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Properties of Monotonic Effects on Directed
Acyclic Graphs

Tyler J. VanderWeele and James M. Robins

Abstract

Various relationships are shown hold between monotonic effects and weak mono-
tonic effects and the monotonicity of certain conditional expectations. Counterex-
amples are provided to show that the results do not hold under less restrictive con-
ditions. Monotonic effects are furthermore used to relate signed edges on a causal
directed acyclic graph to qualitative effect modification. The theory is applied
to an example concerning the direct effect of smoking on cardiovascular disease
controlling for hypercholesterolemia. Monotonicity assumptions are used to con-
struct a test for whether there is a variable that confounds the relationship between
the mediator, hypercholesterolemia, and the outcome, cardiovascular disease.



1. Introduction

Several papers have considered various monotonicity relationships on Bayesian networks or directed
acyclic graphs. Wellman (1990) introduced the notion of qualitative causal in�uence and derived vari-
ous resulting concerning the propagation of qualitative in�uences, the preservation of monotonicity under
edge reversal, the necessity of �rst order stochastic dominance for propagating in�uences and the propa-
gation of sub-additive and super-additive relationships on probabilistic networks. Druzdzel and Henrion
(1993) developed a polynomial time algorithm for reasoning in qualitative probabilistic network, based
on local sign propagation. More recently, van der Gaag et al. (2004) showed that identifying whether
a network exhibits various monotonicity properties is coNPPP - complete. VanderWeele and Robins
(2008a) introduced the concept of a monotonic e¤ect which is closely related to Wellman�s qualitative
in�uence and considered the relationship between monotonicity properties and causal e¤ects, covariance,
bias and confounding. Two results from this work relating monotonicity to causal inference are reviewed
in Appendix 1. In this paper we develop a number of probabilistic properties concerning monotonic
e¤ects and weak monotonic e¤ects. Some of these properties give rise to certain inequality constraints
that could be used to test for the presence of hidden or unmeasured confounding variables. These
inequality constraints which arise from monotonicity relationships provide constraints beyond those al-
ready available in the literature (Kang and Tian, 2006). The paper is organized as follows. In Section 2
we describe the notation we will use in this paper and review the de�nitions concerning directed acyclic
graphs. In Section 3 we present a motivating example for the theory that will be developed. In Section
4, we de�ne the concepts of a monotonic e¤ect and a weak monotonic e¤ect in the directed acyclic graph
causal framework, the latter essentially being equivalent to Wellman�s (1990) qualitative in�uence. In
Section 5, we give a number of results relating weak monotonic e¤ects to the monotonicity in the con-
ditioning argument of certain conditional expectations; we also return to the motivating example and
show how the theory developed can be applied to this example. Finally, in Section 6, we give a number
of results that relate weak monotonic e¤ects to the existence of qualitative e¤ect modi�ers. Section 7
closes with some concluding remarks.

2. Notation and Directed Acyclic Graphs

Following Pearl (1995), a causal directed acyclic graph is a set of nodes (X1; :::; Xn) and directed
edges amongst nodes such that the graph has no cycles and such that for each node Xi on the graph the
corresponding variable is given by its non-parametric structural equation Xi = fi(pai; �i) where pai are
the parents of Xi on the graph and the �i are mutually independent. We will use 
 to denote the sample
space for � and ! to denote a particular point in the sample space. These non-parametric structural
equations can be seen as a generalization of the path analysis and linear structural equation models
(Pearl, 1995, 2000) developed by Wright (1921) in the genetics literature and Haavelmo (1943) in the
econometrics literature. Directed acyclic graphs can be interpreted as representing causal relationships.
The non-parametric structural equations encode counterfactual relationships amongst the variables rep-
resented on the graph. The equations themselves represent one-step ahead counterfactuals with other
counterfactuals given by recursive substitution. The requirement that the �i be mutually independent
is essentially a requirement that there is no variable absent from the graph which, if included on the
graph, would be a parent of two or more variables (Pearl, 1995, 2000). Further discussion of the causal
interpretation of directed acyclic graphs can be found elsewhere (Pearl, 1995, 2000; Spirtes et al., 2000;
Dawid, 2002; Robins, 2003).
A path is a sequence of nodes connected by edges regardless of arrowhead direction; a directed path

is a path which follows the edges in the direction indicated by the graph�s arrows. A node C is said to
be a common cause of A and Y if there exists a directed path from C to Y not through A and a directed
path from C to A not through Y . We will say that V1; :::; Vn constitutes an ordered list if i < j implies
that Vi is not a descendent of Vj . A collider is a particular node on a path such that both the preceding
and subsequent nodes on the path have directed edges going into that node i.e. both the edge to and
the edge from that node have arrowheads into the node. A path between A and B is said to be blocked
given some set of variables Z if either there is a variable in Z on the path that is not a collider or if there
is a collider on the path such that neither the collider itself nor any of its descendants are in Z. If all
paths between A and B are blocked given Z then A and B are said to be d-separated given Z. It has
been shown that if A and B are d-separated given Z then A and B are conditionally independent given Z
(Verma and Pearl, 1988; Geiger et al., 1990; Lauritzen et al., 1990). We will use the notation A

`
BjZ
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to denote that A is conditionally independent of B given Z; we will use the notation (A
`
BjZ)G to

denote that A and B are d-separated given Z on graph G. The directed acyclic graph causal framework
has proven to be particularly useful in determining whether conditioning on a given set of variables, or
none at all, is su¢ cient to control for confounding. The most important result in this regard is the
back-door path criterion (Pearl, 1995). A back-door path from some node A to another node Y is a
path which begins with a directed edge into A. Pearl (1995) showed that for intervention variable A
and outcome Y , if a set of variables Z is such that no variable in Z is a descendent of A and such that
Z blocks all back-door paths from A to Y then conditioning on Z su¢ ces to control for confounding for
the estimation of the causal e¤ect of A on Y . The counterfactual value of Y intervening to set A = a
we denote by YA=a.

3. Motivating Example

To motivate the theory we develop in this paper consider the following example.

Example 1. Suppose that Figure 1 represents a causal directed acyclic graph.

A R YQ

++

U

Fig. 1. Motivating example concerning the estimation of controlled direct e¤ects.

Let A denote smoking; let R hypercholesterolemia; and let Y denote cardiovascular disease. High
cholesterol can lead to the narrowing of the arteries resulting in cardiovascular disease; smoking can
lead to blood clots through platelet aggregation resulting in cardiovascular disease. Let Q denote
some variable that confounds the relationships between smoking and cardiovascular disease and between
hypercholesterolemia and cardiovascular disease (e.g. stress). Let U be some unmeasured variable
which might confound the relationship between hypercholesterolemia and cardiovascular disease. The
researcher is unsure whether the variable U is a cause of R and we therefore represent the edge from U
to R as a dashed line. The results of Pearl (2001) imply that it is possible to estimate controlled direct
e¤ects of the form YA=a1;R=r � YA=a0;R=r (i.e. the direct e¤ect of smoking on cardiovascular disease
controlling for hypercholesterolemia) on the graph in Figure 1 if that U is not a cause of R. Suppose
that although the researcher is unsure about the presence an edge from U to R, it is known that the
relationship between A and Y is monotonic in the sense that P (Y > yjA = a;R = r;Q = q; U = u)
is non-decreasing in a for all y, r, q and u. In Section 5, we will present theory that will allow us to
derive a statistical test for the null hypothesis that there is no unmeasured variable U confounding the
relationship between R and Y .

