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Abstract

In this paper we considered a missing outcome problem in causal inferences for a randomized

encouragement design study. We proposed both moment and maximum likelihood estimators for the

marginal distributions of potential outcomes and the local complier average causal effect (CACE)

parameter. We illustrated our methods in a real randomized encouragement design study on the

effectiveness of flu shots.

1. Introduction

A traditional randomized clinical trial is the established gold standard for estimating the causal

effects of treatments. However, for some treatments, it is impossible to perform such a randomized

trial due to ethical and other reasons. For example, in our flu shot reminder study, it would be

unethical to randomize high-risk adult patients to receive or not to receive flu shots in order to

evaluate causal effects of having flu on patient outcomes. A better way to learn about the treatment

causal effects is to perform a randomized encouragement design study (EDS). A randomized EDS

randomly assigns subjects to receive or not to receive an encouragement for the use of a treatment.

In recent years, there has been a rapid growth in utilizing encouragement designs to study causal

treatment effects. Since the randomization to encouragement leads to a natural instrumental vari-

able under some plausible assumptions, the randomized EDS provides a tool for estimating causal

effects of the treatment on patient outcomes.

There are three basic elements in a randomized controlled EDS that make statistical analysis

more difficult than in standard drug studies. The first is an encouragement to perform suggested
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clinical actions is randomly given to clinicians; the second is subsequent clinical actions are recorded;

and the third element is that final patient outcomes are recorded. The focus of the analysis is the

causal effects of the encouraged clinical actions on subsequent patient outcomes. One major analytic

issue in the EDS is non-compliance of subjects with suggested treatments, and there could be a

large number of subjects with non-compliance. For example, in the randomized EDS of flu shots,

patients’ physicians were randomly assigned to whether to receive reminders about giving flu shots

to their patients. A physician could decide to give flu shots to his/her patients, regardless of

whether he/she received a reminder.

Rubin [10, 11, 12] developed a framework for the causal analysis in randomized trials with non-

compliance using potential outcomes. This approach allows one to estimate the causal effect of the

treatment actually received on patient outcomes. Neyman [8] first formalized the ideas of using

potential outcomes in randomized trials to define the effect of the treatment actually received on

outcomes [12]. Rubin’s causal model [5] extended Neyman’s formulation to observational studies

and formulated an explicit model for the assignment mechanism exhibiting possible dependence on

all potential outcomes. The resulting model allows one to use frequentist and Bayesian methods

for inferring causal effects in studies of all kinds. For all-or-none compliance studies, both the

likelihood approach and Bayesian approach have been proposed. For example, Cuzick et al [2]

developed likelihood methods for causal analysis of studies with all-or-none compliance. Imbens

and Rubin [6], and Hirano et al. [4] developed likelihood and Bayesian methods for causal analysis

of randomized studies without any missing outcome values.

When some patients were missing their outcomes, Frangakis and Rubin [3] developed a moment

estimator for the intention-to-treat (ITT) effect and the local complier average causal effect (CACE)

of the treatment on the binary outcome in a simple two-treatment randomized trial in which only

intervention patients could receive the new treatment (e.g. only control subjects could be non-

compliers). When outcomes were continuous, Yau and Little [13] extended Frangakis and Rubin’s

method to a longitudinal study which had only compliers and never-takers, and Peng et al. [9]

further extended Yau and Little’s results to the case when the missing value could occur in both

the outcomes and baseline covariates.

Barnard et al. [1] extended Frangakis and Rubin’s method to a longitudinal study with crossover

non-compliance (e.g. both intervention and control subjects could be non-compliers) when outcomes

were continuous. Their method focused on parametric models (e.g. a censored normal model for
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their outcomes).

In this paper, we focused our attention on binary outcomes and generalize the moment method

proposed in Frangakis and Rubin [3] to a randomized clinical trial with crossover non-compliance

and missing data, as in our flu shot reminder study. We also developed a maximum likelihood

(ML) approach for this type of non-compliance problem with missing data. As in the previous

papers, we focused our attention on the local complier average causal effect (CACE). This paper

is organized as follows. In Section 2, we describe a randomized encouragement design study on flu

shot, which has motivated this research. In Sections 3, we provide some basic notation needed for

defining the Rubin’s causal model, and in Section 4, we define complier types based on potential

outcomes on the treatments actually received. In Section 5, we define causal effect parameters. In

Section 6, we give necessary assumptions for making causal inferences when both the problems of

non-compliance and missing data exist. In Sections 7, 8, and 9, we derive both the moment and

maximum likelihood (ML) estimators for marginal distributions of potential outcomes as well as

causal effect parameters. In Section 10 we present the results from applying the proposed method

to our flu shot data set. All technical details are presented in Appendix A.

2. A Real Study

From observational studies, it has been shown that vaccination has improved outcomes in vac-

cinated patients. Hence, health officials in most countries recommend annual influenza vaccination

for elderly persons and other people at high risk of influenza. However, no controlled random-

ized trials of the effects of influenza vaccination on pulmonary morbidity in high-risk adults have

been published (McDonald et al, 1992). One possible reason for the lack of randomized trials

is that widely accepted recommendations for vaccination raise ethical barriers against performing

randomized controlled trials because it would require withholding vaccination from some subjects.

One way around this impasse would be to perform a randomized trial of an intervention that

increases the use of influenza vaccine in one group of patients without changing the use of influenza

vaccine in another group. McDonald and his colleagues [7] have used this idea to study influenza

vaccine efficacy in reducing morbidity in high-risk adults, using a computer-generated reminder

for flu shots (McDonald et al, 1992). The study was conducted over a three-year period (1978-

1980) in an academic primary care practice affiliated with a large urban public teaching hospital.

Physicians in the practice were randomly assigned to either an intervention or a control group at
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the beginning of the study. Since physicians at the clinic each care for a fixed group of patients,

their patients were similarly classified. During the study period, physicians in the intervention

group received a computer generated reminder when a patient with a scheduled appointment was

eligible for a flu shot. Our data set involved randomization of an encouragement by doctor, and

doctors had multiple patients. However, the study did not keep information on the clustering

of patients by doctor. Hence, for the purpose of illustrating the proposed method and avoiding

an overly cumbersome analysis involving unknown cluster indicators, we assume exchangeability of

patients. Each subject’s randomized intervention, actual treatment receipt, and outcome of interest

constitute the minimal data necessary to analyze this type of study. The example data are shown

in Table 1 below. Note that when Yi is observed Ri = 1 by definition, so the first two tables

include those subjects with full data (R = 1, Y, Z,D) and the last table includes those subjects

with incomplete data (R = 0, Z, D).

Table 1: Example Data

R=1 Z=0,D=0 Z=0,D=1 Z=1,D=0 Z=1,D=1

Y=0 573 143 499 256

Y=1 49 16 47 20

R=0, Y=· 492 17 497 9

The main research question in the study is to estimate the causal effect of having a flu shot on

flu-related patient outcomes, such as flu-related hospitalization. Our hypothesis is that having flu

shots will significantly decrease flu-related hospitalization. To assess the causal effect of flu shot on

the outcome, we have to deal with the both problems of non-compliance and missing outcomes.

