








Without loss of generality, we assume thatY > 0. As shown in the later development, all the results

can be easily extended onto the whole real line. The parameter in model (3) thus characterizes

an additive covariate e�ect on the expectancy functions, when they are assumed of similar shapes

as shown in Figure (1) for boys and girls. For example, if � = 2, it means the BMI expectancy

of the girls (x = 2) is two points more than that of the boys (x = 1). If � = Š2, it means the

BMI expectancy of the girls is two points less than that of the boys. If � = 0, it means there is

no gender di�erence in the BMIs. Thus the parameter � quanti“es and identi“es the discrepancy

in the expectancy functions if its estimator is tested to be signi“cantly di�erent from zero. Since

the additive expectancy model (3) implies that E (Y | x) = e 0(0) + x T � , which shares the same

expectation assumption as the usual linear regression model, it may be considered as a generalized

type of the linear regression model. Compared with the multiplicative expectancy model (2), the

embedded monotonicity is well preserved in the model (3) as long ase0(y) satis“es such a constraint.

A few properties of the additive expectancy model are summarized as follows.

Property 1 Under the additive expectancy model (3),

1. If the baseline expectancy functione0(·) is properly de“ned, then the additive expectancy

model is also properly de“ned givene(y | x) � 0;

2. The sign of � determines the relative ordering in both the expectancy functions and the

cumulative distribution functions, respectively;

3. e(y | x)/e 0(y) = {�(y | x)/� 0(y)} Š1 , where �(·) are the hazard functions.

The proofs of these properties are straightforward. Among these properties, the “rst one o�ers

a characterization of the additive model. The second property suggests that the parameter can

be used for assessment of treatment e�cacy. The third property implies that the additive model

and the usual Cox proportional hazards model are identical if and only if the baseline expectancy

function is constant, i.e., exponential. One special class of the models is of the Hall-Wellner linear

type (Hall and Wellner, 1984), i.e., e0(y) = � 0 + � 1y (� 0 > 0, � 1 > Š1). It is clear that the

Hall-Wellner class of distributions satis“es the additive expectancy model. That is, e(y | x) =

� 0 + � 1y + x T � is also of the Hall-Wellner type, with

F̄ (y | x) =
�

� 0 + x T �
� 0 + � 1y + x T �

� 1+1/� 1

.

4

http://biostats.bepress.com/uwbiostat/paper256



Another example is when e0(y) = α0 exp(−α1y) of Gompertz distribution. Then e(y | x) =

α0 exp(−α1y) + xTβ with the cumulative distribution function

F̄ (y | x) =
α0 + xTβ

α0 exp(−α1y) + xTβ

{
α0 + xTβ exp(α1y)

α0 + xTβ

}−1/(α1x
Tβ)

.

2.2 Parametric and semiparametric inferences

Suppose that the observed data consist of n iid copies of (yi, xi), i = 1, 2, . . . , n with the same

distribution as that of the random variable (Y, X). When e0(·) is known or characterized by a

finite-dimensional parameter α ∈ Rq as e0(y; α), the usual maximum likelihood inference procedure

can be applied to estimate the parameter β by maximizing the loglikelihood function of l(α, β):

n∑
i=1

[
log

{
1 + e′0(yi; α)

}
+ log {e0(0; α) + xT

i β} − 2 log {e0(yi; α) + xT
i β} −

∫ y

0

du

e0(u; α) + xT
i β

]

with respect to α and β, respectively. Straightforward calculation leads to

lα =
n∑

i=1

[
e′0,α(yi; α)

1 + e′0(yi; α)
+

e0,α(0; α)
e0(0; α) + xT

i β
− 2e0,α(yi; α)

e0(yi; α) + xT
i β

+
∫ y

0

e0,α(u; α)du

{e0(u; α) + xT
i β}2

]
,

lβ =
n∑

i=1

xT
i

[∫ y

0

du

{e0(u; α) + xT
i β}2

− xT
i β + 2e0(0; α) − e0(yi; α)

{e0(0; α) + xT
i β}{e0(yi; α) + xT

i β}
]

,

where the subscripts of α and β represent the partial derivatives with respect to α and β, re-

spectively. Then the maximum likelihood estimates of (αT, βT)T can be obtained by solving the

equations of lα = lβ = 0. The solutions are denoted α̂mle and β̂mle, respectively. Let the true values

of the parameters be α∗ and β∗, respectively. Then by the theory of maximum likelihood methods,

α̂mle and β̂mle are consistent estimators of α∗ and β∗, respectively, and n1/2(α̂T

mle −αT∗ , β̂
T

mle−βT
∗ )T

is asymptotically zero-mean normal with the variance of I−1(α∗, β∗), where I is the Fisher infor-

mation matrix estimated by its observed value

Î(α̂mle, β̂mle) =

⎡
⎣ lαα(α̂mle, β̂mle) lαβ(α̂mle, β̂mle)

lβα(α̂mle, β̂mle) lββ(α̂mle, β̂mle)

⎤
⎦ .

