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Locally Efficient Estimation of Nonparametric
Causal Effects on Mean Outcomes in
Longitudinal Studies

Romain Neugebauer and Mark J. van der Laan

Abstract

Marginal Structural Models (MSM) have been introduced by Robins (1998a) as a
powerful tool for causal inference as they directly model causal curves of interest,
i.e. mean treatment-specific outcomes possibly adjusted for baseline covariates.
Two estimators of the corresponding MSM parameters of interest have been pro-
posed, see van der Laan and Robins (2002): the Inverse Probability of Treatment
Weighted IPTW) and the Double Robust (DR) estimators. A parametric MSM
approach to causal inference has been favored since the introduction of MSM. It
relies on correct specification of a parametric MSM to consistently estimate the
parameter of interest using the IPTW or DR estimator. In this paper, we develop
an alternative nonparametric MSM approach to causal inference that extends the
definition of causal parameters of interest. Such an approach is particularly suit-
able for investigating causal effects in practice as it does not require the assump-
tion of a correctly specified MSM. We first propose a methodology to generate
nonparametric parameters of interest for investigating causal curves in which the
treatment is longitudinal. We provide insight on how to interpret these parameters
in practice and choose the parameter of interest to best answer the causal ques-
tion of interest. We also provide two estimators consistent with this approach, i.e.
which do not entirely rely, even indirectly, on correct specification of a MSM: the
unique IPTW and locally efficient DR estimators. All results are illustrated with
a simulation study in which the practical performances of the DR estimators are
evaluated for the first time using longitudinal non-survival data. In the last sec-
tion, we compare the proposed nonparametric MSM approach to causal inference
to the more typical parametric MSM approach and contribute to the general un-
derstanding of MSM estimation by addressing the issue of MSM misspecification.



1 Introduction

1.1 Data structure

The results presented in this paper apply to causal inference for both point treat-
ment and longitudinal non-survival data structures. See Yu and van der Laan
(2002b) for an application to longitudinal survival data. We will use notations to
represent longitudinal non-survival data since it is more general and can also be
used for the more simple structure of point treatment data. For more details on
the statistical framework used in this paper, see chapter 6 of van der Laan and

Robins (2002).

For every subject we observe a treatment regimen (A(0),..., A(k)) over time
j =0,...,k and covariates (L(0),...,L(k + 1)) measured at baseline and when
treatment changes. The covariates L(j) are measured after A(j — 1) and before
A(j). The outcome of interest is defined as Y = L(k+1). Thus the observed data
is:

O = (L(0), A(0), L(1), A(1), ..., A(K),Y = L(k + 1)) = (A(k), L(k + 1)),

where the notation W (j) represents the history of the variable W between time
t=0and t=j>0: W(j) = {W(0),...,W(5)}. If j <0, W(j) is defined as the
empty set. For simplicity we will also denote A(k) and L(k + 1) with A and L
respectively.

We define V' as a subset of the baseline covariates, V' C L(0). We denote the
observed value for any random variable W and for individual ¢« with w; and denote
the number of individuals in the observed data set with n: ¢ =1,... n.

1.2 Assumptions

e Existence of counterfactuals: we assume the existence of the counter-
factuals or the treatment specific process Lz(j), for 7 = 0,...,k + 1 and
every treatment regimen a = (a(0),...,a(k)) € A where A designates every
possible treatment regimen. See Rubin (1976) for details on the concept of
counterfactuals. We denote the full data process with X = (La(k + 1))aca
and its distribution with Fx. We also denote the distribution of V in the

full data with Fy and the support of Fy with Sy.

e Consistency assumption: at any time point j, we assume the following
link between the observed data and the counterfactuals: L(j) = L4(j). Un-
der this assumption, we have:

0= (AU{)a Z_—J/_l(k)(k + 1)) = ¢(A> X)7

where ¢ is a specified function of the full data process X. This notation
indicates that the problem can be treated as a missing data problem. Only
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the counterfactual associated with the observed treatment A(k) is observed;
the others are missing.

e Temporal Ordering assumption: at any time point j, we assume that
the treatment specific process can only be affected by past treatments:

La(4) = Lag-1)(J)-

e Sequential Randomization Assumption (SRA): at any time point j,
we assume that the observed treatment is independent of the full data given
the data observed before time point j:

A(G) L X TAG = 1),L3).

Under the SRA_, the treatment mechanism, i.e. the conditional density or
probability of A given X: g(A | X), is such that:

g(A] X) = Hg J)AG—1),X il:[ 7) | A(G = 1), L(j)).

The SRA implies coarsening at random, Gill, van der Laan and Robins
(1997), and thus the likelihood of the observed data factorizes into two parts:
a so-called Fy and ¢ part. The Fx part of the likelihood only depends on
the full data process distribution and the g part of the likelihood only de-
pends on the treatment mechanism. Thus, we denote the distribution of the
observed data O with P, , and the likelihood of O is:

g part
—_—~—

L(0) = f(L(0)) ]:[1 FILG) | LG — 1), A= 1)) g(A ] X).

QrFy

Fx part

In addition, we denote the set of conditional densities or probabilities defining the
Fx-part of the likelihood except for f(L(0)) with Qp,.

1.3 Description of the problem and approach

We wish to use this statistical framework to investigate the adjusted causal effect of
AonY adjusted for V defined as the parameter function m* : Ax Sy — IR where
m*(a,V) = Er,(Yaz | V). This parameter function is defined for any Fy € MX,
where MX, is the set of all distributions Fiy and we will refer to m* as the causal
curve.
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This issue is addressed in this paper by developing estimators of euclidean non-
parametric causal parameters of m*, i.e. finite vectors of real valued summary
measures of the adjusted causal effect of interest defined without further assump-
tions, in particular on the causal curve, i.e. on Fx. We will refer to these param-
eters of interest as nonparametric causal effects.

Parameters of interest are defined nonparametrically in this approach and that
is why we wish to develop nonparametric estimators, i.e. estimators which do not
rely on further assumptions. However due to the 'curse of dimensionality’, see van
der Laan and Robins (2002), this goal cannot be typically achieved in practice
and one needs to make additional assumptions on g or Qr,. We thus favor two
estimators which do not rely entirely on further assumption on the distribution
defining the parameter of interest, i.e. F'x: the IPTW and DR estimators.