3. Basic Notation

Additional notation is needed to clearly state our models. In our flu shot reminder study, we are

interested in assessing the effect of flu shot versus no flu shot (D) on the flu-related hospitalization

(Y ). We have no control over who would receive a flu shot, but we have control over who would

receive a reminder for flu shot (Z). For subject i, let Zi denote whether subject i’s physician

has received the reminder for flu shot; Zi = 1 if subject i’s physician receives a reminder, and
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Zi = 0 otherwise. Let Di(z) be the binary indicator for whether subject i receives flu shot given

the reminder status z of subject i, z=0,1. That is, Di(z) = 1 if subject i would receive the flu

shot given the reminder status z, and Di(z) = 0 if subject i would not receive the flu shot given

the reminder status z. Let Di = (Di(1), Di(0)) denote the vector of potential flu shot outcomes

for subject i. Let Yi(z,Di(z)) be the binary indicator for flu-related hospitalization if subject i has

the flu shot status Di(z) and the reminder z. Then, Y i = (Yi(1, Di(1)), Yi(0, Di(0))) is a vector

of potential outcomes for subject i. Note that although we used a double-argument notation for

the outcome Yi(z,Di(z)), it is actually a function z only. Our observed data would consist of Zi,

Di = Di(Zi), and Yi = Yi(Zi, Di(Zi)), i = 1, . . . , n. Finally, we define the response indicator, Ri(z),

for the outcome Yi of subject i. That is, Ri(z) = 1 if Yi is observed given that subject i’s physician

receives the reminder z, and Ri(z) = 0 if Yi is missing given that the subject i’s physician receives

the reminder status z.

To ease the notation burden, we define some statistics of the observed data Zi, Di, Yi, and

Ri. Let Nzd =
∑N

i=1 I[Zi=z,Di=d]Ri, which represents the total number of subjects in the sam-

ple who have observed outcomes and are assigned to the treatment z and actually receive the

treatment d. Also let rzd =
∑N

i=1 I[Zi=z,Di=d]RiYi, which is the total number of hospitalized

subjects assigned to treatment z, receiving treatment d, and having the observed outcome. Let

Mzd ≡
∑N

i=1 I[Ri=0,Zi=z,Di=d] =
∑N

i=1 I[Zi=z,Di=d](1 − Ri), which is the total number of subjects

in the sample who are missing their outcomes and are assigned to the treatment z and actually

receive the treatment d.

4. Complier types

One key idea in causal inferences in Rubin’s model is to define the complier type, Ci, of subject

i based on potential outcomes Di(1) and Di(0). Because Di(1) and Di(0) each can take two values,

the complier type Ci has four different values, n for never-takers, a for always-takers, c for compliers,

and d for defiers:

Ci ≡





n if Di(1) = Di(0) = 0;

a if Di(1) = Di(0) = 1;

c if Di(0) = 0 and Di(1) = 1;

d if Di(1) = 0 and Di = 0.
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Subjects whose treatment status is always the opposite of their treatment assignment are re-

ferred to as defiers. Also, we assume all-or-none compliance: subjects are assumed to have a fixed,

though possibly unknown, complier type which does not change. If we further assume the mono-

tonicity assumption that Di(1) ≥ Di(0) for all subjects i (i.e. no defiers), the complier status is

observable when Zi 6= Di. When (Zi, Di) = (1, 0), we know the subject is a never-taker; similarly,

when (Zi, Di) = (0, 1), we know the subject is an always-taker. For subjects with (Zi, Di) = (0, 0),

we cannot tell whether the subject is a never-taker or a complier; similarly, for subjects with

(Zi, Di) = (1, 1) we cannot tell whether the subject is an always-taker or a complier. Here arises

the principal difficulty with using only marginal quantities to estimate causal parameters: some

observed data arise from a mixture of the outcome distributions of different complier types. Let us

define the probability of complier type given the observed treatment assignment and receipt as:

ψtzd ≡ P [Ci = t|Zi = z,Di = d]

. We denote the probability of assigning a subject to the treatment group as:

ξ ≡ P [Zi = 1] and ωt = P (Ci = t).

5. Causal Parameters of Interest

In order to define our causal parameters, we need to make some further assumptions. The

first basic assumption is the Stable Unit treatment Value Assumption (SUTVA), which assumes

no interference between study patients. Under the SUTVA, we can define intention-to-treat (ITT)

causal effect of Z on Y as ITTY = E(Yi(1, Di(1)) − Yi(0, Di(0))). Note that this ITT causal

effect parameter can be decomposed as ITTY =
∑

t={c,n,a} P (Ci = t)ITT t
Y , where ITT t

Y =

E((Yij(1, Dij(1)) − Yij(0, Dij(0))) | Ci = t), which is the ITT effect of reminder for flu shot on

the flu-related hospitalization in the subpopulation of patients with compliance types Ci = t. Of

the three subpopulation ITT effects, neither ITTn
Y nor ITT a

Y address causal effects of D (the re-

ceipt of flu shot) on Y because ITTn
Y compares the outcomes of two groups both without flu shots,

and ITT a
Y compares the outcomes of two groups both having flu shots. Only for the complier

subpopulation, ITT c
Y , compares outcomes with having flu shots to outcomes without having flu

shots. ITT c
Y is also called the local complier average causal effect of D on Y , denoted by CACE;

that is,

CACE = E(Yi(1, Di(1))− Yi(0, Di(0)) | Ci = c).
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In this article, we concentrate on estimation of the CACE.

6. Further Assumptions and their Implications in Missing Outcomes

With additional missing values in the outcome, to estimate causal parameters we need to make

following additional assumptions.

1. Latent ignorability: potential outcomes and associated potential non-response indicators are

independent within each latent complier type.

P [Ri(1), Ri(0)|Ci, Yi(1, Di(1)), Yi(0, Di(0))] = P [Ri(1), Ri(0)|Ci].

2. Compound exclusion restrictions for never-takers and always-takers: for never-takers and

always-takers, Z influences Y and R only through D. The compound exclusion restriction for

never-takers embodies the twin assumptions that, within the subpopulation of never-takers,

the distributions of the two potential outcomes, P [Y (1, 0) = 1|Z = 1, D = 0] and P [Y (0, 0) =

1|Z = 0, D = 0], are identical, and that the distributions of the two missing-data indicators

P [R(1) = 1|Z = 1, D = 0] and P [R(0) = 1|Z = 0, D = 0] are also identical. In other words,

the treatment assignment does not affect the outcome or missing-data distributions for never-

takers. The compound exclusion restriction for always-takers, comprises the twin assumptions

that, within the subpopulation of always-takers, the treatment assignment does not affect the

outcome or missing-data distributions. Let us define ηzt = P (Yi(z,Di(z)) = 1 | Zi = z, Ci = t)

as the conditional probability of outcome given the complier type and treatment assignment,

and γzt ≡ P [Ri = 1|Zi = z, Ci = t] as the probability of observing outcome Y for subjects

with Zi = z and Ci = t. Then we can express the compound exclusion assumption as

η1n = η0n ≡ ηn and γ1n = γ0n ≡ γn.

