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The Calculation of the 97.5% Upper
Confidence Bound: Application to Clustered
Binary Data in a Binomial Non-Inferiority

Two-Sample Trial.

William F. McCarthy

Abstract

This paper will discuss the analysis of a cluster randomized binomial non-inferiority
two-sample trial. The determination of the intra-cluster correlation coefficient
(ICC) and its use in the calculation of the 97.5% upper confidence bound for
delta, the true difference in binomial proportions between the active control and
the experimental treatment groups, will be outlined.



 
 
As noted in the EMEA guideline on the choice of the non-inferiority margin (2005), “Many clinical 
trials comparing an experimental treatment with an active control are designed as non-inferiority 
trials. The term ‘non-inferiority’ is now well established, but if taken literally could be misleading. 
The objective of a non-inferiority trial is sometimes stated as being to demonstrate that the 
experimental treatment is not inferior to the active control. However, only a superiority trial can 
demonstrate this. In fact, a non-inferiority trial aims to demonstrate that the experimental 
treatment is not worse than the active control by more than a pre-specified, small amount. This 
amount is known as the non-inferiority margin, or delta ( 0δ ).”  
 
It is common practice to adopt the 2.5% significance level for a non-inferiority test, since the test 
is one-sided. Thus, we would consider the 97.5% upper confidence bound for δ , the true 
difference in binomial proportions between the active control and the experimental treatment 
groups. 
 
 
Example 
 
 
This paper will discuss the analysis of a cluster randomized binomial non-inferiority two-sample 
trial. An earlier paper discussed the design and sample size requirements of a cluster randomized 
binomial non-inferiority two-sample trial (McCarthy, 2008). A cluster will be defined as a private 
practice whose elements are patients. Each cluster will be specific to a treatment assignment (i.e., 
either the experimental treatment or the active control). The goal was to have an equal allocation 
of clusters between the two treatment assignments but an imbalance occurred: 17 clusters for the 
experimental treatment and 12 for the active control → a total of 29 clusters. The size of each 
cluster varied (from 6 to 35 patients; an average cluster size of 23.3). Lets assume the event of 
interest is one that denotes patient harm (e.g., death). 
 
Denote cπ as the event rate for the active control group and tπ as the event rate for the 
experimental treatment group. 
 
Let c tδ π π= − . 
 
Let the non-inferiority margin be denoted as 0δ . 
 
The null hypothesis is 0 :H 0δ δ=  and is tested against a one-sided alternative hypothesis. 
 
Since the occurrence of an event denotes patient harm rather than benefit, then 0 0δ < and the 

alternative hypothesis is 1 :H 0δ δ>  or equivalently as 1 0: t cH π π δ< − . 
 
For any given cπ , the sample size is determined by the desired power at a specified value of 

1δ δ= . A common choice is 1 0δ =  or (equivalently t cπ π= ). Let 1 0δ = . 
 
The active control group event rate is assumed to be cπ = 0.500. 

The non-inferiority margin is assumed to be 0δ = - 0.050, i.e., tπ =0.550. 
Thus, to demonstrate non-inferiority, the 97.5% upper confidence bound when clustering is 
considered needs to be within the prescribed non-inferiority margin of - 0.050. 
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Lets illustrate the result of each clusteri of the trial as i

i

y
n

. The numerator iy  is the number of 

events in cluster i and the denominator  is the size of clusterin i. 
 
For the experimental treatment arm we have: 
 
yi = { 0  0  0  6  2  4  1  2  3  1  6  9  8  6 10  4  4} 
ni = {30 22 19 30 30 30 30 30 30 30 30 30 22 22 32 31 20} 
 
For the active control group we have: 
 
yi = { 2  3  6  1 3  3 2  5 18 21 19 21} 
ni = {16 11 35 10 9 11 6 12 25 25 23 24} 
 
 
It should be noted that we could convert this analysis from one of “harm” (death) to one of 
“benefit” (still alive) as follows (this is done to make the analysis compatible with standard 
statistical software): 
 
 
If the occurrence of a response denotes patient benefit rather than harm, then 0 0δ > and the 

alternative hypothesis is 1 :H 0δ δ<  or equivalently as 1 0: t cH π π δ> − . 
 