In section 2, we first present a methodology for generating nonparametric po-
tential euclidean causal parameters of interest for investigating the causal curve,
m*. We provide the interpretation of such parameters and describe how to apply
this methodology to define the actual parameter of interest in practice. In section
3, we describe two estimators of these potential parameters of interest, one of which
is locally efficient: the IPTW and DR estimator. The so-called G-computation es-
timator is also described in that section as it is required in the procedure used
in this paper to obtain the DR estimate in practice. In section 4, we illustrate
the results presented in this paper by a simulation study. We finally discuss the
importance of this nonparametric MSM approach to causal inference in section 5
and compare it to the typical parametric MSM approach found in the literature.

2 Methodology for generating nonparametric eu-
clidean causal parameters of interest

2.1 Definition

We denote the set of functions from A x Sy to IR with M*. We have m* € M*.
We define m : IR¥ — M* where m(3) = m(-,- | ) € M* and denote the image
of m with M. We have M C M* but note that m* is not necessarily an element
of M. We define )\ : A x Sy — IR where A is different from the null function.
We will refer to m and A as the causal model (CM) and causal kernel smoother
(CKS) respectively and will justify these appellations in the next section.

For any CM, m, and CKS, A, we define the following potential causal parameter
of interest for investigating a causal curve:

B(- | m, A : ML, — R*, where:

B(Fx | m,\) = argmin Ep, Z (Ya —m(a,V | 6))2 Aa,V)|. (1)
selR" acA
3
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Equality (1) defines a nonparametric causal effect, i.e. a euclidean parameter
of the causal curve defined without further assumption on Fyx. We denote the
resulting parameter with G, , = B(Fx | m,\). We do not state the conditions
under which this parameter exists and is unique in this paper. We do, however,
demonstrate in the next section why such a parameter is indeed of potential interest
for investigating a causal curve.

2.2 Interpretation
We define F) such that dFy(a,V) = I(a € A)X(a,V)dFy (V). The space of func-
tions M* endowed with the inner product:

<fg>n=3 [ 1@.V)gla V)i,

is a Hilbert space and we denote the distance defined in this Hilbert space with

|- [l and we have [[f[|r, = /< [, [ >

Using these notations, we have:

6m,)\ = argmink Hm* - m( )" ‘ B)HFA (2)
pe

This is shown as follows:

Bma = argmin Ep, Y (Ya—m(a,V | ﬁ))2 Aa, V)

pelR acA
= argmin Ep, Y —m(a,V a,V))"| Ma,V
smin, %4[( m(a,V | 8))° = (Ya —m*(@,V))*| M@, V)
= argmin Ep, Y (2Yz —m(a,V | B) —m*(a,V)) (m"(a, V)~
pelR acA
m(a,V | 8)) MA@, V)
= argmln Ep, ZA a,V)—m(a,V | B3)° \a,V)
= argui, 3y / —m(@,V | 8))? M@, V)dFy (V). (3)
66 acA

Equality (2) makes the interpretation of 3, » more explicit. It is the parameter
minimizing the distance between the causal curve m* and m where the notion of
distance is defined by the choice of function A. This justifies why we refer to m as
the causal model: it approximates the causal curve, m*, best at the parameter of
interest.

Equality (3) shows more explicitly how A influences the definition of 3, \ by defin-
ing the notion of distance between the CM and the causal curve. The function A
attributes a weight to each region (a, V') of A x Sy so as to define the parameter of
interest such that the CM approximates the causal curve best in the regions given

http://biostats.bepress.com/ucbbiostat/paper134



the more weight. This justifies why we refer to A as the causal kernel smoother: it
defines the smoothing of the causal curve using the CM by weighting each region
of the causal curve, the higher weights being in the regions in which we wish to
focus the investigation of the causal curve. From equality (2), it is obvious that
the choice for A does not influence the definition of 3,, » when the CM is correctly
specified, i.e. when M > m* we have (3, » = (3,,, where 3, is defined such that

m('?' | 6m) =m".

To summarize, () ,, is the parameter for which the CM approximates the causal
curve best in the regions defined by the CKS. Therefore, the parameter 3, 5 is in-
deed of potential interest for investigating the causal curve. It provides a global and
accurate summary measure of the causal curve when the CM is correctly specified
and provides a localized and approximate summary measure of the causal curve
when the CM is misspecified.

We described a method to generate potential parameters of interest for inves-
tigating a causal curve through the choice of a CM and a CKS. We now provide
practical guidelines on how to choose m and A in order to generate actual param-
eters of interest, i.e. parameters answering the causal questions of interest.

2.3 Application in practice

The parameters of interest to be generated using the methodology presented pre-
viously are dictated by the questions of interest to be answered, i.e. the choice
for m and A follows from the causal aims of the analysis. We can crudely classify
causal aims into two categories:

e Obtaining as global and accurate a representation of the causal
curve as possible. The CM, m, should be chosen such that: M > m*, i.e.
the CM needs to be correctly specified. If the CM is correctly specified, the
CKS, A, can be chosen arbitrarily since the definition of the parameter of
interest is then independent of the choice for A\. This analytical goal relies
on the implicit belief that one knows or can select a correctly specified CM.

e Obtaining an informative summary, possibly localized, representa-
tion of the causal curve. The CM is chosen so as to extract the informative
and summary trend of interest from the causal curve. The CM will typically
be willingly misspecified. As an example, one will assume a linear CM if one
is interested in capturing the general monotone trend of m*. This will be
assumed even if one suspects that the causal curve is more complex. The
choice for the CKS is then essential to define the parameter of interest since
the CM can be misspecified. The CKS should be specified such that the re-
gions given the highest weights are the regions of the causal curve for which
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one wants to obtain an informative summary representation.
Possible choices for A:

— any known function of @ and V. In particular, A“*(a,V) = 1: this
uniform CKS is recommended when one wants to obtain a global sum-
mary representation of the causal curve, i.e. when one wants the CM
to approximate the causal curve equally well in all regions of the causal
curve.

— Aee(@,V) = =5z such a CKS is recommended when one wants
Fx (EB)]a,V)
the CM to approximate the causal curve best in the regions where the

conditional observed residual variance is smallest.