7. Estimation

In this section, we discuss methods for estimating the parameters ψzdt, γzt, and ωt. Under

our assumptions, the complier status, Ci, is known when Zi 6= Di. For example, Ci = n when

(Zi, Di) = (1, 0) and Ci = a when (Zi, Di) = (0, 1). The observations for which Zi = Di, on the

other hand, are mixtures of different compliance strata, and the proportion of each compliance

stratum within the observed cell is unobservable. When (Zi, Di) = (0, 0), the subject can be either
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a complier or a never-taker; when (Zi, Di) = (1, 1) the subject can be either a complier or an

always-taker. Hence, many of the conditional probabilities of complier types given the observed

data are known. In fact, among ψzdt’s, only ψn00 and ψa11 are unknown parameters. To simplify

notation we denote the two unknown parameters as ψn = ψn00 and ψa = ψa11. If the unconditional

probabilities of complier types are of interest, we can compute them from the parameters ψtzd and

the observed data. Therefore, the marginal distributions of potential outcomes and the missing

data mechanism are defined by the eleven parameters, ξ, ψn, ψa, ηn, ηa, η0c, η1c, γn, γa, γ0c, and

γ1c. Let θ be a vector of those parameters; that is, θ = (ξ, ψn, ψa, ηn, ηa, η0c, η1c, γn, γa, γ0c, γ1c).

Next, we propose two methods for estimating the vector of parameters θ.

8. Moment Estimators

We apply the method of moments to obtain estimators of the causal parameters of interest,

using a principal stratification with the binary outcome. The method of moments equates sample

moments to population moments and solves the resulting equations for the parameters of interest.

In Appendix A, we show the following proposition regarding the moment estimator for θ.

Proposition 1 Under the assumptions made in Sections 5 and 6, the moment estimators for the

eleven components in θ are given as follows:

1. For parameters in non-complier subpopulations, the moment estimators are

ξ̂ =
N10 + M10 + N11 + M11

N00 + M00 + N10 + M10 + N01 + M01 + N11 + M11

γ̂n =
N10

N10 + M10
, γ̂a =

N01

N01 + M01
,

η̂n =
r10

N10
, η̂a =

r01

N01
,

ψ̂n =
N10 + M10

N00 + M00
, ψ̂a =

N01 + M01

N11 + M11
.

2. For parameters in complier subpopulations, the moment estimators are

γ̂0c =
1

1− ψ̂n

[
N00

N00 + M00
− γ̂nψ̂n

]
,

γ̂1c =
1

1− ψ̂a

[
N11

N11 + M11
− γ̂aψ̂a

]
,

η̂0c =
1

1− γ̂0cψ̂n

{[
γ̂nψ̂n + ̂

γ0c(1− ψ̂n)
]
· r00

N00
− η̂nγ̂nψ̂n

}
,

η̂0c =
1

1− γ̂1cψ̂a

{[
γ̂aψ̂a + ̂

γ1c(1− ψ̂a)
]
· r11

N11
− η̂aγ̂aψ̂a

}
.
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Using the results in Proposition 1, we can also estimate the proportions of the three complier types,

ωt = P (Ci = t). Since

ωn = P (Ci = n) = P (Ci = n | Zi = 1, Di = 0)P (Zi = 1, Di = 0)+

P (Ci = n | Zi = 0, Di = 0)P (Zi = 0, Di = 0),

ω̂n =
N10 + M10

N
+ ψ̂n

N00 + M00

N
.

Hence,

ω̂n = 2 · N10 + M10

N
.

Similarly, we can show that

ω̂a = 2 · N01 + M01

N

where

N = total number of subjects = N00 + M00 + N10 + M10 + N01 + M01 + N11 + M11.

Under the assumption of monotonicity, ωc = 1− ωn − ωa and the estimator of ωc is

ω̂c = 1− ω̂n − ω̂a.

Since we can write CACE = η1c−η0c, we obtain the estimator for the local complier average causal

effect CACE as follows:

̂CACE = η̂1c − η̂0c.

We apply the bootstrap method to compute the standard errors for the moment estimators.

9. Maximum Likelihood Estimation

One potential problem with the moment estimators in Section 8 is that they are not constrained

to the range of the parameters they estimate. In this section, we also develop maximum-likelihood

estimators for estimating causal parameters.

We first derive the observed-data likelihood function for the subjects with observed outcomes

(Ri = 1, Yi, Zi, Di), and denote it Lo(θ). We then derive the observed-data likelihood function for

the subjects with missing outcomes (Ri = 0, Zi, Di), and denote it Lm(θ). The overall observed-data

likelihood function, L(θ), is then equal to the product of the two likelihood functions, Lo(θ) ·Lm(θ).

9
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For subjects with observed outcomes Ri = 1, we have

P (Yi, Ri = 1, Zi, Di) =
∑

Ci=n,a,c

P (Yi, Ri = 1, Zi, Di, Ci)

=
∑

Ci=n,a,c

P (Yi|Zi, Ci) · P (Ri = 1|Zi, Ci) · P (Di|Zi, Ci) · P (Zi, Ci)

=
∑

Ci=n,a,c

P (Yi|Zi, Ci) · P (Ri = 1|Zi, Ci) · P (Di|Zi, Ci) · P (Ci) · P (Zi).

Since P (Zi = 1) = ξ and P (Zi = 0) = 1− ξ and

P (Di|Zi, Ci) = 1 or 0,

we obtain that

Lo(θ) = [ηnγnωn + η0cγ0c(1− ωn − ωa)]
r00 · [(1− ηn)γnωn + (1− η0c)γ0c(1− ωn − ωa)]

N00−r00

· [ηnγnωn]r10 · [(1− ηn)γnωn]N10−r10 · [ηaγaωa]
r01 · [(1− ηa)γaωa]

N01−r01

· [ηaγaωa + η1cγ1c(1− ωn − ωa)]
r11 · [(1− ηa)γaωa + (1− η1c)γ1c(1− ωn − ωa)]

N11−r11

·(ξ)N10+N11 · (1− ξ)N00+N01 .

For subjects with missing outcomes Ri = 0, we have

P (Ri = 0, Zi, Di) =
∑

Ci=n,a,c

P (Ri = 0|Zi, Ci) · P (Di|Zi, Ci) · P (Zi, Ci)

=
∑

Ci=n,a,c

P (Ri = 0|Zi, Ci) · P (Di|Zi, Ci) · P (Ci) · P (Zi).

Hence we obtain that

Lm(θ) = [(1− γn)ωn + (1− γ0c)(1− ωn − ωa)]
M00 · [(1− γn)ωn]M10

· [(1− γa)ωa]
M01 · [(1− γa)ωa + (1− γ1c)(1− ωn − ωa)]

M11

·(ξ)M10+M11 · (1− ξ)M00+M01 .

