n(Pn − P )(x),

33

Hosted by The Berkeley Electronic Press



indexed by f ∈ F , where F is the assumed P -Donsker class, F = {x →
L(x, ψ′) − L(x, ψ) : ψ′ ∈ C}. Then, by Lemma 2.3.11, {Gn(f) : f ∈ F} is
tight, and thereby

sup
{f∈F :

R
f2dP≤δn}

|Gn(f)| P→ 0,

for any sequence δn ↓ 0. Let fn(X) ≡ L(X,ψn) − L(X,ψ). By assumption,
we have

Pr

(∫
f 2
n(x)dP (x) ≤ δn

)
→ 1

for some sequence δn ↓ 0. Consequently,

Pr

(
|Gn(fn)| ≤ sup

{f∈F :
R
f2dP≤δn}

|Gn(f)|

)
→ 1.

But, sup{f∈F :
R
f2dP≤δn} |Gn(f)| P→ 0. This proves that

Gn(fn) =

∫
fn(x)d

√
n(Pn − P )(x) = oP (1),

hence, as required, the first term in Equation (44) is indeed oP (1/
√
n).

2

Previous results for the indicator loss function. Györfi and Horváth
(1998) and Pintér (2002) provide asymptotic results for the resubstitution
risk estimator in the special case of the indicator loss function for binary
partitioning classification rules. In particular, Györfi and Horváth (1998)
show that the difference between the resubstitution risk estimator and the
Bayes risk restricted to the partition (i.e., conditional on the partition in-
duced by the classifier, where the Bayes rule is applied within each set in
the partition) is asymptotically normal. For rectangular partitions, Pintér
(2002) establishes asymptotic normality of the difference between the resub-
stitution risk estimator θ̄n and the conditional risk θ̃n (Theorem 2). She also
proves that the difference between the expected value of the resubstitution
risk estimator and the Bayes risk restricted to the partition converges to zero
at rate faster than O(1/

√
n) (Theorem 3). Similar results are provided for

leave-one-out cross-validation.
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In spite of the good asymptotic behavior of resubstitution risk estimators
under the conditions of Theorem 4 and in the above articles, a number of
caveats are in order. Firstly, resubstitution risk estimators can be severely
biased downward in finite sample situations. Secondly, our proof of consis-
tency and asymptotic linearity for the resubstitution risk estimator requires
stronger assumptions than the analog in Theorem 3 for the cross-validated
risk estimator. Finally, resubstitution estimators tend to perform poorly in
model selection due to over-fitting.

4.3 Risk confidence intervals

The asymptotic linearity result in Theorem 3 allows us to derive confidence
intervals for the conditional risk θ̃pn,n. Specifically, let

IC(X|P ) ≡ L(X,Ψ(P ))− θ.

Then, E[IC(X|P )] = 0 and σ2 = V ar[IC(X|P )] =
∫
IC2(x|P )dP (x). From

the Central Limit Theorem and Theorem 3, as n→∞,
√
n(θ̂pn,n − θ̃pn,n)/σ

converges in distribution to a standard normal random variable. Consider
the following resubstitution estimators for IC(X|P ) and its variance σ2,

IC(X|Pn) ≡ L(X, Ψ̂(Pn))− θ̄n and σ2
n ≡

∫
IC2(x|Pn)dPn(x).

Then, an approximate asymptotic (1 − α)100% confidence interval for the
conditional risk θ̃pn,n is given by

θ̂pn,n ± z1−α/2
σn√
n
, (45)

where Φ(z1−α/2) = 1− α/2, for the standard normal cumulative distribution
function, Φ(·).

4.4 Impact of validation set proportion

An important and practical issue is the impact of the validation set propor-
tion pn on risk estimation and estimator selection. The following discussion
provides some intuition regarding the behavior of the conditional risk θ̃pn,n, of

estimators Ψ̂(P 0
n,Bn

) based on cross-validation training sets of size n(1− pn),
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compared to the conditional risk θ̃n = θ̃0,n, of estimators Ψ̂(Pn) based on the
entire learning set of size n.

For non-quadratic loss functions, we argue below that the expected value
with respect to split vectors Bn in the definition of θ̃pn,n (i.e., the multiple
splits) results, to a first order linear approximation, in a risk difference θ̃pn,n−
θ̃n of zero, for each fixed pn ∈ (0, 1). Suppose that

θ̃n − θ =
1

n

n∑
i=1

IC(Xi|P ) +R(Pn, P ), (46)

for some function IC(·|P ) of X and remainder term R(Pn, P ). Then,

θ̃pn,n − θ = EBn

1

n(1− pn)

n∑
i=1

I(Bn(i) = 0) IC(Xi|P ) + EBnR(P 0
n,Bn

, P ).

By virtue of the expected value w.r.t. Bn, the first term actually equals∑n
i=1 IC(Xi|P )/n. Consequently,

θ̃n − θ̃pn,n = R(Pn, P )− EBnR(P 0
n,Bn

, P ). (47)

Thus, for a fixed validation proportion pn ∈ (0, 1), θ̃pn,n can be viewed
as a decent approximation of θ̃n = θ̃0,n. This suggests that averaging over
split vectors Bn significantly reduces the sensitivity of the cross-validated
risk estimators θ̂pn,n(k) and corresponding selector k̂pn,n to the choice of pn,
compared to single-split validation.