As a result, we can use α̂mle and β̂mle to make inferences on α and β, and further estimate the

baseline frequency functions by ê0(y; α̂mle).

In practice, it is often desirable of e0(·) being unspecified. Consider Ni(y) = I(Yi ≤ y) and

∆i(y) = I(Yi ≥ y), for y > 0, respectively. Let Fy = σ{Ni(u), Yi(u), Xi; u ≤ y, i = 1, 2, . . . , n},
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which is the σ-algebra generated by the collection of observations of (Ni(y), Yi(y), Xi). Straight-

forward calculation leads to that

E {dNi(y) | Fy−} = ∆i(y)λ(y | xi)dy,

where dNi(y) = Ni(y + dy) − Ni(y) and λ(y | xi) = {1 + e′0(y)}/{e0(y) + xT
i β}. Denote the true

values of e0(y) and β by e∗(·) and β∗, respectively. Then the following estimating equations are

unbiased for the true values, y > 0,

U0{β, e0(·)} =
n∑

i=1

[{e0(y) + xT
i β}dNi(y) − ∆i(y)d {y + e0(y)}] . (4)

Then it is natural to estimate e0(·) by the estimating equations of U0{β, ê0(β)} =
∑

i[{ê0(y) +

xT
i β}dNi(y)−∆i(y)d{y + ê0(y)}] = 0, as if β were known. Let An(y) be the right continuous ver-

sion of exp{− ∫ y
0

∑
i dNi(u)/

∑
i ∆i(u)} and Bn(y; β)dy be

∑
i{∆i(y)dy − xT

i βdNi(y)}/∑
i ∆i(y),

respectively. Straightforward algebra on U0{β, ê0(β)} = 0 thus leads to

−ê0(y; β)d logAn(y)− dê0(y; β) = Bn(y; β)dy,

which is a first-order nonhomogeneous ordinary differential equation. As a result, there is a closed-

form solution for e0(y),

ê0(y; β) = An(y)−1
∫ ∞

y
An(u)Bn(u; β)du.

Given such an estimator, we have

Lemma 2 For a fixed constant τ ∈ [0,∞), as n → ∞,

1. ê0(·; β∗) is consistent almost surely, i.e., ‖ê0(β∗)−e0‖ = supy∈[0,τ ] |ê0(y; β∗)−e∗(y)| converges

to 0 almost surely;

2. n1/2{ê0(y; β∗) − e∗(y)} is asymptotically zero-mean normal with the variance of [E{F̄(y |
X)}]−2

∫ ∞
y E[{1 + m′(y | X)}F̄ (y | X)]dy.

3. ê0,β(y; β∗) = ∂ê0(y; β∗)/∂β converges to −µ∗(y) = −E{XF̄ (y | X)}/E{F̄(y | X)}, y ∈
[0, τ ].

When β∗ = 0, it reduces to the one-sample problem with Bn(u; β∗) ≡ 1. Then ê0(·) becomes an

empirical estimator of the baseline expectancy function e0(y) =
∫ ∞
y F̄0(u)du/F̄0(y), where F̄0(·) is

estimated by An(·).
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To estimate the regression parameter β, the following estimating functions are considered since

they are also unbiased for the true parameters:

U(β; e0) =
n∑

i=1

∫ ∞

0
xi [{e0(y) + xT

i β}dNi(y)− ∆i(y)d {y + e0(y)}] .

By replacing e0(·) with ê0(·; β), we thus obtain the estimating equations of

U{β; ê0(β)} =
n∑

i=1

∫ ∞

0

xi[{ê0(y; β) + xT
i β}dNi(y) − ∆i(y)d{y + ê0(y; β)}]

=
n∑

i=1

∫ ∞

0
{xi − x̄(y)}{ê0(y; β) + xT

i β}dNi(y) =
n∑

i=1

{xi − x̄(yi)} {ê0(yi; β) + xT
i β} = 0,

where x̄(y) =
∑

i xi∆i(y)/
∑

i ∆i(y). Denote β̂ the solution to the equation. Then the following

theorem can be used to make inference for β∗:

Theorem 3 Assume that there exists some constant Γ > 0 such that pr{‖X‖ > Γ} = 0, and e∗(·)
is continuously differentiable on [0, τ ]. For any individual term of µ∗(·), µ∗,i(·), say, there exists

y > 0 such that |µ′
∗,i(y)| > 0, i = 1, 2, . . . , n. Let

µ∗(y) = µ∗(y)−
∫ y

0

E[{X − µ∗(u)}dF̄(u | X)]
E{F̄ (u | X)} .