Therefore, the observed-data log-likelihood l(θ) is

l(θ) ≡ logL(θ) (1)

= r00 · log[ηnγnωn + η0cγ0c(1− ωn − ωa)]

+(N00 − r00) · log[(1− ηn)γnωn + (1− η0c)γ0c(1− ωn − ωa)]

+r10 · log(ηnγnωn) + (N10 − r10) · log[(1− ηn)γnωn] + r01 · log(ηaγaωa)

10
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+(N01 − r01) · log[(1− ηa)γaωa] + r11 · log[ηaγaωa + η1cγ1c(1− ωn − ωa)]

+(N11 − r11) · log[(1− ηa)γaωa + (1− η1c)γ1c(1− ωn − ωa)] + M00 · log[(1− γn)ωn

+(1− γ0c)(1− ωn − ωa)] + M10 · log[(1− γn)ωn] + M01 · log[(1− γa)ωa]

+M11 · log[(1− γa)ωa + (1− γ1c)(1− ωn − ωa)]

+(N10 + M10 + N11 + M11) · log(ξ) + (N00 + M00 + N01 + M01) · log(1− ξ). (2)

It is also easy to show that

ψn = P (Ci = n|Zi = 0, Di = 0)

=
P (Ci = n,Zi = 0, Di = 0)

P (Zi = 0, Di = 0)

=
P (Ci = n,Zi = 0, Di = 0)

P (Zi = 0, Di = 0, Ci = n) + P (Zi = 0, Di = 0, Ci = c)

=
P (Di = 0|Ci = n,Zi = 0) · P (Ci = n,Zi = 0)

P (Di = 0|Ci = n, Zi = 0) · P (Ci = n,Zi = 0) + P (Di = 0|Ci = c, Zi = 0) · P (Ci = c, Zi = 0)
.

Since

P (Di = 0|Ci = n,Zi = 0) = P (Di = 0|Ci = c, Zi = 0) = 1,

we obtain

ψn =
P (Ci = n,Zi = 0)

P (Ci = n,Zi = 0) + P (Ci = c, Zi = 0)

=
P (Ci = n) · P (Zi = 0)

P (Ci = n) · P (Zi = 0) + P (Ci = c) · P (Zi = 0)

=
ωn

ωn + ωc
=

ωn

1− ωa
.

Similarly, we can show that

ψa =
ωa

1− ωn
.

To obtain the maximum likelihood estimator θ̂ for θ, we can directly solve the score function

of θ, which is the partial derivative of the log likelihood with respect to θ, S(θ) = ∂l(θ)/∂θ. Using

the Fisher information matrix, we obtain standard error estimates for these parameters.

Since the observed-data likelihood given in Equation 2 has a complicated form involving a

mixture structure over a large amount of missing-data, directly maximizing the observed-data

likelihood may present a computational challenge. To avoid directly maximizing the observed-data

likelihood, we propose an EM algorithm to find the ML estimator θ̂ of θ by treating Ci as missing-

data because the complete-data likelihood has a simple form if Ci were known for all patients.
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In the E-step of the EM algorithm, we compute the conditional expectation of the complete-

data likelihood function given the previous parameter estimate, denoted by θ(k), and the observed

data. In the M-step, we maximize this expectation with respect to θ, typically by differentiation,

to obtain the new parameter estimate θ(k+1). We repeat the E- and M-steps until the process

converges at step K, where
∣∣∣θ(K+1) − θ(K)

∣∣∣ < ε. Here ε is a very small constant. The one major

advantage of using the EM algorithm here is that the EM algorithm yields an explicit solution for

θ(k+1) in terms of θ(k) and the observed data, which simplifies computation.

The complete-data likelihood function is given by

Lc(θ) =
N∏

i=1

P [R, Y,C, Z,D] =
N∏

i=1

P [R|C,Z, D]︸ ︷︷ ︸
(a)

P [Y |C,Z, D]︸ ︷︷ ︸
(b)

P [D|C,Z]︸ ︷︷ ︸
c

P [C]︸ ︷︷ ︸
(d)

P [Z]︸ ︷︷ ︸
(e)

.

Using this expression, in Appendix B we derive the E- and M- steps in the EM algorithm. Before

we state our EM algorithm results, we need additional notation. Let us define

xyrzt = number of subjects with Y = y,R = r, Z = t and C = t

where y, r and z take values of 0 or 1 and t = a, n or c.

Proposition 2 Let θ(k) be the estimate for θ after the kth iteration in the EM algorithm. Then

the next iteration estimate θ(k+1) for θ in the EM algorithm is given as follows:

E-step: In the E step, we take the expectation of the complete-data log-likelihood, given the

observed data and the previous parameter estimate θ = θ(k). Our observed data, denoted by obsn,

consist of (Ri = 1, Yi, Di, Zi) and (Ri = 0, Di, Zi). Let x
(k+1)
yrzt = E(xyrzt | obsn, θ = θ(k)), which are

given in Appendix B. Then,

E[lc(θ)|obsn, θ = θ(k))] = x
(k+1)
110n · log(ηnγnωn) + x

(k+1)
110c · log(η0cγ0c(1− ωn − ωn))

+x
(k+1)
010n · log[(1− ηn)γnωn] + x

(k+1)
010c · log[(1− η0c)γ0c(1− ωn − ωa)]

+x
(k+1)
111n · log(ηnγnωn) + x

(k+1)
011n log((1− ηn)γnωn) + x

(k+1)
110a · log(ηaγaωa)

+x
(k+1)
010a · log[(1− ηa)γaωa] + x

(k+1)
111a · log(ηaγaωa) + x111c · log[η1cγ1c(1− ωn − ωa)]

+x
(k+1)
011a · log[(1− ηa)γaωa] + x

(k+1)
011c · log[(1− η1c)γ1c(1− ωn − ωa)]

+x
(k+1)
100n · log[ηn(1− γn)ωn] + x

(k+1)
100c · log[η0c(1− γ0c)(1− ωn − ωa)]

+x
(k+1)
000n · log[(1− ηn)(1− γn)ωn] + x

(k+1)
000c · log[(1− η0c)(1− γ0c)(1− ωn − ωa)]

12
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+x
(k+1)
101n · log[ηn(1− γn)ωn] + x

(k+1)
001n · log[(1− ηn)(1− γn)ωn] + x

(k+1)
100a · log[ηa(1− γa)ωa]

+x
(k+1)
000a · log[(1− ηa)(1− γa)ωa] + x

(k+1)
101a · log[ηa(1− γa)ωa]

+x
(k+1)
101c · log[η1c(1− γ1c)(1− ωn − ωa)] + x

(k+1)
001a · log[(1− ηa)(1− γa)ωa]

+x
(k+1)
001c · log[(1− η1c)(1− γ1c)(1− ωn − ωa)].

M-step: we find the next iteration estimate θ(k+1) by maximizing E[lc(θ)|obsn, θ = θ(k))], and

θ(k+1) has the following explicit expressions.