Note that the preceding argument is only interesting for non-quadratic
loss functions, i.e., for loss functions for which one has a first order term in the
expansion for θ̃n−θ. For the quadratic loss function L(X,ψ) = (Y −ψ(W ))2,
one has θ̃n − θ =

∫
(ψn(W ) − ψ(W ))2dP (W ), hence the influence curve can

trivially be chosen as zero, IC(X|P ) ≡ 0.

5 Discussion

The present article derived distributional properties of cross-validated risk
estimators in the context of estimator selection and performance assessment.
We stress that, unlike previously published results, the theorems derived
in this and our related articles apply to general data generating distribu-
tions, loss functions (i.e., parameters), estimators (e.g., linear and non-linear
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predictors, parametric and non-parametric density estimators), and cross-
validation procedures (e.g., V -fold and Monte Carlo cross-validation). The
reader is referred to van der Laan and Dudoit (2003) for a detailed discussion
of the general loss-based estimation framework introduced in Section 2 and
for extensions of the results to estimation based on censored data.

For estimator selection, the asymptotic optimality of cross-validation pro-
cedures is established, in the sense that a selector based on cross-validated
risk estimators performs asymptotically as well as an optimal oracle selec-
tor based on the risk under the true, unknown data generating distribution.
That is, for a fixed validation set proportion pn ∈ (0, 1), the ratio of con-
ditional risk differences comparing the cross-validated selector k̂pn,n to the

optimal oracle selector k̃pn,n, (θ̃pn,n(k̂pn,n) − θ)/(θ̃pn,n(k̃pn,n) − θ), converges
to one in probability (Theorems 1 and 2). For a sequence pn converging to
zero slowly enough with the sample size n, Corollary 1 proves asymptotic
equivalence of the cross-validated selector k̂pn,n and the absolutely optimal
oracle selector k̃n, based on the entire empirical distribution Pn, that is,
(θ̃pn,n(k̂pn,n)− θ)/(θ̃n(k̃n)− θ) converges to one in probability. In the special
case of the quadratic loss function, Theorem 1 provides a stronger conver-
gence result than Theorem 2: for the L2 loss function, the rate of convergence
is shown to be O(log(Kn)/npn) rather than the slower O(log(Kn)/

√
npn) ap-

plicable to general loss functions. Note that while the finite sample results
hold for any pn, the asymptotic results are derived under the assumption
that the size npn of the validation sets converges to infinity and hence do
not cover leave-one-out cross-validation. However, one could possibly derive
similar results for LOOCV under different conditions.

For performance assessment, cross-validated risk estimators are shown,
under certain conditions, to be consistent and asymptotically linear for the
conditional risk θ̃pn,n (Theorem 3). The asymptotic linearity result allows us
to derive confidence intervals for θ̃pn,n (Section 4.3).

An important and practical issue is the impact of the validation set pro-
portion pn on risk estimation and estimator selection. Preliminary sensi-
tivity analysis results are discussed in related articles on likelihood-based
cross-validation (van der Laan et al., 2004a) and cross-validation selection
for regression with censored outcomes (Keleş et al., 2004). In practice, we
have found that averaging over split vectors Bn can significantly reduce the
sensitivity of the cross-validated selector k̂pn,n to the choice of pn, compared
to single-split validation. For non-quadratic loss functions, Section 4.4 pro-
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vides some intuition regarding the impact of the validation set proportion
pn. It suggests, in particular, that the risk difference θ̃pn,n− θ̃n is zero in first
order.
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Table 1: Loss functions. Examples of full data loss functions, L(X,ψ), for
different estimation problems.

Data Parameter Loss function
X ψ L(X,ψ)

Univariate prediction, continuous outcome, Y ∈ IR
X = (W,Y ) Conditional mean: Squared error (L2):

ψ(W ) = E[Y |W ] L(X,ψ) = (Y − ψ(W ))2

Conditional median: Absolute error (L1):
ψ(W ) = Median[Y |W ] L(X,ψ) = |Y − ψ(W )|

Univariate prediction, polychotomous outcome, Y ∈ {1, . . . ,K}
X = (W,Y ) Class with max posterior probability: Indicator:

ψ(W ) = argmaxy Pr(y |W ) L(X,ψ) = I(Y 6= ψ(W ))
(risk = classification error rate)

Posterior class probabilities: Negative log density:
ψ(X) = Pr(Y |W ) L(X,ψ) = − logψ(X)

(risk = entropy)
Class with max posterior probability: Gini:
ψ(X) = I

(
Y = argmaxyPr(y |W )

)
L(X,ψ) = 1− ψ(X)

Multivariate prediction, continuous outcome, Y = (Y (m) : m = 1, . . . ,M) ∈ IRM

X = (W,Y ) Conditional mean vector: Quadratic (L2):
ψ(W ) = (E[Y (m) |W ] : m = 1, . . . ,M) L(X,ψ) = (Y − ψ(W ))>Ω(W )(Y − ψ(W ))

Density estimation
X Density (for c.d.f. F ): Negative log density:

ψ(X) = d
dXF (X) L(X,ψ) = − logψ(X)

Hazard function estimation
X = (W,T ) Hazard function for T given W : Negative log density for g(T |W ):

ψ(W,T ) = λ(T |W ) = − d
dT log(Ḡ(T |W )) L(X,ψ) = − logψ(W,T ) +

∫ T
0 ψ(W,u)du

Survivor function: Ḡ(t|w) = 1−G(t|w) = Pr(T > t|W = w);
Density: g(t|w) = d

dtG(t|w) = λ(t|w) exp(−
∫ t
0 λ(u|w)du).
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