4. On the De�nition of a Monotonic E¤ect

The de�nition of a monotonic e¤ect is given in terms of a directed acyclic graph�s nonparametric
structural equations.

Definition 1. The non-parametric structural equation for some node Y on a causal directed acyclic
graph with parent A can be expressed as Y = f(fpaY ; A; �Y ) wherefpaY are the parents of Y other than A;
A is said to have a positive monotonic e¤ect on Y if for all fpaY and �Y , f(fpaY ; A1; �Y ) � f(fpaY ; A2; �Y )
whenever A1 � A2. Similarly A is said to have a negative monotonic e¤ect on Y if for all fpaY and �Y ,
f(fpaY ; A1; �Y ) � f(fpaY ; A2; �Y ) whenever A1 � A2.
As we have de�ned it above, a causal direct acyclic graph corresponds to a set of non-parametric

structural equations and as such the de�nition of a monotonic e¤ect given above is relative to a particular
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set of non-parametric structural equations. The presence of a monotonic e¤ect is closely related to the
monotonicity of counterfactual variables as is made clear by the following proposition. All proofs of all
propositions and theorems are given in Appendix 2.

Proposition 1. The variable A has a positive monotonic e¤ect on Y if and only if for all ! and all
values of fpaY , Ya1;fpaY (!) � Ya0;fpaY (!) whenever a1 � a0.
We note that several sets of non-parametric structural equations may yield identical distributions of

X = (X1; :::; Xn) and fXV=vgV�X;v2supp(V ) (Pearl, 2000). In the context of characterizations of causal
directed acyclic graphs that make reference to counterfactuals but not to non-parametric structural
equations (Robins, 2003), a positive monotonic e¤ect could instead be de�ned to be present if for allfpaY and a1 � a0, P (Ya1;fpaY � Ya0;fpaY ) = 1. If this latter condition holds with respect to one set of
non-parametric structural equations it will hold for any set of non-parametric structural equations which
yields the same distribution for X and fXV=vgV�X;v2supp(V ). We note that if for a1 � a0 the set
f! : Ya1;fpaY (!) < Ya0;fpaY (!)g is of measure zero then Ya1;fpaY and Ya0;fpaY could be re-de�ned on this set
so that Ya1;fpaY (!) � Ya0;fpaY (!) for all ! and so that the distributions of X and fXV=vgV�X;v2supp(V )
remain unchanged.
Because for any value ! we observe the outcome only under one particular value of the intervention

variable, the presence of a monotonic e¤ect is not identi�able. The results presented in this paper are in
fact true under slightly weaker conditions which are identi�able when data on all of the directed acyclic
graph�s variables are observed. We thus introduce the concept of a weak monotonic e¤ect which is
a special case of Wellman�s positive qualitative in�uence (Wellman, 1990). The de�nition of a weak
monotonic e¤ect does not make reference to counterfactuals and thus can be used in characterizations
of causal directed acyclic graphs that do not employ the concept of counterfactuals (Spirtes et al., 2000;
Dawid, 2002). The stronger notion of a monotonic e¤ect given above is useful in the context of testing
for synergistic relationships (VanderWeele and Robins, 2008b).

Definition 2. Suppose that variable A is a parent of some variable Y and letfpaY denote the parents
of Y other than A. We say that A has a weak positive monotonic e¤ect on Y if the survivor function
S(yja;fpaY ) = P (Y > yjA = a;fpaY ) is such that whenever a1 � a0 we have S(yja1;fpaY ) � S(yja0;fpaY )
for all y and all fpaY ; the variable A is said to have a weak negative monotonic e¤ect on Y if whenever
a1 � a0 we have S(yja1;fpaY ) � S(yja0;fpaY ) for all y and all fpaY .
Proposition 2. If A has a positive monotonic e¤ect on Y then A has a weak positive monotonic

e¤ect on Y .

We note that for parent A and child Y , the de�nition of a weak monotonic e¤ect coincides with
Wellman�s (1990) de�nition of positive qualitative in�uence when the "context" for qualitative in�uence
is chosen to be the parents of Y other than A.
A monotonic e¤ect is a relation between two nodes on a directed acyclic graph and as such it is

associated with an edge. The de�nition of the sign of an edge can be given either in terms of monotonic
e¤ects or weak monotonic e¤ects. We can de�ne the sign of an edge as the sign of the monotonic e¤ect
or weak monotonic e¤ect to which the edge corresponds; this in turn gives rise to a natural de�nition for
the sign of a path.

Definition 3. An edge on a causal directed acyclic graph from X to Y is said to be of positive sign
if X has a positive monotonic e¤ect on Y . An edge from X to Y is said to be of negative sign if X has a
negative monotonic e¤ect on Y . If X has neither a positive monotonic e¤ect nor a negative monotonic
e¤ect on Y , then the edge from X to Y is said to be without a sign.

Definition 4. The sign of a path on a causal directed acyclic graph is the product of the signs of
the edges that constitute that path. If one of the edges on a path is without a sign then the sign of the
path is said to be unde�ned.

We will call a causal directed acyclic graph with signs on those edges which allow them a signed
causal directed acyclic graph. The theorems in this paper are given in terms of signed paths so as to be
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applicable to both monotonic e¤ects and weak monotonic e¤ects. One further de�nition will be useful
in the development of the theory below.

Definition 5. Two variables X and Y are said to be positively monotonically associated if all
directed paths from X to Y or from Y to X are of positive sign and all common causes Ci of X and Y
are such that all directed paths from Ci to X are of the same sign as all directed paths from Ci to Y ;
the variables X and Y are said to be negatively monotonically associated if all directed paths between
X and Y are of negative sign and all common causes Ci of X and Y are such that all directed paths
from Ci to X are of the opposite sign as all directed paths from Ci to Y .

It has been shown elsewhere (VanderWeele and Robins, 2008a) that if X and Y are positively
monotonically associated then Cov(X;Y ) � 0 and if X and Y are negatively monotonically associated
then Cov(X;Y ) � 0. We now develop several results concerning the monotonicity in the conditioning
argument of certain conditional expectations.