As n → ∞,

1. β̂ converges consistently to β∗;

2. n1/2(β̂ − β∗) converges weakly to a zero-mean normal variate with the variance-covariance

D−1V D−1, where D = E[
∫ ∞
0 {X − µ∗(y)}⊗2dF (y | X)] and V = E[

∫ ∞
0 {X − µ∗(y)}⊗2e(y |

X)2dF (y | X)], respectively;

3. D and V can be consistently estimated by D̂ = n−1
∑n

i=1

∫ ∞
0 {xi − x̄(y)}⊗2dNi(y), and

V̂ = n−1
∑n

i=1

∫ ∞
0 {xi − µ̂∗(y)}⊗2ê(y | xi)2dNi(y), respectively., where

µ̂∗(y) = x̄(y) +
∫ y

0

n−1
∑

i{xi − x̄(u)}dNi(u)
An(u)

.

Here v⊗2 defines vvT. In general, µ∗(·) and µ∗(·) are not necessarily equal. When E{XF̄ (y |
X)}/E{F̄(y | X)} =

∫ y
0 E{XdF̄ (u | X)}/E{F̄(u | X)}, however, µ∗(y) ≡ µ∗(y) for any y.
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2.3 Weighted estimation and semiparametric efficiency

In the maximum likelihood estimation, the estimators of α̂mle and β̂mle are usually fully efficient

when the baseline expectancy function is known. It is however unclear how efficient the semipara-

metric estimators of β̂ is given the ad hoc nature of the estimating functions used. One common

approach to potentially improve its efficiency is by way of weighted estimation, i.e., calculating the

estimators by the weighted estimating equations as:

Uw(β) =
n∑

i=1

∫ ∞

0
w(y) {xi − x̄(y)}{ê0(y) + xT

i β}dNi(y), (5)

where w(·) is some weight function converging to a deterministic function of w∗(·) almost surely.

Denote the solution to the above equation as β̂w. Then parallel to Theorem 3, we have this

corollary:

Corollary 4 Given the conditions specified in Theorem 3, as n → ∞,

1. β̂w converges consistently to β∗;

2. n1/2(β̂w − β∗) converges weakly to a zero-mean normal variate with the variance-covariance

D−1
w VwD−1

w , where Dw = E[
∫ ∞
0 w∗(y){X−µ∗(y)}⊗2dN(y | X)] and Vw = E[

∫ ∞
0 w∗(y)2{X−

µ∗(y)}⊗2e(y | X){1 + e′(y | X)}dy], respectively;

3. D and V can be consistently estimated by D̂ = n−1
∑n

i=1

∫ ∞
0 w(y){xi − x̄(y)}⊗2dNi(y), and

V̂ = n−1
∑n

i=1

∫ ∞
0 w(y)2{xi − µ̂∗(y)}⊗2ê(y | xi)2dNi(y), respectively.

By an application of the Cauchy-Schwarz inequality, the optimal weight function for the weighted

estimating equations in (5) should be thus proportional to e(y | X1)−2. incidentally, these optimal

weighted estimating functions possess the similar weight coefficients as those in the maximum

likelihood score function of lβ. This fact may imply that the weighted estimating functions for the

semiparametric estimation would substantially improve the efficiency of its estimators.

Additional efficiency consideration is by way of the semiparametric efficiency bound calculation

assuming that the baseline expectancy functions are unknown. Consider the parametric submodels

in the form of e(y | x) = e0(y)+γe1(y)+xTβ. Here e0(·) and e1(·) are both known fixed functions,
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and (βT, γ)T are unknown parameters. Then its associated loglikelihood function of (βT, γ)T is

l(β, γ) =
n∑

i=1

[∫ ∞

0
log

{
e′0(y) + γe′1(y)

e0(y) + γe1(y) + xT
i β

}
dNi(y) − ∆i(y)

{
1 + e′0(y) + γe′1(y)

e0(y) + γe1(y) + xT
i β

}
dy

]
,

and

∂l(β∗, 0)
∂β

= −
n∑

i=1

∫ ∞

0

xi

e0(y) + xT
i β∗

[
dNi(y)− ∆i(y){1 + e′0(y)}dy

e0(y) + xT
i β∗

]

∂l(β∗, 0)
∂γ

=
n∑

i=1

∫ ∞

0

{
e′1(y)

1 + e′0(y)
− e1(y)

e0(y) + xT
i β∗

} [
dNi(y)− ∆i(y){1 + e′0(y)}dy

e0(y) + xT
i β∗

]
.

Consider the Fisher information at β∗ and γ = 0, which is denoted by the matrix

I(e1) =

⎡
⎣ Iββ(e1) Iβγ(e1)

Iγβ(e1) Iγγ(e1)

⎤
⎦ ,

with Iββ = E(∂2l/∂β2), Iβγ = E(∂2l/∂β∂γ) and Iββ = E(∂2l/∂γ2), respectively. Then by an

application of the Cauchy-Schwarz inequality, the variance-covariance matrix of any regular semi-

parametric estimator β̃ in the linear model, if n1/2(β̃−β∗) converges to a zero-mean normal, would

be larger than (Iββ−IβγI−1
γγ IT

βγ)−1 for any e1. Here matrix M1 is ‘larger’ than matrix M2 if M1−M2

is nonnegative definite. Since

Iββ(e1) = lim
n→∞ n−1

n∑
i=1

∫ ∞

0
E

[
∆i(y){1 + e′0(y)}x⊗2

i

{e0(y) + xT
i β∗}3

]
dy,

Iβγ(e1) = lim
n→∞ n−1

n∑
i=1

∫ ∞

0
E

[
∆i(y){1 + e′0(y)}xi

{e0(y) + xT
i β∗}2

{
e′1(y)