— Xee(@, V') = g(a | V): such a CKS is recommended when one wants the
CM to approximate the causal curve best in the regions where a is more
represented within strata of V' in the observed data.

— N (@, V) = % . such a CKS is recommended when one
) X a,

wants the CM to approximate the causal curve best in the regions where
both the conditional observed residual variance is smallest and @ is more
represented within strata of V' in the observed data.

In the last section, we discuss in more details the practical implications of these
two analytical goals and how they can relate more directly to the MSM parametric
or MSM nonparametric approach to causal inference.

We described one method to generate potential nonparametric parameters of
interest but there are however other nonparametric methods to generate such eu-
clidean parameters of the causal curve without specification of a correct MSM. For
instance one could define the following parameters of interest:

B(Fx | A) = Epy

ﬁ(FX | )\) = EFX Z m*(d, V))\(EL, V)

acA

Y

where \ can be defined as %K (*5%) for K and h being a kernel smoother and a
bandwidth respectively. We will focus on the estimation of the potential parame-
ters of interest as defined in this section. The results presented for such parameters,
however, can be extended to all nonparametric MSM parameters.
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3 Estimators of the parameter of interest

3.1 Full data estimating function
For any CM, m, and any CKS, A\, we define h) : A x Sy, — IR where:

hy(a,V) = Aa, V)ﬁm

S5m@ V1 9) 0

and

D, (X | B) = Y ha(@, V)ea(B), ()

acA
where £;(8) = Yz — m(a,V | 8). Under regularity conditions we have:

S (Vs — m(@V | ) Aa. v>]

acA

B = argmink Ep,
gelR

= Epy [Dp (X | Bnp)] = 0. (6)

This can be shown as follows:

Bron = argmin Ery |3 (Ya = m(@,V | 5))’ A(a,v>]
selR” acA

Under regularity conditions:

d 9 .,
Fy Y, —m(a,V Aa,V
Sy L;( @V BN >]

Under regularity conditions:

)\V
T @) g

=0
ﬂ:ﬂm,)\

< EFX

m(a, V| )

(Yza —m(a,V | ﬂm,,\))] =0.
B=Bm,x

Note that we also have from the previous equation:

By |5 1@, V) (550, V) = (o, V | )| =0 ™
acA

A corollary of equivalence (6) is that (3, can be estimated consistently us-
ing the estimating function of the full data, Dp, (X | ), where h, is defined
by (4). Note that this estimating function cannot be used directly with the
observed data, O, and that it actually only depends on part of the full data:
Q(X) = (V,(Ya)aea) C X.
In addition, it can be shown that this estimating function is the only full data
estimating function defining a consistent, regular and asymptotically linear esti-
mator of 3,  since Fy is left nonparametric, see van der Laan and Robins (2002).
As a result, there will be only one IPTW, G-computation and DR estimator of
Bma- See van der Laan and Robins (2002) for details on how these estimators are
derived from the full data estimating functions defining consistent, regular and
asymptotically linear estimators of the parameter of interest.

7
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3.2 IPTW estimator
3.2.1 Definition

The unique IPTW estimating function for (3,, » with nuisance parameter g is de-

fined as: _
Dy, (O | g,0) = W where () = €4(5),

Note that the IPTW estimating function is defined under the SRA since g(A | X)
only depends on the observed data when the SRA holds. Furthermore, we will
not refer to A\ as a nuisance parameter as it defines the parameter of interest, is
user-specified and will typically be a known function. However A will be treated
similar to a nuisance parameter when unknown as it will need to be estimated
before estimating the parameter of interest.

We define the Experimental Treatment Assignment (ETA) assumption for esti-
mating (3, » as follows:

ha(a,V)

%lea‘/i(m < 0 FX—a.e.

We denote the estimator of A and g with A\, and g, respectively. If A is known,
we define A\, = A.

The IPTW estimator of 3, is defined as the solution of the estimating equa-
tion associated with the observed data O and the IPTW estimating function at g,
and A,:

zn:DhAn (Oi | gnaﬁ) =0 (8)

=1

3.2.2 Property of the IPTW estimating function

Under the ETA assumption, the IPTW estimating function is unbiased at (3, x
under Pp, g

EPFX,g [‘DhA<O | 9, ﬁm,)\)] = 0.
Proof:

Ep, ,[Dn (O] 9,Bmn)]= EE (

_ hk(aa V)eé(ﬁm,/\) a
—n (&:g(&z):f)yéo g(a| X) glal X>)

h/\(Av V)€(ﬁf\>
gATX) | X)

E;AEFX <Z h)\(a,V)Ea(ﬁmA))
Bk (z @, V)(Ya — m(@,V | Bunn) | V)

8
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= B (@ V)i, V) - (e | )

D 0.0

3.2.3 Practical implications for the IPTW estimator and implementa-
tion

The previous result justifies the use of the IPTW estimator to estimate 3, » con-
sistently with the observed data when the ETA assumption holds. In practice, a
corollary of the unbiasedness of the IPTW estimating function is that, under reg-
ularity conditions, the IPTW estimator of (3, \ is consistent and asymptotically
linear if the ETA assumption holds and if g, and A, are consistent estimators of
g and \ respectively.

The IPTW estimate of 3, can be obtained in practice by performing a

weighted least squares regression of ¥ on A and V using the CM and the fol-
REDIR
that the resulting estimate is a solution of the estimating equation (8). Moreover,
in order to obtain a consistent estimator of 3, x, A,, should be a consistent estima-
tor of A. In addition, it is known, see van der Laan and Robins (2002), that one
should always specify g, as a consistent estimator of g even when ¢ is known. As a
result, the IPTW estimator may gain in efficiency by possibly capturing empirical

confounding, without loss of consistency.

It can indeed be shown

lowing weights for each observation: w(A4,V) =

Note that the ETA assumption is a critical assumption for the consistency
of the IPTW estimator. Since the choice for h, is dictated by the parameter of
interest definition, the user cannot arrange for the ETA assumption to be holding
by choosing an appropriate hy. That is why the ETA assumption is equivalent in
practice to a stronger assumption that we designate as the Strong ETA (SETA)
assumption:

%réiilg(d | X) >0 Fx —a.e.