5. Monotonic E¤ects and Conditional Expectations

Lemma 1 below can be proved by integration by parts and will be used in the proofs of the subsequent
propositions. We will assume throughout the remainder of this paper that the random variables under
consideration satisfy regularity conditions that allow for the integration by parts required in the proof
of Lemma 1. If conditional cumulative distribution functions are continuously di¤erentiable then the
regularity conditions will be satis�ed; the regularity conditions will also be satis�ed if all variables are
discrete. Härdle et al. (1998, p72) also gives relatively weak conditions under which such integration
by parts is possible. Alternatively, the existence of the Lebesgue-Stieltjes integrals found in the proof
of Lemma 1 su¢ ces to allow integration by parts. Note that Lemma 1 will always be applied either to
the function h(y; a; r) = y or to conditional survivor functions which will satisfy the relevant regularity
conditions; thus the conditions which are required for integration by parts are only regularity conditions
on the distribution of the random variables.

Lemma 1. If h(y; a; r) is non-decreasing in y and in a and S(yja; r) = P (Y > yjA = a;R = r) is
non-decreasing in a for all y then E[h(Y;A;R)jA = a;R = r] is non-decreasing in a.

Proposition 3 immediately follows from Lemma 1.

Proposition 3. Suppose that the A ! Y edge, if it exists, is positive. Let X denote some set of
non-descendents of Y that includes fpaY , the parents of Y other than A, then E[Y jX = x;A = a] is
non-decreasing in a for all values of x.

Proposition 4 gives the basic result for the monotonicity of conditional expectations. For the con-
ditional expectation of some variable Y to be monotonic in a conditioning argument A, it requires that
the conditioning set includes variables that block all backdoor paths from A to Y . In order to prove
Proposition 4 we will make use of the following two lemmas.

Lemma 2. Suppose that A is a non-descendent of Y and let Q denote the set of ancestors of A or
Y which are not descendents of A. Let R = (R1; :::; Rm) denote an ordered list of some set of nodes
on directed paths from A to Y such that for each i the backdoor paths from Ri to Y are blocked by
R1; :::; Ri�1; A, and Q. Let V0 = A and Vn = Y and let V1; :::; Vn�1 be an ordered list of all the nodes
which are not in R but which are on directed paths from A to Y such that at least one of the directed paths
from each node to Y is not blocked by R. Let V k = fV1; :::; Vkg then S(vkja; vk�1; q; r) = S(vkjpavk).

Lemma 3. If under the conditions of Lemma 2 all directed paths from A to Y are positive except
possibly through R then S(yja; q; r) is non-decreasing in a.

These two lemmas allow us to prove Proposition 4 given below.

Proposition 4. Suppose that A is a non-descendent of Y and let X denote some set of non-
descendents of A that blocks all backdoor paths from A to Y . Let R = (R1; :::; Rm) denote an ordered
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list of some set of nodes on directed paths from A to Y such that for each i the backdoor paths from Ri
to Y are blocked by R1; :::; Ri�1; A and X. If all directed paths from A to Y are positive except possibly
through R then S(yja; x; r) and E[yja; x; r] are non-decreasing in a.

If R = ? the statement of Proposition 4 is considerably simpli�ed and is stated in the following
corollary.

Corollary. Let X denote some set of non-descendents of A that blocks all backdoor paths from A
to Y . If all directed paths between A and Y are positive then S(yja; x) and E[yja; x] are non-decreasing
in a.

Lemma 3 and Proposition 4 are generalizations of results given by Wellman (1990) and Druzdzel and
Henrion (1993). In particular, in Lemma 3 if R = ?, then the result follows immediately from repeated
application of Theorems 4.2 and 4.3 in Wellman (1990) or more directly from the work of Druzdzel and
Henrion (1993, Theorem 4). Lemma 3 generalizes the results of Wellman (1990) and Druzdzel and
Henrion (1993) by allowing for conditioning on nodes R = (R1; :::; Rm) which are on directed paths from
A to Y . Proposition 4 further generalizes Lemma 3 by replacing the set Q in Lemma 3 which consists
of the set of ancestors of A or Y which are not descendents of A with some other set X which consists
of some set of non-descendents of A that blocks all backdoor paths from A to Y .

Propositions 5-8 relax the condition that the conditioning set includes variables that block all backdoor
paths A to Y and impose certain other conditions; the proofs of each of these propositions make use of
Proposition 4.

Proposition 5. Suppose that A is not a descendent of Y , that A is binary, and that A and Y are
positively monotonically associated then E[Y jA] is non-decreasing in A.

Proposition 6. Suppose that A is not a descendent of Y , that Y is binary, and that A and Y are
positively monotonically associated then E[AjY ] is non-decreasing in Y .

Propositions 5 and 6 require that conditioning variable be binary. Counterexamples can be con-
structed to show that if the conditioning variable is not binary then the conditional expectation may not
be non-decreasing in the conditioning argument even if A and Y are positively monotonically associated
(see Appendix 3, counterexamples 1 and 2).

Propositions 5 and 6 can be combined to give the following corollary which makes no reference to the
ordering of A and Y .

Corollary. Suppose that A is binary and that A and Y are positively monotonically associated
then E[Y jA] is non-decreasing in A.

Example 2. Consider the signed directed acyclic graph given in Figure 2.

A R YC

++

++ ++ ++

++

Fig. 2. Example illustrating Propositions 4-6.

By Proposition 4, we have that E[Y jA = a;C = c;R = r] and E[Y jA = a;C = c] are non-decreasing
in a. If A is binary then by Proposition 5, it is also the case that E[Y jA = a] is non-decreasing in
a. If Y is binary, then by Proposition 6, E[AjY = y] is non-decreasing in y. The monotonicity of
E[Y jA = a;C = c;R = r] and E[Y jA = a;C = c] also follow directly from the results of Wellman (1990)
and Druzdzel and Henrion (1993); the monotonicity of E[Y jA = a] and E[AjY = y] do not.
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Propositions 7 and 8 consider the monotonicity of conditional expectations while conditioning on
variables other than the variable in which monotonicity holds but not conditioning on variables that are
su¢ cient to block all backdoor paths between A and Y . Propositions 7 and 8 generalize Propositions 5
and 6 respectively.

Proposition 7. Suppose that A is not a descendent of Y and that A is binary. Let Q be some
set of variables that are not descendents of Y nor of A and let C be the common causes of A and Y
not in Q. If all directed paths from A to Y are of positive sign and all directed paths from C to A not
through Q are of the same sign as all directed paths from C to Y not through fQ;Ag then E[Y jA;Q] is
non-decreasing in A.

Proposition 8 is similar to Proposition 7 but the conditional expectation E[AjY;Q] is considered
rather than E[Y jA;Q] and Y rather than A is assumed to be binary. The form of the proof di¤ers.

Proposition 8. Suppose that A is not a descendent of Y and that Y is binary. Let Q be some
set of variables that are not descendents of Y nor of A and let C be the common causes of A and Y
not in Q. If all directed paths from A to Y are of positive sign and all directed paths from C to A not
through Q are of the same sign as all directed paths from C to Y not through fQ;Ag then E[AjY;Q] is
non-decreasing in Y .

Propositions 7 and 8 can be combined to give the following corollary which makes no reference to the
ordering of A and Y .