The active control group event rate is assumed to be cπ = 1- 0.500 = 0.500. 

The non-inferiority margin is assumed to be 0δ = + 0.050, i.e., tπ =1 - 0.550 = 0.450. 
Thus, to demonstrate non-inferiority, the 97.5% upper confidence bound when clustering is 
considered needs to be within the prescribed non-inferiority margin (i.e., 0t cπ π δ> − ). 
 
For the experimental treatment arm we have: 
 
yi = {30 22 19 24 28 26 29 28 27 29 24 21 14 16 22 27 16} 
ni = {30 22 19 30 30 30 30 30 30 30 30 30 22 22 32 31 20} 
 
For the active control group we have: 
 
yi = {14  8 29  9 6  8 4  7  7  4  4  3} 
ni = {16 11 35 10 9 11 6 12 25 25 23 24} 
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Steps of Analysis: 
 
 
We use the data that represents “benefit”. We first analyze the data as if no clustering was 
involved. We put the data in table form, as shown below. We will use StatXact 7 for our analysis. 
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Using StatXact 7 we compute the unconditional test of non-inferiority using the difference of the 
two binomial proportions. The results are below: 
 

 
 
 
Thus, we have: 
 

cπ = 0.4976 
 

tπ = 0.8590 
 
δ = - 0.3614 
 
se( 2 1 0π π δ− − )= 0.03581 
 
95% upper confidence bound =  - 0.2861. 
 
 
The results above assumed no clustering was involved. We get a difference of proportions of  
δ = - 0.3614 and a se( 2 1 0π π δ− − ) = 0.03581. 
 
Next, we want to compute the 97.5% upper confidence bound for δ with clustering considered. 
 

 4
http://biostats.bepress.com/cobra/art37



In a talk presented by J M Bland to the RSS Medical Section and the RSS Liverpool Local Group, 
12 NOV 2003, Bland stated “the magnitude of the effect of clustering is measured by the design 
effect, Deff, given by the following: Deff = 1 + (n - 1)(ICC) where n is the number of observations in 
a cluster and ICC is the intra-cluster correlation coefficient. The ICC is the correlation between 
pairs of subjects chosen at random from the same cluster. It is usually quite small, 0.04 is a 
typical figure. This was the median ICC reported in the review by Eldridge et al. (2004). If n=1, 
cluster size one, in other words, no clustering, then Deff=1, otherwise Deff will exceed 1 (this 
assumes a positive correlation between pairs of subjects).  
  
We can use this in two ways. In design, if we estimate the required sample size ignoring 
clustering, we must multiply it by the design effect to get the sample size required for the 
clustered sample. Alternatively, we can say that if the sample size is estimated ignoring the 
clustering, the clustered sample has the same power as for a simple sample of size equal to what 
we get if we divide our sample size by the design effect.  
 
In analysis, if we analyse the data as if there were no clusters, the variances of the estimates must 
be multiplied by Deff, hence the standard error must be multiplied by the square root of Deff.  
From this formula, we can see that clustering may have a large effect if the ICC is large or if the 
cluster size is large. Only one of these conditions need be met. For example, if the ICC is 0.001, a 
very small correlation, and the cluster size is 500, the design effect will be 1 + (500-1)x0.001 = 1.5 
and we would need to increase the sample size by 50% to achieve the same power as an 
unclustered trial.  
 
In addition, we need to estimate variances both within and between clusters. If the number of 
clusters is small, the between clusters variance will have few degrees of freedom and we will be 
using the t distribution in inference rather than the Normal. This too will cost in terms of power.”  
ICC ( ρ ) is the correlation between pairs of patients chosen at random from the same cluster. 