ω(k+1)
n =

b
(k)
1 (a(k)

2 − b
(k)
2 )

a
(k)
1 a

(k)
2 − b

(k)
1 b

(k)
2

ω(k+1)
a =

b
(k)
2 (a(k)

1 − b
(k)
1 )

a
(k)
1 a

(k)
2 − b

(k)
1 b

(k)
2

ψ(k+1)
n =

b
(k)
1

a
(k)
1

ψ(k+1)
a =

b
(k)
2

a
(k)
a

γ(k+1)
n =

x
(k)
110n + x

(k)
010n + x

(k)
111n + x

(k)
011n

x
(k)
110n + x

(k)
010n + x

(k)
111n + x

(k)
011n + x

(k)
100n + x

(k)
000n + x

(k)
101n + x

(k)
001n

γ(k+1)
a =

x
(k)
110a + x

(k)
010a + x

(k)
111a + x

(k)
011a

x
(k)
110a + x

(k)
010a + x

(k)
111a + x

(k)
011a + x

(k)
100a + x

(k)
000a + x

(k)
101a + x

(k)
001a

γ
(k+1)
0c =

x
(k)
110c + x

(k)
010c

x
(k)
110c + x

(k)
010c + x

(k)
100c + x

(k)
000c

γ
(k+1)
1c =

x
(k)
111c + x

(k)
011c

x
(k)
111c + x

(k)
011c + x

(k)
101c + x

(k)
001c

η(k+1)
n =

x
(k)
110n + x

(k)
111n + x

(k)
100n + x

(k)
101n

x
(k)
110n + x

(k)
010n + x

(k)
111n + x

(k)
011n + x

(k)
100n + x

(k)
000n + x

(k)
101n + x

(k)
001n

η(k+1)
a =

x
(k)
110a + x

(k)
111a + x

(k)
100a + x

(k)
101a

x
(k)
110a + x

(k)
010a + x

(k)
111a + x

(k)
011a + x

(k)
100a + x

(k)
000a + x

(k)
101a + x

(k)
001a

η
(k+1)
0c =

x
(k)
110c + x

(k)
100c

x
(k)
110c + x

(k)
010c + x

(k)
100c + x

(k)
000c

η
(k+1)
1c =

x
(k)
111c + x

(k)
101c

x
(k)
111c + x

(k)
011c + x

(k)
101c + x

(k)
001c

,

where

a
(k)
1 = N00 + M00 + N10 + M10 + x

(k)
111c + x

(k)
011c + x

(k)
101c + x

(k)
001c,
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b
(k)
1 = N10 + M10 + x

(k)
110n + x

(k)
010n + x

(k)
100n + x

(k)
000n,

a
(k)
2 = N11 + M11 + N01 + M01 + x

(k)
110c + x

(k)
010c + x

(k)
100c + x

(k)
000c,

and

b
(k)
2 = N01 + M01 + x

(k)
111a + x

(k)
011a + x

(k)
101a + x

(k)
001a.

For a proof, see Appendix B.

10. Simulations

In this section, we conducted simulation studies to assess the finite sample performance of

proposed moment and ML estimators. Simulations are run with the total number of subjects

of N = 500; 500 replications of the data were generated with for each fixed N . Subjects were

randomly assigned to a treatment or placebo group with ξ = P (Z = 1) = 0.5. The proportions of

never-takers, always-takers, and compliers are ωn = 0.2, ωa = 0.3 and ωc = 0.5 respectively. We

set the true values of ψn and ψa as ψn = 0.286 and ψa = 0.375. The response rates for never-takers

and always-takers are γn = 0.5 and γa = 0.6. The response rates for compliers in placebo and

treatment groups are γ0c = 0.7 and γ1c = 0.8. The probabilities of Yi = 1 for never-takers and

always takers are ηn = 0.2 and ηa = 0.3, respectively; they are η0c = 0.4 and η1c = 0.5 for compliers

in placebo and treatment groups. Data was generated under the assumptions of latent ignorability

and compound exclusion criteria. Parameters were estimated for each of the 500 simulated data

sets and the mean. We report bias and mean squared error of the parameter estimates in Table 2

below.

Our simulation results show that both the moment and ML estimators are almost unbiased and

have small mean squared errors. The ML estimators have slightly smaller MSE than the Moment

estimators.

11. Results

In this section, we illustrate the application of the proposed methods in the flu shot data set

discussed in Section 2.

We summarize both the moment and ML estimates in Table 1 along with their associated

standard errors.
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Table 2: Simulation results: N=500 with 500 replication of the data

Moment estimators ML estimators

True Parameter Mean(θ̃) Bias(θ̃) MSE(θ̃) Mean(θ̂) Bias(θ̂) MSE(θ̂)

value

ξ=0.5 0.4998 -0.0002 0.0005 0.4998 -0.0002 0.0005

ωn=0.2 0.2006 0.0006 0.0007 0.2006 0.0006 0.0006

ωa=0.3 0.2989 -0.0011 0.0009 0.2988 -0.0012 0.0008

ωc=0.5 0.5005 0.0005 0.0014 0.5006 0.0006 0.0014

ψn=0.286 0.2876 0.0016 0.0023 0.2865 0.0005 0.0015

ψa=0.375 0.3757 0.0007 0.0023 0.3741 -0.0009 0.0014

γn=0.5 0.4996 -0.0004 0.0054 0.4996 -0.0004 0.0054

γa=0.6 0.5965 -0.0035 0.0033 0.5966 -0.0034 0.0033

γ0c=0.7 0.6992 -0.0008 0.0037 0.6989 -0.0011 0.0037

γ1c=0.8 0.8017 0.0017 0.0042 0.8004 0.0004 0.0038

ηn=0.2 0.2015 0.0015 0.0062 0.2020 0.0020 0.0062

ηa=0.3 0.3067 0.0067 0.0049 0.3066 0.0066 0.0049

η0c=0.4 0.4042 0.0042 0.0043 0.4035 0.0035 0.0042

η1c=0.5 0.4949 -0.0051 0.0048 0.4944 -0.0056 0.0047

The EM algorithm finds a maximum for the log-likelihood of -5057.885 at (ωn = 0.783, ωa =

.134, γn = .523, γa = .926, γ0c = .885, γ1c = 1.000, ηn = .086, ηa = .101, η0c = .038, η1c = .031).

Convergence is rapid and stable with respect to various different starting points, indicating that

this solution is a global maximum; the log-likelihood has no local maxima. These maximum-

likelihood estimates also solve the score equations, as required. Unfortunately, there is a boundary

value problem with respect to γ1c. The likelihood method yielded an estimate of 1.0 (γ̂1c = 1.000),

and the moment method yielded an estimate of greater than 1.0 (γ̃1c = 1.073).