Note that the SETA assumption implies the ETA assumption. Under the SRA,
the SETA assumption is equivalent to:

Vi€{0....k} Val—1)eAG—1) Ya(j) € Agyn()
9(A() = a() | A~ 1) =a(i —1).L()) > 0 Pry, — a.c.,

where A(j—1) = {a*(j—1) : a* € A} and Az;_1y(j) = {a*(j) : a* € A, a*(j—1) =
a(j —1)}.
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3.3 G-computation estimator
3.3.1 Definition

Under the SRA, we have seen that the likelihood of the observed data factorizes into
two parts. We define the G-computation formula as the Fy part of the likelihood

where A is set to a for every a € A and we denote it with fQFX (L(k +1)):

o k1 B
o “(L(k+1)) Hf LG =1),A(G - 1) = a(j - 1)).

Note that this product, i.e. the G-computation formula, is only defined under
P, , for every a € A if the SETA assumption holds. We define f*"(L(k + 1))
for every a € A using the G-computation formula in which @, is replaced by its
estimator, Q.

The G-computation estimator is defined as the solution of the approximation
of EQnDhA (X | B) = 0 where Eg, is approximated by an empirical mean over

draws X from Q, using f&"(L(k + 1)) and L(0):

3 Dy, (X; | 8) =0, 9)
j=1
where p is a large number of draws X ; from @Q,.

3.3.2 Property of the G-computation formula

Under the SETA assumption, for every a € A the G-computation formula cal-
culated at a is defined and identifies the marginal probabilities or densities of
L;(k + 1) defined under F:

Lk +1)) = f(La(k + 1)).

See Robins (1997), Robins (1998b), Gill and Robins (2001) and Yu and van der
Laan (2002a) for the proof.

This result establishes a link between the observed data distribution, Pp, 4, and
the full data distribution, F'x. More precisely it establishes a link between Q) p,
and the marginal distribution of the counterfactual process. This last distribution
is sufficient to identify the expectation under Fx of Dy, (X | #) and that is why
the G-computation formula can be used to simulate full data, X , in order to esti-
mate parameters of m* like /3,,, y using the full data estimating function Dy, (X | ).

A corollary of this result important in practice is:
k41

f(Ya =1k +1) [ L(0) Z Zl_[f G —1),a(i —1). (10)

10
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3.3.3 Practical implications for the G-computation estimator and im-
plementation

The previous result and equivalence (6) justify the use of the G-computation es-
timator to estimate (3, » consistently using the observed data when the SETA
assumption holds. In practice, a corollary of equivalence (6) and the previous re-
sult concerning the G-computation formula is that, under regularity conditions,
the G-computation estimator of 3, ) is consistent and asymptotically linear if the
SETA assumption holds and if @, and A, are consistent estimators of Qp, and A
respectively.

The G-computation estimate can be obtained in practice by carrying out the
following two steps:

1. Generate the simulated data (Y3z)ac4. We can use a Monte Carlo simu-
lation procedure based on the user-specified distributions in @,,, f,, and the
observed baseline covariates, L(0), to simulate (Yz)aca. For every a € A and
every individual ¢ = 1,...,n: starting at j = 1, keep simulating ;(j) using
fo(L(j) | L(j —1),A(j —1)), a;(j — 1) and [;(j — 1) until j = k£ +1. By doing
so, equation (10) ensures that the simulated data [;(k 4 1) are generated
using the conditional distribution of Y; given L(0) = [(0) defined under @,,.

2. Solve for (§ equation (9) using the simulated full data (Y3z)aca and
the observed data V. This can be done by performing a weighted least
square regression of Y; = L(k + 1) on a and V using the data obtained
by pulling together all observations (v;,a,l;(k + 1)) obtained under every
treatment regimen a, treating these observations as independent and using
An(a, V) as weights.

In order to obtain a consistent estimator of 3, in practice, A, and @), should
be consistent estimators of A and ()r,. The observed data are used to estimate
the parameters of the models for (Jp, using the method of maximum likelihood.
Indeed under the SRA, the likelihood is a product of the distributions in Qp,,
f(L(0)) and the g part of the likelihood. Maximizing a product of functions over
independent parameters is the same as maximizing each element of the product
separately over its corresponding parameters. Therefore, ()p, can be estimated
using the method of maximum likelihood but only using the Q)r, part of the like-
lihood instead of the complete likelihood formula, £(0). Note that we do not need
to estimate the g part of the likelihood in this approach.

The G-computation estimator as defined in this paper had not been previously
tested using real or simulated longitudinal data. In section 4, we report the prac-
tical performances of this estimator which has now been implemented successfully
using the procedure presented above for a simulation study.

Note however that the G-computation estimator is of interest in the nonparametric

11
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MSM approach to causal inference not as an estimator of the parameter of inter-
est but as a building block for the DR estimator. Indeed, in this approach, the
estimators of interest do not entirely rely, even indirectly, on correct specification
of a parametric MSM, i.e. assumptions on Fly.

3.4 DR estimator
3.4.1 Definition

The unique DR estimating function for 3, » with nuisance parameters g and Qg
is defined as:

D, (O | g,Qry, B) =

3 Q&g(“ﬁﬁfﬁﬁ”er»Loﬁ

@wg( 0 4G - 0,20))

Note that this estimating function does indeed depend on P, , through (Qp,,g).

The DR estimator of (3, » is defined as the solution of the estimating equation
associated with the observed data O and the DR estimating function at g,, @,
and A,:

> Di,, (0i ] gn, @, 8) =0 (11)
i=1

3.4.2 Property of the DR estimating function

Under the ETA assumption for g;, we have

. gr = g or
E Dy, (O )] = 0 if
Pry.q [ h,\( | 91, Q1,0 Q\)] 1 { Q; = QFX

This result is a corollary of the results in section 3.2.2 and lemma 1.9 in van der
Laan and Robins (2002) applied to the IPTW estimating function for estimating
Bm,x as defined in section 3.2.1.

3.4.3 Practical implications for the DR estimator and implementation

The previous result justifies the use of the the DR estimator to estimate (3, » con-
sistently with the observed data under the conditions for which either the IPTW
or G-computation estimator is consistently estimating (3,, ». In practice, a corol-
lary of the previous result is that, under regularity conditions, the DR estimator
of B, 1s consistent and asymptotically linear if A, is a consistent estimator of
A and if either the ETA assumption holds for ¢ and g, is a consistent estimator
of g, or if (), is a consistent estimator of ()r, and the DR estimating function is

12
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defined at a g; for which the ETA assumption holds.