1 + e′0(y)
− e1(y)

e0(y) + xT
i β∗

}T]
dy, and

Iγγ(e1) = lim
n→∞ n−1

n∑
i=1

∫ ∞

0
E

[
∆i(y){1 + e′0(y)}
{e0(y) + xT

i β∗}
{

e′1(y)
1 + e′0(y)

− e1(y)
e0(y) + xT

i β∗

}⊗2
]

dy,

(Iββ − IβγI−1
γγ IT

βγ)
−1 thus reaches its maximum at the e1(y) such that

e′1(y)E
{

∆(y)
1 + e′0(y)

}
− e1(y)E

{
∆(y)

e0(y) + XTβ∗

}
= E

{
∆(y)X

e0(y) + XTβ∗

}
,

and yields a closed-form solution in e1(·) = P (y)−1
∫ ∞
y P (u)Q(u)du, where

P (y) = exp
[
−

∫ y

0

E

{
∆(u)

e0(u) + XTβ∗

} /
E

{
∆(u)

1 + e′0(u)

}
du

]

and Q(y) = E [∆(y)X/{e0(u) + XTβ∗}]
/
E[∆(y)/{1 + e′0(y)}], respectively. Therefore, the semi-

parametric information bound for β at β∗ is the supremum parametric information bound at β∗

given any choice of e0(·), which is

lim
n→∞ n−1

n∑
i=1

∫ ∞

0
E

[
∆i(y){xi − x̄0(y)}⊗2

{e0(y) + xT
i β∗}2

]
dy.
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Here

x̄0(y) = lim
n→ x̃(y) = lim

n→∞

∑
i ∆i(y)xi

/{e0(y) + xT
i β∗}∑

i ∆i(y)
/{e0(y) + xT

i β∗}
.

Therefore, when e0(·) is known, the optimal estimating function for β in the model (3) is

Uopt(β) =
n∑

i=1

∫ ∞

0

xi − x̃(y)
e0(y) + xT

i β

[
dNi(y) − ∆i(y){1 + e′0(y)}dy

e0(y) + xT
i β

]
.

If comparing Uopt(·) with the weighted estimating equations Uw(·), it is straightforward to find

that they are similar except in how to estimate the expectation of X. In addition, either the use

of the optimal weighted estimating equations or the use of the semiparametric efficient estimating

equations is feasible in practice given the closed-form of ê(·).

2.4 Model-based expectancy prediction

For a specific covariate x0, the prediction of its associated expectancy function is also of practical

interest. A straightforward prediction can be based on the model (3) with its maximum likelihood

estimates, which is ê(y | x0) = ê0(y; α̂mle)+xT
0 β̂mle. Its p-th percentile pointwise confidence interval

can be further constructed with an application of the delta-method for α and β as:

ê(y | x0; α̂mle, β̂mle)∓ Z(p+1)/2 · ŝe{ê(y | x0; α̂mle, β̂mle)},

where the estimated standard error ŝe is computed as the square-root of
{(

∂e

∂α

)T

,

(
∂e

∂β

)T}
Î−1(α̂mle, β̂mle)

{(
∂e

∂α

)T

,

(
∂e

∂β

)T}T

,

and Z(p+1)/2 is the (p + 1)/2-th normal percentile.

For the regression parameter estimates obtained in the semiparametric estimation, the model-

based prediction of expectancy for a given covariate x0 is naturally ê(y | x0) = ê0(y; β̂) + xT
0 β̂.

Here, ê0(y; β̂) = An(y)−1
∫ ∞
y An(u)Bn(u; β̂)du. Given the consistency of β̂ of β∗, straightforward

algebra shows that ê(y | x0; β̂) is also consistent of e(y | x0). It is further shown that n1/2{ê(y |
x0; β̂)−e(y | x0)} = n1/2{ê0(y; β̂)−e∗(y)+xT

0 (β̂−β∗)} is asymptotically equivalent to the following

process:

E(y) = n1/2 {x0 − µ∗(y)}T (β̂ − β∗) + n1/2 {ê0(y, β∗) − e∗(y)} ,

where n1/2(β̂−β∗) and ê0(y, β∗)−e∗(y) are further asymptotically equivalent to D−1n−1/2U{β∗, ê0(β∗)},
and n−1/2

∑
i

∫ ∞
y {e∗(u)+xT

i β}dMi(u)/
∑

i ∆i(u), respectively. Here, dMi(y) = dNi(y)−∆i(y)λ(y |
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xi)dy, as shown in the Appendix. This process in fact converges weakly to a Gaussian process with

mean zero and the covariance function σ(y1, y2; x0) that can be estimated by its empirical coun-

terparts. Thus the pth-percentile pointwise confidence interval for e(y | x0) can be constructed

as

ê(y | x0) ∓ Z(p+1)/2 ·
√

σ̂(y, y; x0)/n.