The moment and ML methods yielded identical estimates for ηn, ηa, and γn. The agreement

is very close for complier distributions ωn, ωa, and ωc. The conditional complier distributions, ψn
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Table 3: Results on the flu shot data set

Parameter θ̃ SE (bootstrap) θ̂ SE (MLE)

ξ 0.507 0.009 0.507 0.010

ωn 0.797 0.020 0.783 0.011

ωa 0.134 0.009 0.134 0.009

ωc 0.069 0.020 0.083 0.015

ψn 0.936 0.041 0.904 0.016

ψa 0.618 0.053 0.615 0.059

γn 0.523 0.016 0.523 0.015

γa 0.903 0.025 0.926 0.020

γ0c 1.070 2.627 0.885 0.218

γ1c 1.073 0.045 1.000 0.046

ηn 0.086 0.012 0.086 0.012

ηa 0.101 0.023 0.101 0.023

η0c 0.026 0.269 0.038 0.097

η1c 0.034 0.053 0.031 0.053

and ψn, are very close too. The parameters for missing data, γ0c and γ1c, are not very close due to

the boundary solution.

From the Fisher information matrix, we can see that the asymptotic correlation between es-

timators for the parameters of primary interest, η0c and η1c, is zero. Hence the estimate for the

local complier average causal effect CACE is 0.031 − 0.038 = −0.009 with a standard error of

0.112 using the ML method. Using the moment method, we obtain the estimate of CACE as

0.034 − 0.026 = 0.009 with a standard error of 0.479; the corresponding 95% confidence intervals

for CACE using the ML and moment methods are (−0.211, 0.229), and (−0.948, 0.930), respec-

tively. Although the moment and ML estimates for CACE are different, both the moment and ML

methods give the same conclusion that influenza vaccination is not associated with reduced risk of

hospitalization for respiratory illness.
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There are several limitations to the results of this application; some of which are due to a

limitation in the data collection. First, our data set involved randomization of an encouragement

to physicians, and physicians had multiple patients. Due to lacking of information on the clustering

of patients by physicians, for the purpose of illustrating the proposed method, we ignored a possible

clustering effect.

Second, although the exclusion restriction for never-takers is reasonable, the exclusion restriction

for always–takers may be questionable. Never-takers are these patients who would not receive the

flu shot in any case. If these patients and their physicians did not regard the risk of flu as high

enough to warrant flu shot, it might be reasonable to assume that these patients were completely

unaffected by their physicians’ receipt of the letter, implying that the exclusion restriction would be

satisfied for the never–takers. However, for the always-takers, the situation may be quite different.

The always–takers are patients who would receive the flu shot irrespective of the receipt of the

encouragement letter by their physician. Such patients are most likely at higher risk for getting the

flu. If these patients and their physicians regard the risk of getting flu as high enough to warrant

flu shot, they might be also subject to other medical actions. Therefore, it is possible that the flu

reminder may prompt the physician to take other measures beyond giving the flu shot. If these

other measures affect health outcomes, the exclusion restriction would be violated. Given these

limitations we advise caution with the clinical interpretation of the results.

12. Conclusion

In this paper we have proposed both moment and ML methods for estimating the causal

marginal outcome distributions, as well as the local complier average causal treatment effects when

both the problems of missing-data and noncompliance exist. Our methods are extensions of the

method proposed by Frangakis and Rubin [3]. The four crucial assumptions in our methods are

SUTVA, monotonicity assumption, compound exclusion assumption and, the latent ignorability.

We illustrated the proposed methods in the randomized encouragement design flu shot study.

One future research topic would be to extend the proposed moment method to a longitudinal

setting considered by both Yau and Little [13] and Barnard et al. [1]. Using such the moment

method, we can then perform a goodness-of-fit test for the parametric models used in these papers.
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Appendix A. A proof for Proportion 1

For notational convenience, we define the following three parameters that are directly estimable

from the observed data:

1. ξzd ≡ P [Z = z, D = d] denotes the joint probability of observing treatment assignment Z = z

and treatment receipt D = d.

2. πzd ≡ P [R = 1, Z = z, D = d] denotes the joint probability of observing Ri = 1 (a subject’s

outcome is observed), treatment assignment Zi = z, and treatment receipt Di = d.

3. νzd ≡ P [Y = 1, R = 1, Z = z,D = d] denotes the joint probability of observing outcome

Yi = 1, treatment assignment Zi = z and treatment receipt Di = d.

We first derive moment estimators for ψn and ψa. Under randomization we expect that P [Z =

0|C = n] = P [Z = 1|C = n]. Because never-takers by definition have Di = 0, we expect that

P [Z = 0, D = 0|C = n] = P [Z = 1, D = 0|C = n]. Hence the expected number of never-takers

with (Zi = 0, Di = 0) is the same as the number of never-takers with (Zi = 1, Di = 0). Similarly, the

expected number of always-takers with (Zi = 1, Di = 1) is the same as the number of always-takers

with (Zi = 0, Di = 1). Therefore, we obtain that

ψn =
P (C = n,Z = 0, D = 0)

P (Z = 0, D = 0)
=

P (C = n,Z = 1, D = 0)
P (Z = 0, D = 0)

=
P (Z = 1, D = 0)
P (Z = 0, D = 0)

,

and

ψa =
P (C = c, Z = 1, D = 1)

P (Z = 1, D = 1)
=

P (C = c, Z = 0, D = 1)
P (Z = 1, D = 1)

=
P (Z = 0, D = 1)
P (Z = 1, D = 1)

.
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Therefore we obtain the moment estimators of ψn and ψa as follows:

ψ̂n =
∑N

i=1 Zi(1−Di)∑N
i=1(1− Zi)(1−Di)

=
N10 + M10

N00 + M00

and

ψ̂a =
∑N

i=1(1− Zi)Di∑N
i=1 ZiDi

=
N01 + M01

N11 + M11
.

We next derive the moment estimators for ηn, ηa, γn, and γa. By the latent ignorability, we

have P [Y = 1|Z = 1, C = n] = P [Y = 1|Z = 1, C = n,R = 1] and P [Y = 1|Z = 0, C = a] =

P [Y = 1|Z = 0, C = a,R = 1]. Hence, we have

ηn =
P (Y = 1, Z = 1, C = n,R = 1)

P (Z = 1, C = n,R = 1)
=

P [Y = 1, Z = 1, D = 0, R = 1]
P [Z = 1, D = 0, R = 1]

,

ηa =
P (Y = 1, Z = 0, C = a,R = 1)

P (Z = 0, C = n,R = 1)
=

P [Y = 1, Z = 0, D = 1, R = 1]
P [Z = 0, D = 1, R = 1]

.

Therefore, the moment estimators for ηn and ηa are

η̂n =
∑N

i=1 YiRiZi(1−Di)∑N
i=1 RiZi(1−Di)

=
r10

N10
,

η̂a =
∑N

i=1 YiRi(1− Zi)Di∑N
i=1 Ri(1− Zi)Di

=
r01

N01
.

Using the compound excludsion asumption, we have as follows:

γ̂n = P (R = 1|Z = 1, C = n) =
P (R = 1, Z = 1, D = 0)

Z = 1, D = 0

and

γ̂a = P (R = 1|Z = 0, C = a) =
P (R = 1, Z = 0, D = 1)

Z = 0, D = 1
.