2

2 2

B

B W

σ
ρ

σ σ
=

+
 

where 2

Bσ  is the between cluster variability 

where 2

Wσ is the within cluster variability 
 
the size of the ICC is generally larger for smaller clusters 
small cluster ∼ 0 to 0.3  (large ICC) 

medium cluster ∼ 0 to 0.05  (medium ICC) 

large cluster ∼ 0 to 0.001  (small ICC) 
 
Thus, to account for clustering, we will analyze the data as if there were no clusters, compute the 
ICC and the Deff, and finally we will multiply the standard error by the square root of the Deff. 
Donner and Klar (2000) and Reed (2004) have also discussed the impact of ICC on analysis. 
 
Ridout et al. (1999) evaluated 20 different methods for estimating the ICC with binary outcomes 
and found that the kappa-type method originally proposed by Fleiss and Cuzick (1979) performed 
best under a variety of conditions. Zou and Donner (2004) have written an IML SAS program for 
estimating the ICC for binary outcomes using the Fleiss and Cuzick method. 
 
Using the IML program of Zou and Donner –> see Appendix A, we compute the intra-cluster 
correlation coefficient (ICC) for our data set (refer to page 2). The ICC = 0.32. 
 
To get the SE when clustering is considered, we multiply the SE from StatXact by the Deff . 
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Deff = 1 + ( -1)(ICC), where  is the average cluster size and ICC is the intra-cluster correlation 
coefficient. 

_

n
_

n

 
 
 

For this data set, =23.3 and ICC=0.32. 
_

n
 
Thus Deff = 1 + (23.3-1)(0.32) = 8.14. 
 

Deff = 8.14 = 2.85. 
 

(SE Deff )= 0.03581(2.85) = 0.10206. 

 
Thus, the 97.5% upper confidence bound when clustering is considered is:  
- 0.3614 + 1.96 (0.10206) = - 0.1614. 
 
 
 
 Upper Limit 
not  clustered - 0.2861 

clustered - 0.1614 
  
 
Since the 97.5% upper confidence bound when clustering is considered is - 0.1614, and it is 
comfortably within the prescribed non-inferiority margin of + 0.50, we can claim non-inferiority. 
 
Also notice how the effect of clustering increased the se( 2 1 0π π δ− − ), from 0.03581 (not 
clustered) to 0.10206 (clustered). This in turn increased the upper limit from – 0.2861 to – 0.1614, 
but not enough to be ≥  + 0.05 (our non-inferiority margin). 
 
 
 
We can also compute the p-value for this one-sided test: 
 

The standardized test statistic is 2 1 0

2 1 0( )se
π π δ
π π δ
− −
− −

 = 
0.4976 0.8590 0.050 0.4114 4.03

0.10206 0.10206
− − −

= = − . 

 
This gives a p-value = 0.000028 which is less than the nominal 0.025. Thus, we can reject the null 
hypothesis 0 :H 0δ δ= . This allows us to claim non-inferiority. 
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Appendix A. 
 
*************************************************************************************; 
* Zou and Donner (2004)Confidence interval estimation of the intraclass correlation *;  
* coefficient for binary outcome data Biometrics Vol 60 (3) pp 807-811              *; 
*                                                                                   *; 
*                                 EXAMPLE                                           *; 
*                                                                                   *; 
*                        ***** Fleiss-Cuzick *****                                  *; 
*                                                                                   *; 
*          Clusters 1-17 intervention group, clusters 18-29 control group           *; 
*          Cluster denoted i, patient within cluster denoted j                      *; 
*          Binary outcome data: yij=1 if event, yij=0 if non-event                  *; 
*          yi is the number of events in cluster i                                  *; 
*          ni is the total number of patients in cluster i                          *; 
*                                                                                   *; 
*                    Modified by W.F. McCarthy 7/02/2008                            *; 
*************************************************************************************;  
 