Simultaneous confidence bands can be also constructed for the expectancy as a function. Given

the complex form of σ(y1, y2), however, it is usually less straightforward to obtain a closed form

for the confidence bands. A more straightforward approach is to apply the bootstrap method. An

alternative to the bootstrap is to adapt the simulation approach due to Lin, Fleming and Wei

(1994). Consider ψ1, ψ2, . . . , ψn randomly generated from a standard normal distribution. They

are multiplied to ‘disturb’ Ni(·) as in the process of Ẽ(y), which is

n−1/2
n∑

i=1

[
{x0 − µ̂∗(y)}T D̂−1

∫ ∞

0
{x0 − µ̂∗(y)} {ê0(y) + xiβ̂}d{ψiNi(y)}+

∫ ∞

y

{ê0(u) + xT
i β̂}d{ψiNi(u)}∑
j ∆j(u)

]
.

Conditional on the observed data, Ẽ(y) is zero-mean Gaussian process. In fact, it has the same

limiting distribution as that of E(y). Thus, the distribution of E(·) can be simulated by repeatedly

generating normal batches of {ψi}’s. To determine the values for the confidence bands, large amount

of Ẽ(·) can be simulated to calculate the value of hp such that pr{maxYi |Ẽ(Yi)| > hp} = 1−p. Thus

the confidence bands at pth level is approximately ê(y | x0)∓hp/
√

n. In practice, to avoid possible

negative values for the confidence bands, appropriate transformation such as the log-transformation

can be used for confidence band construction. As demonstrated in Lin, Fleming and Wei (1994),

additional weight functions can be also incorporated to change the relative widths given possible

differential influence at the different y-values.

2.5 Outcome-dependent coefficients and Goodness-of-fit

Similar as for the linear regression model, model adequacy assessment is necessary for the additive

expectancy regression model (3) to evaluate its proper use and interpretation. Unlike the linear

regression model, the expectancy regression model has a key assumption of constant additivity

on the expectancy functions for the covariates. This assumption is powerful in summarizing the

observed difference of the outcomes due to that of the covariates, yet it requires strong ‘overall’

additivity on the expectancies. One straightforward way to relax this seemly stringent assumption
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is to assume this model:

e(y | x) = e0(y) + xTβ(y), (6)

where β(·) may not be constant but outcome-dependent. This model would be practically useful

when the covariate effect on the outcome’s expectancy varies due to its magnitude. For example,

the covariate effect on expectancy may gradually disappear as the outcome gets larger. One direct

application of this model is, however, when β(y) ≡ β, it reduces to the additive expectancy

regression model. Hence the visual assessment on the constant additivity can be done by plotting

its estimate against the outcomes. An approximately horizontal line may suggest the goodness-of-fit

of model (3).

In the parametric models when β(·) can be characterized by certain parameter θ as β(·, θ),

it is relatively straightforward to use the maximum likelihood method to compute θ̂ and test the

hypothesis of constant additivity. When β(·) is unknown, however, some special tool is needed.

Consider the individual terms in U(β),

Ui(β) = {xi − x̄(yi)} {ê0(yi; β) + xT
i β} , (7)

i = 1, 2, . . . , n, which are indeed the Schoenfeld residuals (Schoenfeld, 1981),
∫ yi

yi−1

n∑
i=1

{xi − x̄(y)} {ê0(y; β) + xT
i β}dNi(y),

if we do not distinguish between yi’s and their order statistics. Let V (y; β) =
∑

i ∆i(y){xi −
x̄(y)}T{xi − x̄(y)}/ ∑

i ∆i(y). Then similar to that in Grambsch and Therneau (1994), the jth

element of β(y) can be approximated by that of β̂ + Ui(β̂)V −1(yi, β̂). Thus a scatter plot of the

approximating terms against time would yield a visual tool for checking constant β(·): a significant

deviation from zero would suggest that β(y) is outcome-dependent. A formal hypothesis testing

for zero slope in the scatter plot would give more guidance as well.

As suggested by Grambsch and Therneau (1994), different transformation of the outcomes

would lead to a variety of goodness-of-fit tests. Consider a known transformation of φ(·) for the

outcome y. Instead of fitting a linear regression model of the jth element of the approximated β(y)

against y, it can be fitted against φ(y) − φ̄, where φ̄ is the average of the φ(·) over the observed

outcomes. Then the regression coefficients, η̂, say, and its standardized quadratic form of η̂TΣ̂−1
η η̂

would serve an asymptotically χ2−test statistic to test the constant β(·). Specific choices for φ(·)
include, for examples, step functions of y with known jumps, or simply N(y−).
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3 Examples and numerical studies