Hence the moment estimators for γn and γa are

γ̂n =
∑N

i=1 RiZi(1−Di)∑N
i=1 Zi(1−Di)

=
N10

N10 + M10
,

η̂a =
∑N

i=1 Ri(1− Zi)Di∑N
i=1(1− Zi)Di

=
N01

N01 + M01
.

Next we derive moment estimators for complier-type parameters, γzc and ηzc. Similar to the

estimators for the ψn and ψa parameters, these estimators are not true moment estimators, but

functions of other estimators and the observed data. Unlike the ψt ‘moment’ estimators, which are

functions of a single estimator and the observed data, these estimators are functions of two other

estimators and the observed data. They each contain a 1
1−ψt

factor and also a product term, both
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of which contribute to the variability of the estimator. We first observe that we can express the

directly estimable quantity P (R = 1 | Z = z, D = d) as mixtures of the unobserved γzt and ψzdt,

as well as the ratio of P (R = 1, Z = z,D = d) and P (Z = z, D = d). That is,

πzd

ξzd
= P [R = 1|Z = z, D = d] =

∑

t=n,a,c

P [R = 1|Z = z,D = d,C = t]P [C = t|Z = z, D = d] =
∑

t=n,a,c

γztψzdt.

By taking z = 0 and 1 in the above expression, we obtain that

π00

ξ00
= γnψn + γ0c(1− ψn),

π11

ξ11
= γaψa + γ1c(1− ψa). (3)

Solving γ0c and γ1c in (3), we obtain that

γ0c =
1

1− ψn

(
π00

ξ00
− γnψn

)
,

γ1c =
1

1− ψ̂a

(
π11

ξ11
− γaψa

)
.

Since
N∑

i=1

RiI[Zi=d,Di=d]/N and
N∑

i=1

I[Zi=d,Di=d]/N

are unbiased estimators of πzd and ξzd, we obtain the moment estimators of γ0c and γ1c as follows:

γ̂0c =
1

1− ψ̂n

(
π̂00

ξ̂00

− γ̂nψ̂n

)
,

γ̂1c =
1

1− ψ̂a

(
π̂11

ξ̂11

− γ̂aψ̂a

)
,

where

π̂zd =
N∑

i=1

RiI[Zi=d,Di=d]/N = Nzd/N,

ξ̂zd =
N∑

i=1

I[Zi=d,Di=d]/N = (Nzd + Mzd)/N.

We can show that

ν00

π00
= P (Y = 1|Z = 0, D = 0, R = 1)

= P (Y = 1|Z = 0, D = 0, R = 1, C = n) · P (C = n|Z = 0, D = 0, R = 1)

+P (Y = 1|Z = 0, D = 0, R = 1, C = c) · P (C = c|Z = 0, D = 0, R = 1).
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We can also show that

P (C = n|Z = 0, D = 0, R = 1)

=
P (R = 1|C = n,Z = 0)P (C = n|Z = 0, D = 0)

P (R = 1, C = n,Z = 0)P (C = n|Z = 0, D = 0) + P (R = 1|C = c, Z = 0)P (C = c|Z = 0, D = 0)

=
γnψn

γnψn + γ0c(1− ψn)
.

Similarly, we can show that

P (C = c|Z = 0, D = 0, R = 1) =
γ0c(1− ψn)

γnψn + γ0c(1− ψn)
,

Therefore
ν00

π00
= ηn · γnψn

γnψn + γ0c(1− ψn)
+ η0c · γ0c(1− ψn)

γnψn + γ0c(1− ψn)
.

Similar to the expression for ν00
π00

, we obtain

ν11

π11
= ηa · γaψa

γaψa + γ1c(1− ψa)
+ η1c · γ1c(1− ψa)

γaψa + γ1c(1− ψa)
.

By solving for η0c and η1c in the above equations, we obtain that

η0c =
1

γ0c(1− ψn)

(
ν00

π00
· [γnψn + γ0c(1− ψn)]− ηnγnψn

)

and

η1c =
1

γ1c(1− ψa)

(
ν11

π11
· [γaψa + γ1c(1− ψa)]− ηaγaψa

)
.

Since
∑N

i=1 YiRiI[Zi=d,Di=d]/N = rzd/N is an unbiased estimator of νzd, we obtain the moment

estimators of η0c and η1c as

η̂0c =
1

γ̂0c(1− ψ̂n)

(
r00

N00
· [γ̂nψ̂n + γ̂0c(1− ψ̂n)]− η̂nγ̂nψ̂n

)

η̂1c =
1

γ̂1c(1− ψ̂a)

(
r11

N11
· [γ̂aψ̂a + γ̂1c(1− ψ̂a)]− η̂aγ̂aψ̂a

)
.

Appendix B. A Proof for Proposition 2

The complete-data likelihood function is given by

Lc(θ) =
N∏

i=1

P [Y,R, Z, D, C]

=
N∏

i=1

P (Y |Z,C)P (R|Z, C)P (D|Z,C)P (Z)P (C)
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where P (Z) = ξ can be dropped during the EM steps.

Hence, by define

xyrzt = number of subjects withY = y, R = r, Z = t and C = t,

we obtain the complete-data log-likelihood as

lc(θ) = x110n · log(ηnγnωn) + x110c · log(η0cγ0c(1− ωn − ωn))

+x010n · log[(1− ηn)γnωn] + x010c · log[(1− η0c)γ0c(1− ωn − ωa)]

+x111n · log(ηnγnωn) + x011n log((1− ηn)γnωn) + x110a · log(ηaγaωa)

+x010a · log[(1− ηa)γaωa] + x111a · log(ηaγaωa) + x111c · log[η1cγ1c(1− ωn − ωa)]

+x011a · log[(1− ηa)γaωa] + x011c · log[(1− η1c)γ1c(1− ωn − ωa)]

+x100n · log[ηn(1− γn)ωn] + x100c · log[η0c(1− γ0c)(1− ωn − ωa)]

+x000n · log[(1− ηn)(1− γn)ωn] + x000c · log[(1− η0c)(1− γ0c)(1− ωn − ωa)]

+x101n · log[ηn(1− γn)ωn] + x001n · log[(1− ηn)(1− γn)ωn] + x100a · log[ηa(1− γa)ωa]

+x000a · log[(1− ηa)(1− γa)ωa] + x101a · log[ηa(1− γa)ωa]

+x101c · log[η1c(1− γ1c)(1− ωn − ωa)] + x001a · log[(1− ηa)(1− γa)ωa]

+x001c · log[(1− η1c)(1− γ1c)(1− ωn − ωa)].