Corollary. Suppose that A is binary. Let Q be some set of variables that are not descendents of
Y nor of A and let C be the common causes of A and Y not in Q. If all directed paths from A to Y
(or from A to Y ) are of positive sign and all directed paths from C to A not through fQ;Y g are of the
same sign as all directed paths from C to Y not through fQ;Ag then E[Y jA;Q] is non-decreasing in Y .

Example 3. Consider the signed directed acyclic graph given in Figure 3.

Q

A Y

C

++

++

++

++

++

Fig. 3. Example illustrating Propositions 7 and 8.

If A is binary, then by Proposition 7, E[Y jA = a;C = c;Q = q], E[Y jA = a;Q = q], E[Y jA = a;C = c]
and E[Y jA = a] are all non-decreasing in a. If Y is binary then by Proposition 8, E[AjY = y; C =
c;Q = q], E[AjY = y;Q = q], E[AjY = y; C = c] and E[AjY = y] are all non-decreasing in y. The
monotonicity of E[Y jA = a;C = c;Q = q] follows directly from the results of Wellman (1990) and
Druzdzel and Henrion (1993); the monotonicity of the other conditional expectations do not.

We now return to Example 1 concerning potential unmeasured confounding in the estimation of
controlled direct e¤ects.

Example 1 (Revisited). Consider once again the causal directed acyclic graph given in Figure 1.
Suppose that we may assume that A has a weak monotonic e¤ect on Y . Under the null hypothesis that
U is not a cause of R (i.e. does not confound the relationship between R and Y ) we could conclude
by Proposition 4 that E[Y jA = a;R = r;Q = q] is non-decreasing in a for all r and q. Under
the alternative hypothesis that U is a cause of R, we could not apply Proposition 4 because of the
unblocked backdoor path R � U � Y between R and Y . The monotonicity relationship would thus
not necessarily hold. Consequently, if E[Y jA = a;R = r;Q = q] were found not to be monotonic in
a then we could reject the null hypothesis that U is not a cause of R. Note that the monotonicity of
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E[Y jA = a;R = r;Q = q] in a also follows from the results of Wellman (1990) and Druzdzel and Henrion
(1993). If, however, there were an edge from U to Q for example, or in more complicated scenarios,
the results of Wellman (1990) and Druzdzel and Henrion (1993) would no longer su¢ ce to conclude the
monotonicity of E[Y jA = a;R = r;Q = q] in a; one would need to employ Proposition 4.
We now construct a simple statistical test in the case that A, R and Y are all binary (cf. Robins and

Greenland, 1992) of the null hypothesis that U is absent from Figure 1. Let nijq denote the number of
individuals in stratum Q = q with A = i and R = j and let let dijq denote the number of individuals in
stratum Q = q with A = i and R = j and Y = 1. Let pijq denote the true probability P (Y = 1jA =
i; R = j;Q = q). From the null hypothesis that U is absent from Figure 1, it follows by Proposition 4 that
p1jq � p0jq � 0 for all j and q. Thus we have dijq � Bin(nijq; pijq) with E[ dijqnijq

] = pijq and V ar(
dijq
nijq

) =

pijq(1�pijq)
nijq

. By the central limit central limit theorem
(
d1jq
n1jq

� d0jq
n0jq

)�(p1jq�p0jq)r
p1jq(1�p1jq)

n1jq
+
p0jq(1�p0jq)

n0jq

:
�N(0; 1) and by Slut-

sky�s theorem we have
(
d1jq
n1jq

� d0jq
n0jq

)�(p1jq�p0jq)r
d1jq(n1jq�d1jq)

n3
1jq

+
d0jq(n0jq�d0jq)

n3
0jq

:
�N(0; 1). To test the null hypothesis that the edge

from U to R is absent from Figure 1 one may thus use the test statistic
(
d1jq
n1jq

� d0jq
n0jq

)r
d1jq(n1jq�d1jq)

n3
1jq

+
d0jq(n0jq�d0jq)

n3
0jq

with critical regions of the form: f
(
d1jq
n1jq

� d0jq
n0jq

)r
d1jq(n1jq�d1jq)

n3
1jq

+
d0jq(n0jq�d0jq)

n3
0jq

> Z1��g to carry out a one-sided (up-

per tail) test. The derivation of the power of such a test would require providing explicit structural
equations for each of the variables in the model. Similar tests could be constructed for other scenarios.
We note that if the test fails to reject the null, one cannot conclude that the arrow from U to R is absent;
if the inequality E[Y jA = a1; R = r;Q = q] � E[Y jA = a2; R = r;Q = q] holds for all a1 � a2 this is
potentially consistent with both the presence and the absence of an edge from U to R. If, however, the
test rejects the null then one can conclude that an edge from U to R must be present, provided the other
model assumptions hold. With observational data, the assumption that no unmeasured confounding
variable is present can be falsi�ed but it cannot be veri�ed regardless of the approach one takes. It is
nevertheless worthwhile testing any empirical implications of the no unmeasured confounding variables
assumptions which can be derived, such as those following from Proposition 4.

Tian and Pearl (2002) and Kang and Tian (2007) derived various equality constraints that arise from
causal directed acyclic graphs with hidden variables; Kang and Tian (2006) derived various inequality
constraints that arise from causal directed acyclic graphs with hidden variables. We note that the
inequality constraint E[Y jA = a1; R = r;Q = q] � E[Y jA = a2; R = r;Q = q] for a1 � a2 does not
follow from the results of Tian and Pearl (2002) or Kang and Tian (2006, 2007). The equality and
inequality constraints which follow from their work will apply to all causal models consistent with the
directed acyclic graph in Figure 1 (without the sign); the inequality constraint E[Y jA = a1; R = r;Q =
q] � E[Y jA = a2; R = r;Q = q] follows only if it can be assumed in Figure 1 that A has a weak positive
monotonic e¤ect on Y . More generally, the results in this paper do not provide an alternative set of
constraints but rather a supplementary set of constraints to those of Tian and Pearl (2002) and Kang
and Tian (2006, 2007).

6. E¤ect Modi�cation and Monotonic E¤ects

If when conditioning on a particular variable, the sign of the e¤ect of another variable on the outcome
varies between strata of the conditioning variable, then the conditioning variable is said to be a qualitative
e¤ect modi�er. The following de�nition gives the condition for qualitative e¤ect modi�cation more
formally.

Definition 6. A variable Q is said to be an e¤ect modi�er for the causal e¤ect of A on Y if
Q is not a descendent of A and if there exist two levels of A, a0 and a1 say, such that E[YA=a1 jQ =
q] � E[YA=a0 jQ = q] is not constant in q. Furthermore Q is said to be a qualitative e¤ect modi�er
if there exist two levels of A, a0 and a1, and two levels of Q, q0 and q1, such that sign(E[YA=a1 jQ =
q1]� E[YA=a0 jQ = q1]) 6= sign(E[YA=a1 jQ = q0]� E[YA=a0 jQ = q0]).
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Monotonic e¤ects and weak monotonic e¤ects are closely related to the concept of qualitative e¤ect
modi�cation. Essentially, the presence of a monotonic e¤ect precludes the possibility of qualitative e¤ect
modi�cation. This is stated precisely in Propositions 9 and 10.