To understand the implication of the proposed additive expectancy regression model, we consider

the following special baseline expectancy functions: (1) e0(y) = y + 1; (2) e0(y) = 1, i.e., ex-

ponentially distributions; (3) e0(y) = 1/(y + 1). Assume that there is the only covariate x of

the binary indicator, and β = 1, respectively. Their corresponding expectancy functions, hazard

functions, cumulative distribution functions and density functions are plotted in Figures (3), (4)

and (5), respectively. In the first example, the baseline expectancy is monotonically increasing,

which implies the monotonically decreasing hazard functions. Their density functions are highly

right-skewed, thus a naive use of the normal-based regression methods may not be appropriate for

such distributions. In the second example, the density functions are similarly right-skewed, when

the expectancy functions are constant. In this example, the hazard functions are also constant,

which means that the Cox proportional hazards model would apply. In the third example, the Cox

model, however, may not well fit, since the hazard functions are apparently identical at y = 0.

[Figures (3)-(5) about here]

Since the theory of maximum likelihood estimation has been well established for the paramet-

ric models, moderate simulations focus on assessing the validity of the proposed semiparametric

estimation procedure of the regression parameter in the additive expectancy regression model. In

the actual simulations, one more continuous covariate z is also simulated according to the uniform

distribution U(0, 1), in addition to the simulated binary indicator x. The observations of y are

simulated under the model of

e(y | x, z) = e0(y) + xβ + zγ,

where γ is also parameter. The distribution functions of y are specified by β = γ = 0, 0.5 and

1, respectively, along with the aforementioned baseline expectancy function examples. For each

simulated data set, the observations of (y, x, z)’s are generated n times, where n is the sample size

of 50, 100 or 200. Simulation studies are summarized in Table (1). Each entry in the table is based

on 1000 simulated data sets. In the table, the bias is defined as the difference between the average

of 1000 estimated coefficients and their true value, and the coverage probability is defined as the

percentage of the nominal 95% confidence intervals containing the true value. As shown in the

table, the estimates are virtually unbiased and the coverage probabilities are mostly close to the
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nominal level, especially when the sample sizes are relatively large.

[Table (1) about here]

Additional analysis is also done with the BMI data set mentioned earlier in this article. As

displayed in the histograms, the distributions of both boys and girls in their BMI are right skewed.

The computed skewnesses are 1.68 and 1.63 for the boys and girls, respectively. In addition,

their kutosis are computed as 4.07 and 3.55, respectively. These summary statistics may suggest

that a normal-based model may not fit well. When the log-transformation apply to the BMI, the

distributions are ‘normalized’ to certain degree, with the skewness of 1.08 and 1.21, respectively,

although the interpretation of differences in the log scale would result in different meanings from

that in the original scale. A simple linear regression model of y = xβ + ε with normal random

error is fitted. The regression parameter is estimated as -0.298, which means the girls would have

on average 0.298 less in the BMI than the boys. Its standard error is 0.840 and leads to a 95%

confidence interval of (−1.944, 1.349) with p-value of 0.72. Thus the difference in the mean BMI is

not significant between the boys and the girls in this study. However, a normal probability plot of the

Pearson residuals in Figure (6) may not suggest that this linear regression model fits well. The linear

regression model also applies to the log-transformed BMIs, which yields a regression parameter

estimate of -0.009 with the standard error of 0.035 (p-value= 0.8). The normal probability plot

of residuals for the log-transformed outcomes seemly fits the normal assumption better, although

the interpretation of the regression coefficient is quite different from that in the original scale. The

additive expectancy model of e(y | x) = e0(y) + xβ is also fitted. For its parametric version, the

baseline expectancy function is chosen to be the α0/(α1 + α2y). The maximum likelihood estimate

of the regression parameter is obtained as -0.624 with the standard error of 0.524. Therefore the

difference in BMI expectancy is not significant between the boys and the girls, either. In the

semiparametric additive expectancy regression model when the baseline is unknown, the regression

parameter is estimated as -0.511 with the standard error of 0.831. Again, this result suggests that

the girls tend to lower expectancy in their BMIs than the boys. This difference, however, may need

to be confirmed by more samples included.

[Figure (6) about here]

14

http://biostats.bepress.com/uwbiostat/paper256



4 DISCUSSION

There are two features of the expectancy regression models such as the one studied in this article.

The first feature is parallel to that of the usual linear regression model, which usually fits mostly

for the normally distributed outcomes. The expectancy regression model, however, may fit mostly

for the exponentially distributed outcomes. Therefore the exponential distribution seems to have

same role in the expectancy regression model as that of the normal distribution in the usual linear

regression model. As a result of such feature, the second feature of the expectancy regression model

is that, it may fit more appropriately with the time wise outcomes, such as height and weight, whose

expectancy has clear interpretation in their stochastic ordering. In fact, due to the consideration

of the stochastic ordering of the outcomes, the expectancy regression modeling is developed with

the same spirit of the Cox hazards model, that is, modeling the outcome distributions rather that

their summary statistics.