 
***** SAS IML codes *******; 
 
proc iml; 
 
start cubic(a, b, c, d); 
 l=.; u=.; 
  if (a = 0) then do; 
         if c**2 - 4*b*d > 0 then do; 
           l = (-c - sqrt(c**2 - 4*b*d))/(2*b); 
           u = (-c + sqrt(c**2 - 4*b*d))/(2*b); 
         end; 
  end; 
  else do; 
   a1 = b/a; 2=c/a; a3 = d/ ;a  a  
   r = a1*a2/6 - a3/2 - a1**3/27; 
   q = a2/3 - a1**2/9; 
      if q < 0 then do; 
        f= r/sqrt(-q**3); 
        if abs(f) <=1 then do; 
         *if f >1 then f = 1; 
         *if f <-1 then f =-1; 
         theta = arcos(f); 
         pi = 3.1415926; 
         k = 2*sqrt(-q)*cos(theta/3)  -a1/3; 
         l = 2*sqrt(-q) * cos ( (theta+2*pi)/3  ) - a1/3; 
         u = 2*sqrt(-q) * cos ( (theta+4*pi)/3  ) - a1/3; 
         end; 
     end; 
 end; 
return(l||u||k); 
 
finish cubic; 
 
 
 
start interval4ICC(alpha, data); 
 crit = probit( 1- alpha/2); 
 chi = crit**2; 
 yi = data[,1]; 
 ni = data[,2]; 
 
 bigN = sum(ni); 
 piest= sum(yi)/bigN; 
 piHat = piest; 
 index = piest * (1 - piest); 
 k = nrow(ni); * 29; *clusters; 
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****** Fleiss-Cuzick **********; 
rhoHat = 1 - sum ( yi#(ni-yi)/ni )/((bigN- k)* piest*(1-piest)); 
 
 
part1 = ((1/index - 6) * sum(1/ni))/(bigN - k)**2 + ((2 *bigN 
                 + 4 * k - k/index) * k)/(bigN * (bigN - k)**2); 
part2 = sum(ni##2)/(bigN**2 * index)- 
               (3 * bigN - 2 * k) * (bigN - 2 * k) * sum(ni##2)/ 
               (bigN**2* (bigN - k)**2) - (2 * bigN - k)/(bigN - k)**2; 
part3 = (4-1/index)*(sum(ni##2) - bigN)/bigN**2; 
vFC  =  (1 - rhoHat) * (part1 + part2*rhoHat + part3*rhoHat**2); 
 
** CUBIC ****; 
A2 = - part3; 
B2 = part3 - part2; 
C2 = part2 - part1; 
D2 = part1; 
 
 
A22 =chi*A2; 
B22 =chi*B2 - 1; 
C22 =chi*C2 + 2* rhoHat; 
D22 =chi*D2 - rhoHat**2; 
solution2 = cubic(A22, B22, C22, D22); 
lower = solution2[,1]; 
upper = solution2[,2]; 
 
  print alpha piHat rhoHat lower upper; 
 
finish interval4ICC; 
 
 
* Clusters 1-17 intervention group, clusters 18-29 control group; 
* cluster denoted i, patient within cluster denoted j; 
* Binary outcome data  yij=1 if event, yij=0 if non-event; 
* yi is the number of events in cluster i; 
* ni is the total number of patients in cluster i; 
 
yi = {0   0  0  6  2  4  1  2  3  1  6  9  8  6 10  4  4  2  3  6  1 3  3 2  5 18 21 19 21}; 
ni = {30 22 19 30 30 30 30 30 30 30 30 30 22 22 32 31 20 16 11 35 10 9 11 6 12 25 25 23 24}; 
  
yi = t(yi); 
ni = t(ni); 
 
print 'Example'; 
data =yi||ni; 
run interval4ICC(0.05, data); 
 
quit; 
 
 
 
 
/* OUTPUT from SAS Program */ 
 
/* RHOHAT is the ICC */ 
 
/* HARM IS CONSIDERED, HOWEVER THE ICC FOR BENEFIT IS THE SAME */ 
 
      
                       Example 
 
   ALPHA     PIHAT       RHOHAT         LOWER       UPPER 
    0.05   0.2518519    0.315556     0.1262249    0.5592528 
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