Proposition 9. Suppose that some parent A1 of Y is such that the A1 � Y edge is of positive sign
then there can be no other parent, A2, of Y which is a qualitative e¤ect modi�er for causal e¤ect of A1
on Y , either unconditionally or within some stratum C = c of the parents of Y other than A1 and A2.

A similar result clearly holds if the A1 � Y edge is of negative sign. We give the contrapositive of
Proposition 9 as a corollary.

Corollary. Suppose that some parent of Y , A2, is a qualitative e¤ect modi�er for causal e¤ect
of another parent of Y , A1, either unconditionally or within some stratum C = c of the parents of Y
other than A1 and A2 then A1 can have neither a weak positive monotonic e¤ect nor a weak negative
monotonic e¤ect on Y .

If there are intermediate variables between A and Y then Proposition 9 can be generalized to give
Proposition 10.

Proposition 10. Suppose that all directed paths from A to Y are of positive sign (or are all of
negative sign) then there exists no qualitative e¤ect modi�er Q on the directed acyclic graph for the
causal e¤ect of A on Y .

Example 4. Consider the signed directed acyclic graph given in Figure 4 in which the A� Y edge
is of positive sign.

Y

Q4

A

Q1
Q2

Q3

Q5

++

Fig. 4. Example illustrating the use of Propositions 9 and 10.

It can be shown that any of Q1, Q2, Q3, Q4 or Q5 can serve as e¤ect modi�ers for the causal e¤ect
of A on Y (VanderWeele and Robins, 2007). However, by Proposition 9 or 10, since A has a (weak)
monotonic e¤ect on Y , none of Q1, Q2, Q3, Q4 or Q5 can serve as qualitative e¤ect modi�ers for the
causal e¤ect of A on Y . Conversely, if it is found that one of Q1, Q2, Q3, Q4 or Q5 is a qualitative
e¤ect modi�er for the causal e¤ect of A on Y then the A � Y edge cannot be of positive (or negative)
sign.

Concluding Remarks

In this paper we have related weak monotonic e¤ects to the monotonicity of certain conditional
expectations in the conditioning argument and to qualitative e¤ect modi�cation. When the variables
on a causal directed acyclic graph exhibit weak monotonic e¤ects the results can be used to construct
tests for the presence of unmeasured confounding variables. Future work could examine whether it is
possible to weaken the restrictions on R in Proposition 4; another area of future research would include
developing an algorithm for what relationships need systematic evaluation in order to test for particular
confounding patterns; further research could also be done on the derivation of statistical tests of the type
considered at the end of Section 5 for cases in which A, R and Y are not binary and for dealing with
issues related to multiple testing problems.

Appendix 1. Monotonic E¤ects and Causal Inference.
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Causal Inference Result 1. If A is an ancestor of Y and the sign of every directed path between
A and Y is positive then E[YA=a] is non-decreasing in a.

Causal Inference Result 2. Suppose that for some binary intervention A and some outcome Y ,
some set X of non-descendents of A does not block all backdoor paths from A to Y but does not open
any backdoor paths from A to Y which were blocked without conditioning on X. Suppose also that each
variable in X has at most one ancestor outside of the set X. Let Sa =

P
z E[Y jA = a;X = x]P (X = X).

If all unblocked backdoor paths from A to Y are of positive sign then S1 � E[YA=1] and S0 � E[YA=0].
If all unblocked backdoor paths from A to Y are of negative sign then S1 � E[YA=1] and S0 � E[YA=0].

Appendix 2. Proofs.

Proof of proposition 1
By the de�nition of a non-parametric structural equation, Ya;fpaY (!) = f(fpaY ; a; �Y (!)) and from this
the result follows.

Proof of proposition 2
Since A has a positive monotonic e¤ect on Y , for any a1 � a0 we have that S(yja1;fpaY ) = P (Y >
yja1;fpaY ) = Pff(fpaY ; a1; �Y ) > yg � Pff(fpaY ; a0; �Y ) > yg = P (Y > yja0;fpaY ) = S(yja1;fpaY ).
Proof of lemma 1

For a � a0 we have E[h(Y;A;R)jA = a;R = r]�E[h(Y;A;R)jA = a0; R = r] =
Z y=1

y=�1
h(y; a; r)dF (yja; r)�Z y=1

y=�1
h(y; a0; r)dF (yja0; r) =

Z y=1

y=�1
h(y; a; r)dfF (yja; r)�F (yja0; r)g+

Z y=1

y=�1
fh(y; a; r)�h(y; a0; r)gdF (yja0; r) =

[h(y; a; r)fF (yja; r)� F (yja0; r)g]y=1y=�1 �
Z y=1

y=�1
fF (yja; r)� F (yja0; r)gdh(y; a; r) +

Z y=1

y=�1
fh(y; a; r)�

h(y; a0; r)gdF (yja0; r) =
Z y=1

y=�1
fS(yja; r)�S(yja0; r)gdh(y; a; r)+

Z y=1

y=�1
fh(y; a; r)�h(y; a0; r)gdF (yja0; r):

This �nal expression is non-negative since the integrands of both integrals are non-negative for a � a0.

Proof of proposition 3
We have that E[Y jX = x;A = a] = E[Y jfpaY ; A = a] and since A has a (weak) positive monotonic e¤ect
on Y , we have that S(yja;fpaY ) is non-decreasing in a and it follows from Lemma 1 that E[Y jX = x;A =
a] = E[Y jfpaY ; A = a] is non-decreasing in a.
Proof of lemma 2
We will say a path from A to B is a frontdoor path from A to B if the path begins with a directed edge
with the arrowhead pointing out of A. Let Qk and Rk be the subsets of Q and R respectively that are
ancestors of V k. We will show that

S(vkja; v1; :::; vk�1; q; r) = S(vkja; v1; :::; vk�1; q; rk)
= S(vkja; v1; :::; vk�1; qk; rk) = S(vkjpavk):