The DR estimator can be obtained in practice by directly solving for 3 equation

(11) using the Newton-Raphson algorithm. This algorithm can indeed be used to
minimize complex multivariate functions. It consists of an iterative procedure
starting with an initial estimate of (3, » that is iteratively updated until a user-
specified convergence criteria is reached. The latest update of the estimate of
Bm.a corresponds with the DR estimate. More details on how to use the Newton-
Raphson algorithm in our problem can be found in van der Laan and Robins
(2002). Another approach to solve the DR estimating equations is described in
Robins (2000).
Prior to solving equation (11), g, and @, need to be specified similar to the IPTW
and G-computation approach respectively, i.e. in order to obtain a consistent DR
estimator of 3, , the estimators A,, g, and @, should consistently estimate A,
g and QQp, respectively. Similar to the G-computation approach, (), needs to
be specified and used to estimate the expectations defining D, (O | gn, Qn, )
using Monte Carlo simulations, Yu and van der Laan (2002b). The conditional
densities or probabilities in @),, that need to be specified correspond exactly with
the conditional densities or probabilities that need to be modelled for the G-
computation estimator. This last observation and the result presented in the
previous section suggest the following DR estimation procedure when the ETA
assumption holds for g:

1. Estimate the treatment mechanism ¢g with g, and Qr, with Q.

2. Compute once and for all the expectations defining Dy, (O | gn, Qn, 3) using
Monte Carlo simulations and the G-computation estimate, both relying on

@n-

3. Use the Newton-Raphson algorithm to solve the DR estimating function
in which the expectations are known from the previous step and remain
unchanged throughout the algorithm procedure. The initial value for 3 is
chosen as the G-computation estimate relying on Q.

In such a procedure, the expectations defining D) (O | gn, @n,3) do not need
to be computed at each step of the iterative Newton-Raphson algorithm. Thus,
the DR estimate is obtained for a low computing cost without losing its double
robustness property. Solving the estimating equations associated with Dy, (O |
Gny @Qn, 0) is thus very fast in practice after the G-computation estimate is obtained
and the expectations defining the DR estimator are computed. In section 4, we
report the practical performances of the DR estimator which has been implemented
successfully for the first time in a non-survival longitudinal data simulation study
using the procedure described previously.
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Figure 1: DAG of the simplified data structure considered in this paper

4 Illustration with a simulation study

4.1 Simulation overview

To illustrate the results presented in this paper, we perform a simulation study
mimicking a real epidemiological study in which non-survival longitudinal data are
collected to investigate the effect of air pollutant exposure on an asthma symptom,
wheeze. This simulation study is inspired by the Fresno Asthmatic Children and
Environmental Study (FACES).

In this simulation, we limit ourselves to a non-survival longitudinal data struc-
ture with only a few time points mimicking a simplified version of the data structure
obtained in FACES during two-week monitoring periods. In this simplified data
structure, the outcome of interest is Y (2), wheezing indicator in the morning. We
denote the indicator of rescue medication use the night prior to outcome report
with R. As suggested by initial analyses using real data from FACES, the effect
of rescue medication use on morning symptoms is confounded by prevalence of
wheezes, Y (1), reported the evening prior to outcome report. The exposure levels
of a given pollutant (e.g PMy5) are measured on the two days prior to outcome
report using appropriate metrics: F(0) and E(1). The observed data structure O
can thus be ordered as follows:

O = (E(0),Y (1), E(1), R,Y(2)).

The data can also be represented by a diagram in which the assumed causal re-
lationships between the variables can be represented by directed arrows (Directed
Acyclic Graph or DAG, see figure 1). In this diagram, we can include unobserved
covariates like Yy (e.g. asthma severity) which are assumed to have causal effects
on observed variables.
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We wish to use the simulated observed longitudinal data collected on a popula-

tion of asthmatic children to investigate the joint causal effect of rescue medication
use and a two-day PM, 5 exposure on the prevalence of morning wheezes. In other
words, the counterfactuals of interests are: Y ., ,, i.e. the outcome Y (2) under
the treatment history (E(0) = ey, E(1) = e, R =7).
Because of the simulation procedure used, the true causal relationship of inter-
est: m*(eg,e1,7) = E(Yeye,r) is unknown as in most real life studies. We use a
nonparametric MSM causal approach to causal inference to investigate the causal
curve of interest, m*, and we define four parameters of interest using two CKS:
A = A and Ay = A°¢ and the following two CM:

var var,g
1

1+ exp[—(Bo + Bimag + Bar)]

a two-day moving average of PMy 5 levels: mas =

e my(eg, 1,7 | B) = , where mas designates
€+ €1

2 Y

1
1+ exp[—(Bo + Bimas + Bor + B3 mas )]

The corresponding four parameters of interest: B, z;s Bmirgs Bmony and B, 5, are
estimated using the IPTW, G-computation and DR estimators defined in section 3.

L4 m2<€07€17r ’ 6) =

We repeat this simulation procedure N, times, i.e. N, observed data sets are
simulated. We report the mean and standard deviation of the four parameter
estimates obtained for each simulated data.

4.2 Simulation procedure
4.2.1 Data simulation

The diagram in figure 1 is used to generate every data set in this simulation study
according to known data generating distributions and the following protocol in
which every parameter is known and user-specified before simulating data:

1. Generate Y, using a Bernoulli distribution with a user-specified probability
of event: P(Yy = 1) = p*. This variable is binary and represents the asthma
severity status of the subject: Yy = 1 indicates ”severe asthma”.

2. Generate F(0) such that P(E(0) = e) = pZ° which value is user-specified for
e =1,...,5. This variable is discrete and represents the air pollutant level
on the first day of the study: the larger e, the higher the pollution level.

3. Generate Y (1) using the value of Yy and E(0): if Yy = 1 then V(1) = 1 else
PY(1)=1|Y, =0,B0) =e) = p’® which value is user-specified for
e =1,...,5. This variable is binary and represents the prevalence of wheeze
reported the evening of the second day of the study: Y (1) = 1 indicates
asthma symptom prevalence.
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4. Generate E(1) such that P(E(1) = ey | E(0) = eg) = p,, which value
is user-specified for ¢y and e; in {1,...,5}. This variable is discrete and
represents the air pollutant level the second day of the study: the larger ey,
the higher the pollution level.