The significance of expectancy regression models is not to replace the role of usual linear

regression model in actual data analysis, but rather provide an alternative when the expectancy

of the outcome is of great interest, such as in the real estate when the expectancy of a property

value needs to be evaluated with the information from those recently sold in the market. Thus it

may have more value in short-term forecast in, for examples, resource planning, market research

or clinical consultation.

APPENDIX: PROOFS

In this section, we will establish asymptotic results mainly of Lemma 2 and Theorem 3. Proofs of

Property 1 and Corollary 4 are straightforward and hence omitted.

Proof of Lemma 2.

Denote Mi{y; β∗, e∗} = Ni(y) − ∫ y
0 ∆i(y)λ(y | xi; β∗)dy, i = 1, 2, . . . , n. Then {Mi(·; β∗, e∗); i =

1, 2, . . . , n} form martingales. As a result,

n∑
i=1

[{e∗(y) + xT
i β∗}dNi(y)− ∆i(y)d{y + e∗(y)}] =

n∑
i=1

{e∗(u) + xT
i β∗}dMi(y; β∗, e∗). (A·1)
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Comparing it with
∑

i[{ê(y; β∗) + xT
i β∗}dNi(y)− ∆i(y)d{y + ê(y; β∗)}] = 0, we obtain that

{ê0(y; β∗)− e∗(y)}
n∑

i=1

dNi(y)−
{

n∑
i=1

∆i(y)

}
d {ê0(y; β∗) − e∗(y)} = −

n∑
i=1

{e∗(u)+xT
i β∗}dMi(y; β∗, e∗).

By solving this equation with respect to ê0(y; β∗) − e∗(y), there is the following martingale repre-

sentation for ê(·; β∗) such that

ê0(y; β∗) − e∗(y) = −An(y)−1

∫ ∞

y

An(u)
Cn(u)

[
n−1

n∑
i=1

{e∗(u) + xT
i β∗}dMi(u; β∗, e∗)

]
, (A·2)

where Cn(y) = n−1
∑

i ∆i(y) with limn Cn(y) = limn An(y) = E{F̄(y | X)}. Then by standard

martingale theory for counting processes, it is straightforward that ê0(β∗) is consistent and asymp-

totically normal with the specified variance computed in Lemma 2.

Since ∂Mi(y; β∗, e∗)/∂β =
∫ y
0 ∆i(u){1 + e′∗(u)}xi/{xT

i β∗ + e∗(u)}2du, therefore by (A·2),

∂ê0(y; β∗)
∂β

= −An(y)−1

∫ ∞

y

An(u)
Cn(u)

n−1

[
n∑

i=1

xidMi(u; β∗, e∗) +
n∑

i=1

{e∗(u) + xT
i β∗}d

{
∂Mi(u; β∗, e∗)

∂β

}]

= − An(y)−1

∫ ∞

y

An(u)
Cn(u)

[
n−1

n∑
i=1

xidMi(u; β∗, e∗)

]
− An(y)−1

∫ ∞

y

An(u)
Cn(u)

[
n−1

n∑
i=1

∆i(u){1 + e′∗(u)}xi

e∗(u) + xT
i β∗

du

]

= − E{F̄(y | X)}−1

∫ ∞

y

E{XF̄ (y | X)λ(y | X)}du + op(1)

= − µ∗(y) + op(1)

as stated in Lemma 2.

Proof of Theorem 3.

Since

n−1 ∂U{β∗, ê0(β∗)}
∂β

=n−1
n∑

i=1

∫ ∞

0

{xi − x̄(y)} {ê0,β(y; β) + xi} dNi(y)

=n−1
n∑

i=1

∫ ∞

0
{xi − x̄(y)} {xi − µ∗(y)}T dNi(y) + op(1),

it is then seen that n−1∂U{β∗, ê0(β∗)}/∂β converges to D almost surely as in Theorem 3. In

addition, consider a decomposition of n−1/2U{β∗, ê0(β∗)} as

n−1/2U{β∗, ê0(β∗)} = n−1/2U(β∗, e∗) + n−1/2 [U{β∗, ê0(β∗)} − U(β∗, e∗)] .
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The first term is indeed n−1/2
∑

i

∫ ∞
0 {xi − x̄(y)}{e∗(y) + xT

i β∗}dMi(y). The second term can be

further written as

n−1/2 [U{β∗, ê0(β∗)} − U(β∗, e∗)] = n−1/2
n∑

i=1

∫ ∞

0
{xi − x̄(y)}{ê0(β∗) − e∗(y)}dNi(y)

= − n−1/2
n∑

i=1

∫ ∞

0
{xi − x̄(y)}An(y)−1

∫ ∞

y

An(u)
Cn(u)

⎡
⎣n−1

n∑
j=1

{e∗(u) + xT
j β∗}dMj(u)

⎤
⎦dNi(y)

= − n−1/2
n∑

j=1

∫ ∞

0

An(u)
Cn(u)

[∫ u

0

n−1
∑

i {xi − x̄(y)}dNi(y)
An(y)

]
{e∗(u) + xT

j β∗}dMj(u)

= − n−1/2
n∑

j=1

∫ ∞

0

An(u)
Cn(u)

{µ̂∗(u) − x̄(y)} {e∗(u) + xT
j β∗}dMj(u).