If Rk = R, the �rst equality holds trivially. Suppose that Rk 6= R so that Rm is not an ancestor of Vk.
All frontdoor paths from Rm to Vk must include a collider since Rm is not an ancestor of Vk. This collider
will not be in A; V1; :::; Vk�1; Q;R1; :::; Rm�1 since all these variables are non-descendents of Rm. Thus
all frontdoor paths from Rm to Vk will be blocked given A; V1; :::; Vk�1; Q;R1; :::; Rm�1. All backdoor
paths from Rm to Vk with an edge going into Vk will be blocked given A; V1; :::; Vk�1; Q;R1; :::; Rm�1 by
paVk ; note by hypothesis it can be seen that paVk will be contained by the variables A; V1; :::; Vk�1; Q;R

k

since there is a directed path from Vk to Y and Q includes all ancestors of Y not on directed paths
from A to Y . All backdoor paths from Rm to Vk with an edge going out from Vk will be blocked given
A;Q;R1; :::; Rm�1 by hypothesis; otherwise there would be a backdoor path from Rm through Vk to Y
not blocked by A;Q;R1; :::; Rm�1. But all backdoor paths from Rm to Vk with an edge going out from
Vk which are blocked by A;Q;R1; :::; Rm�1 will also be blocked by A; V1; :::; Vk�1; Q;R1; :::; Rm�1. This
is because such a path concluding with an edge going out from Vk which is blocked by A;Q;R1; :::; Rm�1
but not blocked by A; V1; :::; Vk�1; Q;R1; :::; Rm�1 would require that one of V1; :::; Vk�1, say Vp, be
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a collider on the path or a descendent of a collider. If one of V1; :::; Vk�1 were a collider then the
path would in fact be blocked by the parents of the collider since all the parents of V1; :::; Vk�1 are in
A; V1; :::; Vk�1; Q;R1; :::; Rm�1. If one of V1; :::; Vk�1, say Vp, were a descendent of the collider then
none of the directed paths from the collider to Vp could contain nodes in R1; :::; Rm�1 for otherwise the
path would not be blocked by A;Q;R1; :::; Rm�1; for the same reason the collider itself could not be in
R1; :::; Rm�1. But it then follows that the collider must itself be one of V1; :::; Vp�1 since it is an ancestor
of Vp with a directed path to Vp not blocked by R. However, if the collider is one of V1; :::; Vp�1 then
the path would in fact be blocked by the parents of the collider since all the parents of V1; :::; Vk�1 are
in A; V1; :::; Vk�1; Q;R1; :::; Rm�1. From this it follows that all backdoor paths from Rm to Vk with an
edge going out from Vk are blocked by A; V1; :::; Vk�1; Q;R1; :::; Rm�1.
We have thus shown that Vk and Rm are d-separated given A; V1; :::; Vk�1; Q;R1; :::; Rm�1 and so

S(vkja; v1; :::; vk�1; q; r) = S(vkja; v1; :::; vk�1; q; r1; :::; rm�1):

Similarly, Vk and Rm�1 are d-separated given A; V1; :::; Vk�1; Q;R1; :::; Rm�2 and so

S(vkja; v1; :::; vk�1; q; r1; :::; rm�1) = S(vkja; v1; :::; vk�1; q; r1; :::; rm�2):

We may carry this argument forward to get

S(vkja; v1; :::; vk�1; q; r) = S(vkja; v1; :::; vk�1; q; rk):

All backdoor paths from Vk to QnQk will be blocked given A; V1; :::; Vk�1; Qk; Rk by pavk . Since Vk is
not a descendent of QnQk all frontdoor paths from Vk to QnQk will involve at least one collider which
is a descendent of Vk. This collider is not in the conditioning set A; V1; :::; Vk�1; Qk; Rk since this entire
set consists of non-descendents of Vk and so the collider will block the frontdoor path from Vk to QnQk.
Thus Vk and QnQk are d-separated given A; V1; :::; Vk�1; Qk; Rk and so

S(vkja; v1; :::; vk�1; q; rk) = S(vkja; v1; :::; vk�1; qk; rk):

Furthermore, A; V1; :::; Vk�1; Qk; Rk are non-descendents of Vk and include all of the parents of Vk and
so

S(vkja; v1; :::; vk�1; qk; rk) = S(vkjpavk):

We have thus shown as desired that

S(vkja; v1; :::; vk�1; q; r) = S(vkja; v1; :::; vk�1; q; rk)
= S(vkja; v1; :::; vk�1; qk; rk) = S(vkjpavk):

Proof of lemma 3
Let V0 = A and Vn = Y and let V1; :::; Vn�1 be an ordered list of all the nodes which are not in R but
which are on directed paths from A to Y such that at least one of the directed paths from each node
to Y is not blocked by R. Let V k = fV1; :::; Vkg. It can be shown by induction that by starting with
n = k and for each k iteratively replacing by their negations the parents of Vk with negative edges into
Vk su¢ ces to obtain a graph such that all edges on all directed paths from A to Y not blocked by R
have positive sign.
We can express E[1(Vn > v)jA;Q;R] as

E[E[:::E[E[1(Vn > v)jA; V n�1; Q;R]jA; V n�2; Q;R]j:::jA; V1; Q;R]jA;Q;R]:

Now conditional on A; V n�1nVi; Q;R we have that

E[1(Vn > v)j; A; V n�1; Q;R]

is non-decreasing in vi for i = 1; :::; n� 1 since Vi has either a weak positive monotonic e¤ect or no e¤ect
on Vn. Thus conditional on A; V n�1nfVi; Vn�1g; Q;R we have that

E[1(Vn > v)jA; V n�1; Q;R]
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is a non-decreasing function of vi and vn�1. Furthermore, by Lemma 2 we have that S(vn�1ja; v1; :::; vn�2; q; r) =
S(vn�1jpavn�1) and so S(vn�1ja; v1; :::; vn�2; q; r) = S(vn�1jpavn�1) is a non-decreasing in vi for all
a; v1; :::; vi�1; vi+1; :::; vn�2; q; r since Vi has either a weak positive monotonic e¤ect or no e¤ect on Vn�1.
Thus by Lemma 1 we have that conditional on A; V n�2nVi; Q;R;

E[E[1(Vn > v)jA; V n�1; Q;R]jA; V n�2; Q;R]

is non-decreasing in vi for i = 1; :::; n � 2. Carrying the argument forward, conditional on A;Q;R; we
will have that

E[:::E[E[1(Vn > v)jA; V n�1; Q;R]jA; V n�2; Q;R]j:::jA; V1; Q;R]

is a non-decreasing function of v1 and v0 = a and since A has either a weak positive monotonic e¤ect or
no e¤ect on V1, S(v1ja; q; r) = S(v1jpav1) will be non-decreasing in a and thus by Lemma 1,

S(yja; q; r) = E[1(Vn > y)jA;Q;R]
= E[E[:::E[E[1(Vn > y)jA; V n�1; Q;R]jA; V n�2; Q;R]j:::jA; V1; Q;R]jA;Q;R]

will be non-decreasing in a.