5. Generate R using the value of Y(1): P(R=1]Y (1) =1) = pf which value
is user-specified for © = 0 and ¢+ = 1. This variable is binary and represents
the use of rescue medication the night prior to outcome report (second day
of the study): R = 1 indicates rescue medication use.

6. Generate Y (2) using the value of Yy, F(0), E(1), Y(1) and R: if Yy =1
then Y (2) = 1 else:

PY(2)=1|Yy=0,E(0)=¢p, E(1)=¢;,Y(1)=y(1),R=7) =
1
1+ exp[—(ag + a1 y(1) + ag mag + azr + ag y(1) mas + asrmas)]’

where the value of a = (ay, ..., as) is user-specified. This variable is binary
and represents the outcome in the morning of the third day of the study:
Y (2) = 1 indicates asthma symptom prevalence.

To generate a data set with n observations, we repeat the previous protocol n
times and thus obtain n independent and identically distributed observations o; =
(€:(0),y:(1),e;(1),r:,y:(2)) of O = (E(0),Y (1), E(1), R,Y(2)). Note that Yj is not
part of the observed data but needs to be simulated to obtain the rest of the data.

4.2.2 Values of the parameters of interest and their IPTW, G-computa-
tion and DR estimates

In this simulation study, the data generating distributions in Q)p, as defined in
the previous sections are known and can be used to simulate a full data set X
containing a large number of observations (e.g. N=10000). The values of the
four parameters of interest can be calculated using such data by solving the es-
timating equation associated with the full data estimating function, Dy, (X | ),
where A = A\ or A = Ay and m = my; or m = msy. According to equivalence
(6), Dp, (X | B) will provide four consistent estimators of what we defined earlier
as the four parameters of interest. Because N is very large, we will consider the
obtained four estimates as the true values for the four parameters of interest. If
for a given CM, the parameters of interest defined using two different CKS are
different then we can conclude that the corresponding CM is misspecified and we
have two different parameters of interest defined using the same CM but differ-
ent CKS. There is only one parameter of interest if the CM is correctly specified
whatever the choice for the CKS, i.e. the two parameters of interest reported for a
given CM using two different CKS will be very close if the CM is correctly specified.
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The IPTW, G-computation and DR estimates of the four parameters of interest
are obtained as described in section 3. Models are used to consistently estimate
A, g and QQr, using the simulated observed data, i.e. these models are always

correctly specified.

4.3 Simulation results

The user-specified parameters of the simulation procedure are first set as follows:

e N, =100
e n = 1000 and N = 10000
e p'0 =038
o pP =02fori=1,...,5
o pY W value fore =1,...,5:
e 1 2 3 4 5)
pY@W102[04]05]06]08
. pfl(gj value for eg = 1,...,5and e; = 1,...,5:
€o
2 3 4 5
110403011011 0.1
2102104102]0.110.1
e1131017102(104)0.2]0.1
4101101]102(04|0.2
5101101]01103]0.4
o pRfori=0,1:
i 0 1
pF03[07
e o; fort=0,...,5:
Qg | 01 | Qg | 3 | (g | O
302 1011-01] 1 -2

The corresponding simulation results are given in table 1. A second simulation
study was performed using the same parameters except for pf. The new values

for p2 were set to:

i

0

1

pr

0.01

0.99

In this last simulation study, the ETA assumption is practically violated. The
corresponding simulation results are given in table 2.
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Bo B B2 B3
By 1.78 0.13 0.75 NA
By s 1.90 0.08 0.73 NA
IPTW 1 | 1.79 [0.25] | 0.13 [0.07] | -0.75 [0.10] NA
CM [IPTW 2 | 1.92 [0.26] | 0.08 [0.08] | -0.74 [0.10] NA
1 [ G-comp 1| 1.82 [0.22] | 0.12 [0.06] | -0.75 [0.10] NA
G-comp 2 | 1.93 [0.22] | 0.08 [0.06] | -0.73 [0.10] NA
DR 1 1.80 [0.24] [ 0.1370.07] | -0.75 [0.10] NA
DR 2 1.89 [0.24] | 0.08 [0.07] | -0.72 [0.10] NA
Brgry 1.14 0.36 0.28 -0.36
Bra e .15 0.36 0.26 -0.36
IPTW 1 | 1.18 [0.32] | 0.35 [0.11] | 0.23 [0.43] | -0.35 [0.15]
CM [IPTW 2 | 1.19 [0.33] | 0.35 [0.11] | 0.23 [0.44] | -0.35 [0.16]
2 [ G-comp 1| 1.19 [0.22] | 0.34 [0.07] | 0.26 [0.24] | -0.35 [0.08]
G-comp 2 | 1.18 [0.23] | 0.35 [0.08] | 0.25 [0.25] | -0.35 [0.09]
DR 1 1.17 [0.25] | 0.35 [0.08] | 0.26 [0.25] | -0.35 [0.09)]
DR 2 1.15 [0.26] | 0.36 [0.09] | 0.28 [0.26] | -0.36 [0.09]

Table 1: Simulation results when the ETA assumption is holding. NA stands for
”Not Applicable”. The values for the four parameters of interest are obtained using
a simulated full data set X of N = 10000 observations. The values reported for
the parameter of interest estimates are averages of parameter estimates obtained
on N, = 100 simulated data sets of n = 1000 observations each. The empirical
standard deviations for the parameter of interest estimates are presented between
squared brackets. The ones and twos after IPTW, G-comp and DR denotes the
use of A\; and A, respectively.

4.4 Result interpretation

From the results in table 1 and 2, we can conclude that CM 1 is misspecified since
we clearly have (3,,, x, # Bm,.x,- In table 2, when choosing A, instead of Ay, the
parameter of interest defined using CM 1 becomes 0.01 versus 0.12, i.e. the non-
parametric causal effect of PMy 5 on wheeze becomes almost null when one tries to
approximate m* using CM 1 over the regions (e, e1, ) that are the most commonly
observed versus over all regions (eg,e1,7). These results illustrate the impact of
the choice for A on the parameter of interest definition. Misspecification of CM
2 is not obvious since the values for 3,,, », and 3, , are very similar in both tables.