In the E step, we take the expectation of the complete-data log-likelihood, given the observed

data and the previous parameter estimate θ = θ(k) and obtain the following result:

x
(k+1)
110n =

η
(k)
n γ

(k)
n ω

(k)
n

η
(k)
n γ

(k)
n ω

(k)
n + η

(k)
0c γ

(k)
0c (1− ω

(k)
n − ω

(k)
a )

· r00

x
(k+1)
110c =

η
(k)
0c γ

(k)
0c (1− ω

(k)
n ω

(k)
n

η
(k)
n γ

(k)
n ω

(k)
n + η

(k)
0c γ

(k)
0c (1− ω

(k)
n − ω

(k)
a )

· r00

x
(k+1)
010n =

(1− ηn)(k)γ
(k)
n ω

(k)
n

(1− ηn)(k)γ
(k)
n ω

(k)
n + (1− η0c)(k)γ

(k)
0c (1− ω

(k)
n − ω

(k)
a )

· (N00 − r00)

x
(k+1)
010c =

(1− η0c)(k)γ
(k)
0c (1− ω

(k)
n − ω

(k)
a )

(1− ηn)(k)γ
(k)
n ω

(k)
n + (1− η0c)(k)γ

(k)
0c (1− ω

(k)
n − ω

(k)
a )

· (N00 − r00)

x
(k+1)
111n = r10

x
(k+1)
011n = N10 − r10

x
(k+1)
110a = r01
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x
(k+1)
010a = N01 − r01

x
(k+1)
111a =

η
(k)
a γ

(k)
a ω

(k)
a

η
(k)
a γ

(k)
a ω

(k)
a + η

(k)
1c γ

(k)
1c (1− ω

(k)
n )− ω

(k)
a

· r11

x
(k+1)
111c =

η
(k)
1c γ

(k)
1c (1− ω

(k)
n )− ω

(k)
a

η
(k)
a γ

(k)
a ω

(k)
a + η

(k)
1c γ

(k)
1c (1− ω

(k)
n )− ω

(k)
a

· r11

x
(k+1)
011a =

η
(k)
a γ

(k)
a ω

(k)
a

η
(k)
a γ

(k)
a ω

(k)
a + η

(k)
1c γ

(k)
1c (1− ω
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n − ω

(k)
a )

· (N11 − r11)

x
(k+1)
011c =

η
(k)
1c γ

(k)
1c (1− ω

(k)
n − ω

(k)
a )

η
(k)
a γ

(k)
a ω

(k)
a + η

(k)
1c γ

(k)
1c (1− ω

(k)
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(k)
a )

· (N11 − r11)

x
(k+1)
100n =

η
(k)
n (1− γ

(k)
n )ω(k)

n
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(k)
n )ω(k)

n + (1− γ
(k)
0c )(1− ω

(k)
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(k)
a )

·M00

x
(k+1)
100c =

η
(k)
0c (1− γ

(k)
0c )(1− ω

(k)
n − ω

(k)
a )

(1− γ
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(k)
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(k)
a )

·M00

x
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(1− η
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n
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0c )(1− ω

(k)
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(k)
a )

·M00

x
(k+1)
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(1− η
(k)
0c )(1− γ
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0c )(1− ω

(k)
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(k)
a )
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x
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x
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001n = (1− η(k)

n ) ·M10

x
(k+1)
100a = η(k)

a ·M01

x
(k+1)
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x
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η
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(k)
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(1− γ
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1c )(1− ω
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(k)
a )

·M11

x
(k+1)
101c =

η
(k)
1c (1− γ

(k)
1c )(1− ω

(k)
n − ω

(k)
a )

(1− γ
(k)
a )ω(k)

a + (1− γ
(k)
1c )(1− ω

(k)
n − ω

(k)
a )

·M11

x
(k+1)
001a =

(1− η
(k)
a )(1− γ

(k)
a )ω(k)

a

(1− γ
(k)
a )ω(k)

a + (1− γ
(k)
1c )(1− ω

(k)
n − ω

(k)
a )

·M1

x
(k+1)
001c =

(1− η
(k)
1c )(1− γ

(k)
1c )(1− ω

(k)
n − ω

(k)
a )

(1− γ
(k)
a )ω(k)

a + (1− γ
(k)
1c )(1− ω

(k)
n − ω

(k)
a )

·M11.

In the M step, we find the next iteration estimate θ(k+1) by finding the roots of the partial

derivatives of E[lc(θ)|Y, D,Z, θ = θ(k))] with respect to θ,

Sc(θ) =
∂E[lc(θ)|x, θ = θ(k))]

∂θ
,

24

http://biostats.bepress.com/uwbiostat/paper245



where Y = (Y1, . . . , Yn), D = (D1, . . . , Dn), and Z = (Z1, . . . , Zn) are observed data. We can show

Sc(θ) has the following elements:

l̇c(ωn) =
x

(k)
110n + x

(k)
010n + x

(k)
111n + x

(k)
011n + x

(k)
100n + x

(k)
000n + x

(k)
101n + x

(k)
001n

ωn

−x
(k)
110c + x

(k)
010c + x

(k)
111c + x

(k)
011c + x

(k)
100c + x

(k)
000c + x

(k)
101c + x

(k)
001c

1− ωn − ωa

l̇c(ωa) =
x

(k)
110a + x

(k)
010a + x

(k)
111a + x

(k)
011a + x

(k)
100a + x

(k)
000a + x

(k)
101a + x

(k)
001a

ωa

−x
(k)
110c + x

(k)
010c + x

(k)
111c + x

(k)
011c + x

(k)
100c + x

(k)
000c + x

(k)
101c + x

(k)
001c

1− ωn − ωa

l̇c(γn) =
x

(k)
110n + x

(k)
010n + x

(k)
111n + x

(k)
011n

γn
− x

(k)
100n + x

(k)
000n + x

(k)
101n + x

(k)
001n

1− γn

l̇c(γa) =
x

(k)
110a + x

(k)
010a + x

(k)
111a + x

(k)
011a

γa
− x

(k)
100a + x

(k)
000a + x

(k)
101a + x

(k)
001a

1− γa

l̇c(γ0c) =
x110c + x010c

γ0c
− x100c + x000c

1− γ0c

l̇c(γ1c) =
x111c + x011c

γ1c
− x101c + x001c

1− γ1c

l̇c(ηn) =
x

(k)
110n + x

(k)
111n + x

(k)
100n + x

(k)
101n

ηn
− x

(k)
010n + x

(k)
011n + x

(k)
000n + x

(k)
001n

1− ηn

l̇c(ηa) =
x

(k)
110a + x

(k)
111a + x

(k)
100a + x

(k)
101a

ηa
− x

(k)
010a + x

(k)
011a + x

(k)
000a + x

(k)
001a

1− ηa

l̇c(η0c) =
x110c + x100c

η0c
− x010c + x000c

1− η0c

l̇c(η1c) =
x111c + x101c

η1c
− x011c + x001c

1− η1c
.

Solving above functions would give us the estimates

(ω(k+1)
n , ω(k+1)

a , γ(k+1)
n , γ(k+1)

a , γ
(k+1)
0c , γ

(k+1)
1c , η(k+1)

n , η(k+1)
a , η

(k+1)
0c , η

(k+1)
1c ).

Since

ψn =
ωn

1− ωa
ψa =

ωa

1− ωn
,

we can also obtain (ψ(k+1)
n , ψ

(k+1)
a ).
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