Proof of proposition 4.
Let Q denote the set of ancestors of A or Y which are not descendents of A. Note that if for each i
the backdoor paths from Ri to Y are blocked by R1; :::; Ri�1; A and X then these backdoor paths will
also be blocked by R1; :::; Ri�1; A and Q since for each backdoor path from Ri to X there must be some
member of fAg

[
Q through which the path passes. We may thus apply Lemma 3 to conclude that

E[1(Y > y)ja;Q; r]. Since Q blocks all backdoor paths from A to Y we have

S(yja; x; r) = E[E[1(Y > y)ja;Q; x; r]ja; x; r]
= E[E[1(Y > y)ja;Q; r]ja; x; r] = E[E[1(Y > y)ja;W; r]ja; x; r]

where W is the subset of Q which are either parents of Y or parents of a node on a directed path from
A to Y . Let W 0 denote the subset of W for which there is a path to Y not blocked by A;X;R then
E[E[1(Y > y)ja;W; r]ja; x; r] = E[E[1(Y > y)ja;W 0; r]ja; x; r]. All backdoor paths from A to W 0 are
blocked given R and X by X since X blocks all backdoor paths from A to Y . Any frontdoor path from
A to W 0 will include a collider since the nodes in W 0 are not descendents of A. The collider cannot
be in X because X includes only non-descendents of A. Suppose the collider were some node Ri; by
hypothesis all backdoor paths from Ri to Y are blocked by R1; :::; Ri�1; A and X; thus the frontdoor
path from A to W 0 would have to be blocked by A;R1; :::; Ri�1 and X for otherwise there would be a
backdoor path from Ri through W 0 to Y not blocked by A;R1; :::; Ri�1 and X. From this it follows
that every frontdoor path from A to W 0 must be blocked given R and X either by a collider or by a
node in R or X. We have thus shown that all paths from A to W 0 are blocked given R and X and so
W 0 is conditionally independent of A given R and X and so we have

E[E[1(Y > y)ja;W 0; r]ja; x; r] = E[E[1(Y > y)ja;W 0; r]jx; r]
= E[E[1(Y > y)ja;Q; r]jx; r]:

We have thus shown that S(yja; x; r) = E[E[1(Y > y)ja;Q; r]jx; r]. Since E[1(Y > y)ja;Q; r] is non-
decreasing in a for all q we also have that

S(yja; x; r) = E[E[1(Y > y)ja;Q; r]jx; r]

is non-decreasing in a. Finally, since S(yja; x; r) is non-decreasing in a, it follows from Lemma 1 that
E[yja; x; r] is also non-decreasing in a.

Proof of Proposition 5
Proposition 5 is in fact a special case of Proposition 7 with R = ? and Q = ?. The proof of Proposition
7 is given below.

Proof of Proposition 6
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Proposition 6 is in fact a special case of Proposition 8 with R = ? and Q = ?. The proof of Proposition
8 is given below.

Proof of Proposition 7
By the law of iterated expectations,

E[Y jA = a;Q = q]
=
X
c

E[Y jA = a;C = c;Q = q]P (C = cjA = a;Q = q)

We have by Proposition 4 that E[Y jA;Q;C] is non-decreasing in A. Let (C1; :::; Cn) denote an ordered
list of the variables in C. Let Qc be variables in Q which are common causes of C and let Qn = QnQc.
Let Qdi be the variables in Q

c that are descendents of Ci. Let Cdi denote the variables in C that
are descendents of Ci and let Cni = CnfCi; Cdi g. By Proposition 4 we have that E[Y jA;Q;C] is non-
decreasing in each component Ci of C by choosing for each i, A in Proposition 4 to be Ci, X in Proposition
4 to be the set fQn; QcnQdi ; Cni g and R in Proposition 4 to be the set fQdi ; Cdi ; Ag. Furthermore,

P (C = cjA = a;Q = q) = P (A = ajC = c;Q = q)P (C = cjQ = q)
P (A = ajQ = q)

and so
P (C = cjA = 1; Q = q) = �q(c)P (C = cjA = 0; Q = q)

where

�q(c) =
P (A = 0jQ = q)P (A = 1jC = c;Q = q)
P (A = 1jQ = q)P (A = 0jC = c;Q = q)

which is non-decreasing in each dimension of c since the numerator is non-decreasing in each dimension
of c and the denominator is non-increasing in each dimension of c by Proposition 4 by choosing for each
i, A in Proposition 4 to be Ci, X in Proposition 4 to be the set fQn; QcnQci ; Cni g and R in Proposition
4 to be the set fQci ; Cdi g. Thus

E[Y jA = 1; Q = q]
=
X
c

E[Y jA = 1; C = c;Q = q]P (C = cjA = 1; Q = q)

�
X
c

E[Y jA = 0; C = c;Q = q]P (C = cjA = 1; Q = q)

=
X
c

E[Y jA = 0; C = c;Q = q]�q(c)P (C = cjA = 0; Q = q)

�
X
c

E[Y jA = 0; C = c;Q = q]P (C = cjA = 0; Q = q)

= E[Y jA = 0; Q = q]:

The second inequality holds because by an argument similar to that above E[Y jA = 0; Q = q; C = c]
is non-decreasing in each dimension of c and P (C = cjA = 1; Q = q) = �q(c)P (C = cjA = 0; Q = q)
weights more heavily higher values of each dimension of c than does P (C = cjA = 0; Q = q) since �q(c)
is non-decreasing in each dimension of c. Thus E[Y jA = a;Q = q] is non-decreasing in a.

Proof of Proposition 8
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By the law of iterated expectations we have that

E[AjY = y;Q = q] =
X
c

E[AjY = y; C = c;Q = q]P (C = cjY = y;Q = q)

=
X
c;a

aP (A = ajY = y; C = c;Q = q)P (C = cjY = y;Q = q)

=
X
c;a

a
P (Y = y;A = a;C = cjQ = q)

P (Y = y; C = cjQ = q) P (C = cjY = y;Q = q)

=
X
c;a

a
P (Y = yjA = a;C = c;Q = q)

P (Y = yjQ = q) P (A = a;C = cjQ = q)

= EC;A[A
P (Y = yjA;C;Q = q)
P (Y = yjQ = q) jQ = q]:

As in the proof of Proposition 7, we have by Proposition 4 we have that conditional on and Q = q,
P (Y=1jA;C;Q=q)
P (Y=1jQ=q) is a non-decreasing function of A and of each dimension of C. Similarly, P (Y=0jA;C;Q=q)P (Y=0jQ=q)

is a non-increasing function of A and each dimension of C. Over c and a, conditional on and Q = q,
P (Y=yjA=a;C=c;Q=q)

P (Y=yjQ=q) is a weight function that sums to 1 i.e. EC;A[
P (Y=yjA=a;C=c;Q=q)

P (Y=yjQ=q) ] = P (Y=yjQ=q)
P (Y=yjQ=q) =

1. Furthermore, by Proposition 4, S(ajc; q) is non-decreasing in c and we thus have that

E[AjY = 1; Q = q] = EC;A[A
P (Y = 1jA;C;Q = q)
P (Y = 1jQ = q) jQ = q]

� EC;A[A
P (Y = 0jA;C;Q = q)
P (Y = 0jQ = q) jQ = q]

= E[AjY = 0; Q = q]

and so E[AjY;Q] is non-decreasing in Y .