In addition, this simulation also illustrates the importance of the ETA as-
sumption when using the IPTW estimator. In table 2, the IPTW estimator of the
parameters of interest are clearly biased.
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Bo B Ba B3
Broinn 1.79 0.12 0.75 NA
B e 1.96 0.01 -0.60 NA
IPTW 1 | 1.90 [0.90] | 0.09 [0.26] | -0.46 [0.44] NA
CM [IPTW 2 | 2.31 [0.95] | -0.09 [0.29] | -0.31 [0.52] NA
1 [ G-comp 1| 1.84 [0.52] | 0.12 [0.11] | -0.78 [0.2§] NA
G-comp 2 | 2.02 [0.39] | 0.00 [0.07] | -0.62 [0.35] NA
DR 1 1.85 [0.57] | 0.12 [0.12] | -0.79 [0.29] NA
DR 2 1.90 [0.42] | 0.00 [0.08] | -0.50 [0.36] NA
B, 1.15 0.35 0.28 -0.36
Brana 1.22 0.31 0.20 -0.32
IPTW 1 | 0.71 [1.77] | 0.49 [0.57] | 1.47 [2.18] | -0.63 [0.67]
CM [IPTW 2 | 0.56 [2.08] | 0.52 [0.67] | 1.60 [2.46] | -0.66 [0.77]
2 [G-comp 1 | 1.15 [0.88] | 0.37 [0.27] | 0.33 [1.01] | -0.39 [0.30]
G-comp 2 | 1.18 [1.04] | 0.34 [0.33] | 0.30 [1.19] | -0.37 [0.37]
DR 1 1.18 [0.94] | 0.36 [0.29] | 0.30 [1.03] | -0.39 [0.31]
DR 2 1.12 [1.09] | 0.31[0.35] | 0.35 [1.21] | -0.33 [0.38]

Table 2: Simulation results when the ETA assumption is practically violated.
NA stands for ”Not Applicable”. The values for the four parameters of interest
are obtained using a simulated full data set X of N = 10000 observations. The
values reported for the parameter of interest estimates are averages of parameter
estimates obtained on N, = 100 simulated data sets of n = 1000 observations
each. The empirical standard deviations for the parameter of interest estimates
are presented between squared brackets. The ones and twos after IPTW, G-comp
and DR denotes the use of A\; and A\ respectively.

5 Discussion

The proposed nonparametric MSM approach to causal inference should be com-
pared to the typical parametric MSM approach found in the literature.

Both approaches rely on the same statistical framework as introduced in sec-
tion 1. However the parametric MSM approach to causal inference relies on an
additional assumption on the full data distribution F'y by assuming a parametric
MSM, m(-,- | §), i.e. a model for the causal curve of interest, m*. The parame-
ter of interest is thus defined as (3,, such that: m*(a,V) = m(a,V | 5,,) and its
definition entirely relies on correctness of the assumed MSM. The model for Fx
is not saturated when assuming a parametric MSM and as a consequence there
exists a class of full data estimating functions. It follows that there exists a class
of IPTW, G-computation and DR estimators. All these classes of estimators are
defined using the same definitions used for the nonparametric MSM approach to
causal inference introduced in this paper but extended to any choice for h instead
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of constraining h to be equal to h,. For instance, the class of full data estimating
function for estimating (3,, is defined as follows:

{Dn(X | B) =D h(a,V)ea(B) : for any h: A x Sy — IR},
acA
Therefore when using a parametric MSM, the IPTW, G-computation and DR
estimators of 3,, can be defined using any function A. In previous work by Robins,
Herndn and Brumback (2000), the following choice for h was proposed to estimate
B when the outcome is continuous:

- 0

WA V) = g(A| V) Zm(A.V | ), (12)

This is a choice equivalent to hy where A = )\ffc as defined in section 2.3. Similarly
when the outcome is binary and the MSM is a logistic function, the recommended
choice for h is hy where A = M = These choices are motivated by the following
observations:

e Using the IPTW estimating function corresponding with these choices for
h and when the effect of A on Y is not confounded beyond V', becomes
equivalent to performing a weighted regression where every observation is
given the same weight of 1. Thus, this IPTW estimator is the least squares
adjusted regression estimator commonly used when there is no confounder

beyond V.

e In addition, the weights associated with these choices for h are more stable
than the simple inverse of treatment mechanism probability weights corre-
sponding with h = hyuni, i.e. the corresponding IPTW estimator is also more
efficient.

The nonparametric MSM approach to causal inference can thus be viewed
as a more general tool for causal inference than the parametric MSM approach.
It is not only an extension of the causal objects introduced by the parametric
MSM approach but also an explicit extension of the causal questions that can be
answered.

Indeed, the nonparametric MSM approach requires fewer assumptions as no
MSM is assumed, i.e. the MSM is left nonparametric. In addition, the parameters
of interest, (3, \, generalizes the unique parameter of interest, [3,,,, since By, » = Bm
for all A when m(-,- | B) is correctly specified. The new parameters of interest ex-
tend the definition of (,, as they do not require the assumption of a MSM but only
rely on its analog the CM and the CKS, both user-specified. Such extended param-
eters of interest can thus provide the answer to the typical aim of the parametric
MSM causal analyses which is to provide a global and accurate representation of
the causal curve using the CM and 3, » = 3, when the CM is correctly specified.
Furthermore, these parameters can now also explicitly answer less ambitious causal
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questions of interest by providing an informative, possibly localized, representation
of the causal curve using both an educated choice for the CM and CKS when the
CM is misspecified willingly or not. Using this nonparametric MSM approach to
causal inference, the CM can now be willingly misspecified in order to describe a
complex causal curve by a summary measure, e.g. assuming a linear model when
the true causal relationship is linear followed by a plateau. Such concepts are
similar to the one introduced by misspecified models in association analysis.

The nonparametric MSM approach to causal inference also provides a better
understanding of MSM estimation when the assumed MSM is misspecified. The
parametric MSM approach to causal inference relies on the critical assumption of
correctness of the MSM. When the MSM is however misspecified, the parameter
of interest, (3,, is not defined and it is fundamental to understand what are the
behaviors of the IPTW, G-computation and DR estimators in such a scenario. It
is important to understand if the estimates obtained are still of interest and how
to causally interpret them if they are of interest.