By summing over these two terms,

n−1/2U{β∗, ê0(β∗)} =n−1/2
n∑

i=1

∫ ∞

0

[
{xi − x̄(y)} − An(u)

Cn(u)
{µ̂∗(u)− x̄(y)}

]
{e∗(y) + xT

i β∗}dMi(y)

=n−1/2
n∑

i=1

∫ ∞

0
{xi − µ∗(u)} {e∗(y) + xT

i β∗}dMi(y) + op(1).

As a result, n−1/2U{β∗, ê0(β∗)} converges in distribution to zero-mean normal distribution with

asymptotic variance of V as specified in Theorem 3. Furthermore, a straightforward Taylor expan-

sion of U{β̂, ê0(β̂)} at β = β∗ would lead to

n1/2(β̂ − β∗) =
[
n−1 ∂U{β∗, ê0(β∗)}

∂β

]−1

·
[
−n−1/2U{β∗, ê0(β∗)}

]
+ op(1)

and hence its asymptotic normality in Theorem (3) as well.

Given the condition on µ∗(·), D is nonsingular. Since n−1U{β∗, ê0(β∗)} converges to zero al-

most surely, there exists a neighborhood of β∗ such that−[n−1∂U{β∗, ê0(β∗)}/∂β]−1·[n−1U{β∗, ê0(β∗)}]
and −D−1[n−1U{β∗, ê0(β∗)}] are as well within the same neighborhood. Hence the consistency

holds for β̂ − β∗ at 0 given the arbitrarily small size of such a neighborhood. Straightforward

calculation with the Taylor expansion would lead to the consistency of the variance estimators as

well.
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Table 1: Summary of Simulation Studies for Model e(y | x, z) = e∗(y) + xβ∗ + zγ∗ with 1000 Replicates

β∗ = γ∗ = 0 β∗ = γ∗ = 0.5 β∗ = γ∗ = 1

x z x z x z

e∗(t) n Bias Cov. Prob. Bias Cov. Prob. Bias Cov. Prob. Bias Cov. Prob. Bias Cov. Prob. Bias Cov. Prob.

y + 1 50 0.0608 0.958 0.175 0.916 0.2063 0.951 0.1818 0.963 -0.2161 0.955 0.0746 0.941

100 0.0442 0.947 -0.0128 0.967 -0.2354 0.958 -0.0031 0.937 0.1223 0.947 -0.0069 0.963

500 -0.0797 0.941 -0.1851 0.936 -0.0057 0.946 -0.0977 0.951 0.0063 0.957 -0.0159 0.944

1 50 0.0311 0.921 -0.1554 0.949 -0.1884 0.957 -0.0724 0.934 -0.0331 0.938 0.1211 0.931

100 0.1103 0.962 0.1329 0.945 -0.1007 0.963 -0.1504 0.957 0.2534 0.958 0.0549 0.935

500 0.0793 0.952 -0.1035 0.959 -0.0197 0.975 0.0177 0.955 0.051 0.965 -0.0325 0.946

1/(y + 1) 50 0.1940 0.935 -0.0452 0.942 -0.0441 0.937 -0.1161 0.949 0.2443 0.951 0.1375 0.968

100 -0.1013 0.953 -0.1172 0.941 0.0329 0.947 -0.0795 0.947 0.0804 0.943 0.0421 0.957

500 0.0172 0.963 -0.0307 0.954 -0.0321 0.962 -0.0358 0.966 -0.0786 0.941 0.0317 0.953
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Figure 1: Histograms and estimated BMI expectancies for boys and girls of age 18, respectively. Teens are considered

underweight if less than 5th percentile, normal if between 5th and 85th percentiles, overweight at-risk if between 85th

and 95th percentiles and overweight if more than 95th percentile. Solid lines represent the cutoffs based on current

BMI values. Dotted lines represent the cutoffs based on BMI expectancies.
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Figure 2: Expectancy functions in the normal linear regression model. Solid line represents that of x = 0. Dotted

line represents that of x = 1.

21

Hosted by The Berkeley Electronic Press



0 1 2 3 4 5

0
1

2
3

4
5

6
7

y

E
xp

ec
ta

nc
y 

F
un

ct
io

n

0 1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

y

H
az

ar
d 

F
un

ct
io

n

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

y

D
en

si
ty

 F
un

ct
io

n

Figure 3: Additive expectancy model with e0(y) = y + 1. Solid lines are of x = 0 and dotted lines of x = 1,

respectively.
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Figure 5: Additive expectancy model with e0(y) = 1/(y + 1). Solid lines are of x = 0 and dotted lines of x = 1,

respectively.
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Figure 6: Normal probability plot for the Pearson residuals of BMI in model y = xβ + ε.
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