Proof of Proposition 9
Note that by Proposition 3 above if A1 has a weak positive monotonic e¤ect on Y then E[Y jA1 =
a1; A2 = a2; C = c] must be non-decreasing in a1 and if A1 has a weak negative monotonic e¤ect on
Y then E[Y jA1 = a1; A2 = a2; C = c] must be non-increasing in a1. Since (Y

`
A1jfA2; Cg)GE1

where GE1 is the original directed acyclic graph G with all edges emanating from A1 removed, we have
YA1=a

`
A1jfA2; Cg (Pearl, 1995). Thus E[YA1=a1 jA2 = a2; C = c] = E[Y jA1 = a1; A2 = a2; C = c]

and so if A2 is a qualitative e¤ect modi�er for the causal e¤ect of A1 on Y for stratum C = c then
we must two values of A1, a�1 and a

��
1 , and two levels of A2, a

0
2 and a

00
2 , such that E[Y jA1 = a��1 ; A2 =

a002 ; C = c]�E[Y jA1 = a�1; A2 = a002 ; C = c] < 0 and E[Y jA1 = a��1 ; A2 = a02; C = c]�E[Y jA1 = a�1; A2 =
a02; C = c] > 0. Either a

��
1 > a�1 or a

��
1 < a�1. Consider the �rst case (the second is analogous) then since

E[Y jA1 = a��1 ; A2 = a002 ; C = c] � E[Y jA1 = a�1; A2 = a002 ; C = c] < 0, A1 does not have a weak positive
monotonic e¤ect on Y and since E[Y jA1 = a��1 ; A2 = a02; C = c]�E[Y jA1 = a�1; A2 = a02; C = c] > 0, A1
does not have a weak negative monotonic e¤ect on Y . Now if A2 is a qualitative e¤ect modi�er for the
causal e¤ect of A1 unconditionally then we must have two values of A1, a�1 and a

��
1 , and two levels of A2, a

0
2

and a002 , such that E[YA1=a��1
jA2 = a002 ]�E[YA1=a�1

jA2 = a002 ] < 0 and E[YA1=a��1
jA2 = a02]�E[YA1=a�1

jA2 =
a02] > 0. Once again either a

��
1 > a�1 or a

��
1 < a�1. We will consider the �rst case (the second is analogous).

We thus have that
P
c
E[Y jA1 = a��1 ; A2 = a002 ; C = c]P (C = cjA2 = a002) =

P
c
E[YA1=a��1

jA2 = a002 ; C =

c]P (C = cjA2 = a002) = E[YA1=a��1
jA2 = a002 ] < E[YA1=a�1

jA2 = a002 ] =
P
c
E[YA1=a�1

jA2 = a002 ; C =

c]P (C = cjA2 = a002) =
P
c
E[Y jA1 = a�1; A2 = a002 ; C = c]P (C = cjA2 = a002) and so A1 cannot have a

weak positive monotonic e¤ect on Y and similarly,
P
c
E[Y jA1 = a��1 ; A2 = a02; C = c]P (C = cjA2 =

a02) =
P
c
E[YA1=a��1

jA2 = a02; C = c]P (C = cjA2 = a02) = E[YA1=a��1
jA2 = a02] > E[YA1=a�1

jA2 = a02] =P
c
E[YA1=a�1

jA2 = a02; C = c]P (C = cjA2 = a02) =
P
c
E[Y jA1 = a�1; A2 = a02; C = c]P (C = cjA2 = a02)

and so A1 cannot have a weak negative monotonic e¤ect on Y .

Proof of Proposition 10
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We prove the Theorem for weak positive monotonic e¤ects. The proof for weak negative monotonic
e¤ects is similar. Let C denote all non-descendents of A which are either parents of Y or parents of a
node on a directed path between A and Y . By the law of iterated expectations we have E[YA=a1 jQ =
q] � E[YA=a0 jQ = q] =

P
cE[YA=a1 jC = c;Q = q]P (C = cjQ = q) �

P
cE[YA=a0 jC = c;Q = q]P (C =

cjQ = q). We will show that this latter expression is equal to
P

cE[YA=a1 jC = c]P (C = cjQ =
q) �

P
cE[YA=a0 jC = c]P (C = cjQ = q). By Theorem 3 of Pearl (1995) it su¢ ces to show that

(Y
a
QjC;A)GA

where GA denotes the graph obtained by deleting from the original directed acyclic
graph all arrows pointing into A. Any front door path from Y to Q in GA will be blocked by a
collider. Any backdoor path from Y to Q in GA will be blocked by C. We thus have that E[YA=a1 jQ =
q] � E[YA=a0 jQ = q] =

P
cE[YA=a1 jC = c]P (C = cjQ = q) �

P
cE[YA=a0 jC = c]P (C = cjQ = q).

Since C will block all backdoor paths from A to Y we have by the backdoor path adjustment theoremP
cE[Y jC = c; A = a1]P (C = cjQ = q)�

P
cE[Y jC = c; A = a0]P (C = cjQ = q) =

P
cfE[Y jC = c; A =

a1] � E[Y jC = c; A = a0]gP (C = cjQ = q). If there were a qualitative e¤ect modi�er Q for the causal
e¤ect of A on Y then there would exist a value q0 such that E[YA=a1 jQ = q0] � E[YA=a0 jQ = q0] < 0.
But since all paths between A and Y are of positive sign and since C blocks all backdoor paths from
A to Y we have by Proposition 4 that E[Y jC = c; A = a] is non-decreasing in a and so E[YA=a1 jQ =
q0]� E[YA=a0 jQ = q0] =

P
cfE[Y jC = c; A = a1]� E[Y jC = c; A = a0]gP (C = cjQ = q0) � 0.

Appendix 3. Counterexamples.

Counterexample 1
Consider the directed acyclic graph given in Figure 5.

C A Y
++ ++

++

Fig. 5. Directed acyclic graph illustrating counterexamples to Propositions 5 and 6 when A is not
binary.

In this example C and Y are binary and A is ternary. Suppose that C � Ber(0:5), �A � Ber(0:5) and
that P (A = 0j�A = 0) = 1 and if P (A = C + 1j�A = 1) = 1. Suppose also that P (Y = 1jA = 2) = 1
and that if P (Y = CjA = 0) = 1 and P (Y = CjA = 1) = 1. Clearly then C has a positive monotonic
e¤ect on A and on Y and A has a positive monotonic e¤ect on Y and so A and Y are positively
monotonically associated. However, we have that E[Y jA = 1] = E[CjA = 1] = 0 � P (C = 1jA = 1) = 0
but E[Y jA = 0] = E[CjA = 0] = 1 � P (C = 1jA = 0) + 0 � P (C = 0jA = 0) = 1=2.

Counterexample 2
Consider again the directed acyclic graph given in Figure 5. In this example we will assume that C
and A are binary and that Y is ternary. Suppose that C � Ber(0:5) and that �A takes on the values
0, 1 and 2, each with probability 1=3. Suppose also that P (A = 0j�A = 0) = 1, P (A = Cj�A = 1) = 1
and P (A = 1j�A = 2) = 1. Suppose further that P (Y = 0jC = 0) = 1 and if P (Y = A + 1jC = 1).
Clearly then C has a positive monotonic e¤ect on A and on Y and A has a positive monotonic e¤ect on
Y and so A and Y are positively monotonically associated. However, we have that E[AjY = 1] = 0 but
E[AjY = 0] = E[AjC = 0] = 1=3.
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