If A is chosen equal to h,\zqoc or hywe —according to the recommendation given
by Robins, Hernan and Brumback (20003 then the IPTW, G-computation and DR
estimator of (3,, are implicitly the corresponding estimators of 3, Ao OT B, Noe
respectively when the MSM is misspecified. As a result, the estimates obtained
can be potentially of interest, although they are not guaranteed to be estimates of
the more appropriate parameter to answer the causal question of interest when the
MSM is misspecified: for instance, one might have preferred to define the param-
eter of interest using another choice for A like A\“* which would provide a global
summary representation of the causal curve. If h is different from these previous
recommended choices but are still of the type h, then the estimates are still of
potential interest as estimates of the causal parameter (3,, . For any other choice
for h, the behaviors of the IPTW, G-computation and DR estimators of 3,, when
the MSM is misspecified are unknown but it is likely that the obtained estimates
will be of limited interest to investigate the causal curve of interest.

From the observations above, we can argue that the nonparametric MSM ap-
proach to causal inference developed in this paper is particularly suitable for in-
vestigating causal effects in practice.

Such a statement relies on the belief that correct MSM misspecification is very
unlikely in practice. If admitted, this statement also reduces the importance of
searching for the locally efficient estimator of 3,, as one does not assume the CM to
be correctly specified and therefore the unique locally efficient estimator of (3,, 5 is
the known DR estimator. The bases for favoring a nonparametric MSM approach
to causal inference are:

1. it extends the possibility of causal effect investigation even when the MSM are
misspecified by defining new parameters of interest if the CM is misspecified.
These new parameters of interest are less ambitious and thus appealing in
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practice as they do not try to extract the global and accurate representation
of the causal curve from a limited amount of data.

2. it allows the CM to be willingly misspecified in an effort to provide an infor-
mative summary, possibly localized, representation of the causal curve.

It could be argued that the parametric MSM approach to causal inference can
provide implicitly the same type of causal effect investigation even when the MSM
is misspecified as long as h is chosen of the type hy and ) is given the same esti-
mation effort as g and (). However, such an implicit extension of the parametric
MSM approach is dangerous and confusing as this approach theoretically allows
any choice for A and even if h is chosen equal to hy, the effort to model A\ has
previously been recommended to be minimal according to theoretical considera-
tions. In addition, the assumed MSM cannot be willingly misspecified in theory.
We might thus favor the nonparametric MSM approach to causal inference which
provides an explicit control on the causal summary measure to be estimated.

In practice a correct MSM for the causal curve of interest is typically un-
known. Therefore if one wishes to obtain a global and accurate representation of
the causal curve, it would be natural to assume a nonparametric MSM to avoid
model misspecification and to define the parameter of interest as 3,, = (3, for
every possible A, where m is a nonparametric MSM. Estimators of such a param-
eter of interest, however, would most likely suffer from the curse of dimensionality
(See van der Laan and Robins (2002)). Thus one typically needs in practice to
assume a parametric MSM. One can use previous subject-matter knowledge or
model selection methods to choose the assumed MSM. In both cases, the risk of
model misspecification remains important. Selecting a MSM can be done using
a cross-validation methodology, Brookhart and van der Laan (2003) and van der
Laan and Dudoit (2003), however the true causal relationship m* can be very
complex and the observed data might not provide enough information (curse of
dimensionality) to select a correct MSM. This is assuming that one correct MSM
model is even considered in the MSM selection process. That is why we believe
that correct parametric MSM misspecification is very unlikely in most practical
applications and that is why the nonparametric MSM to causal inference is very
appealing to most real life applications.

If one knows or believes one can select a correctly specified parametric MSM,
the consequence of using the nonparametric MSM approach to causal inference
instead of the parametric MSM approach could only be the loss in efficiency esti-
mation.

To finish this discussion, we would like to address two issues concerning the
G-computation estimator of (3, . First, as underlined throughout this paper, the
G-computation estimator is of interest in the nonparametric MSM approach to
causal inference not as an estimator of the parameter of interest, but as a building
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block for the DR estimator. Indeed in this approach, we wish that causal infer-
ences be as nonparametric as possible and that they should, minimally, not rely
entirely on correct specification of a parametric MSM as it is often unknown in
practice. Because of the curse of dimensionality, a truly nonparametric approach
to causal inference is typically not possible in practice. However, a nonparamet-
ric MSM approach to causal inference can be developed such that causal effect
investigation does not entirely rely on prior assumptions on the causal curve. In
such an approach, estimators which only rely on assumptions on the causal curve
are thus not of interest. The G-computation estimator entirely relies on correct
specification of (), , i.e. indirectly on a model for the causal curve. That is why
this estimator is only of interest in this approach as a building block for the DR
estimator which does not entirely rely on prior assumption on the causal curve.
The DR estimator does, however, use such additional assumptions to make the
DR estimator truly more nonparametric than the IPTW estimator.

Secondly, we would like to point out the importance of the SETA assump-
tion when using the G-computation estimator to estimate (3, ) in practice. In
theory however, the SETA assumption does not necessarily need to hold for the
G-computation estimator to be consistent. However, even though not necessary for
consistency, the SETA assumption asymptotically ensures that the G-computation
estimator does not rely on guessed models or model extensions that will most likely
be incorrect. That is why we included the SETA assumption in the results pre-
sented in section 3.3 as it is practically necessary.

If the SETA assumption is violated, there is at least one conditional density
or probability defining the G-computation formula, f;? " (L(k + 1)), that is not
identifiable with the observed data, i.e. not defined under Pro 4, but only under
Pro g, where the SETA assumption holds for g;. Correct models for conditional
densities that are identifiable under Pro g could however be extended to model
conditional densities only identifiable under Pro g If the SETA assumption is
violated such that no model extensions can be used, models for the conditional
densities only identifiable under PF;)( o can be guessed. The conditional densities
non-identifiable under Pro g, will then be consistently estimated depending on the
correctness of these model extensions or guessed models. In practice, it is highly
probable that such model extensions or guessed models will lead to misspecified
models for the G-computation formula. Therefore for the G-computation estima-
tor not to depend on these model extensions or guessed models asymptotically,
i.e. for n large enough in practice, the SETA assumption is required from the
treatment mechanism, Yu. Z and van der Laan (2002a).
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