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Summary

To assess treatment efficacy in clinical trials, certain clinical outcomes are repeatedly

measured over time for the same subject. These outcomes can be regarded as a function

of time. The difference in their mean functions between the treatment arms usually char-

acterises a treatment effect. Due to the potential existence of subject-specific treatment

effectiveness lag and saturation times, erosion of treatment effect may occur during the ob-

servation period. Instead of using ad hoc parametric or purely nonparametric time-varying

coefficients in statistical modeling, we first propose to model the treatment effectiveness du-

rations, which are the varying time intervals between the lag and saturation times. Then

some mean response models are used to include such treatment effectiveness durations. Our

methodologies are demonstrated by simulations and an application to the dataset of a land-

mark HIV/AIDS clinical trial of short-course nevirapine against mother-to-child HIV vertical

transmission during labour and delivery.

Some key words: Effect erosion; HIV/AIDS clinical trials; Longitudinal outcomes; Mean

response model; Semiparametric analysis; Time-varying coefficient; Treatment effectiveness

duration.
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1 Introduction

In clinical trials, repeated measurements of the same subject are often collected during a

given period of time to assess the efficacy of a new treatment. Assume that (Y1, Y2, . . . , Ym)

is the vector of the repeated measurements collected at the time points T1 < T2 < . . . < Tm,

respectively, from the same subject during the time period [0, C], where C is the potential

maximum length of the observation time period. These repeated measurements can be

considered as observations of an underlying random response curve over time, {Y (t); t ≥ 0},
with Y (Tj) = Yj, j = 1, 2 . . . ,m. Regression models are the main tool used in statistical

literature to model the means of these response curves and to identify a treatment effect.

One widely used model for {Y (t); t ≥ 0} was proposed in Zeger & Diggle (1994) and later

generalised in Lin & Ying (2001),

E{Y (t) | Z(s); 0 ≤ s ≤ t} = µ(t) + βTZ(t), (1)

where Z(·) is the covariate vector of p1-dimension, β ∈ <p1 is the associated regression

parameter and µ(·) is some baseline function for Z(t) ≡ 0, respectively. Here, T denotes

vector transpose. Usually, neither µ(t) nor the error structure of {Y (t), t ≥ 0} has to be

specified in (1). Such a semiparametric model setup would usually allow for substantial

model flexibility when the treatment efficacy parameter β is of major interest.

In model (1), the constant β serves as a concise summary measure of the difference in the

mean responses over time, for example, when Z(t) is a treatment indicator. If the assumption

of constant β appears valid, a consistent estimator of β can be used to characterise and

make inference on the treatment efficacy. This assumption, however, may be undermined

in practice by the phenomenon of ‘erosion of regression effect,’ as termed in a recent paper

by O’Quigley & Natarajan (2005) on the proportional hazards model of survival outcomes.

For the repeated measurements in model (1), similar erosion phenomenon on the constant β

may occur when the treatment effectiveness lag time and the saturation time possibly exist.

Treatment effectiveness lag time is the time after which the treatment becomes fully

effective. Its existence has long been noted and studied, for example, in Halperin et al.

(1968), Zucker & Lakatos (1990) and Chen et al. (2002). Treatment saturation time is the

time after which the full treatment effect starts to attenuate or diminish due to reasons

such as cumulative buildup of drug resistance (Eshleman et al., 2001; Komarova & Wodarz,

2005; Wu et al., 2005). The interval between the lag time and the saturation time is thus

the treatment effectiveness duration on which the treatment is expected to take full effect.
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Because of biological heterogeneity among subjects, the treatment effectiveness durations

are not necessarily identical for all subjects. The variation among subjects may lead to the

phenomenon of effect erosion, as shown in a later section.

Effect erosion due to varying effectiveness durations is a particular type of departure of the

regression parameter from being constant. In the statistical literature, one mathematically

convenient approach to handling the effect erosion in model (1) is to allow the regression

parameter to be time-varying as β(t) in

E{Y (t) | Z(s), 0 ≤ s ≤ t} = µ(t) + β(t)TZ(t), (2)

similar to that proposed in Hoover et al. (1998). Here, β(·) can be specified in some ad hoc

parametric form. Or, it can be nonparametrically assumed and estimated by various meth-

ods, such as smoothing splines and locally weighted polynomials in Hoover et al. (1998),

component-wise smoothing splines in Chiang et al. (2001) and basis function approximation

in Huang et al. (2002). The most practical values of flexible nonparametric β(·) for model

(2) in real applications are in, for example, model adequacy assessment or model-based pre-

diction/forecasting. Although it can be used to explore the time-varying pattern in covariate

effect, the time-varying coefficient itself may not result in direct summary of treatment effect

or lead to straightforward comparison of treatment effects among the clinical trials.

In the rest of this article, we focus on the treatment effect estimation by taking into ac-

count the effect erosion due to the possible varying treatment effectiveness durations. Some

joint distributions for the bivariate treatment effectiveness lag time and the effectiveness

duration are first proposed. The mean response model (1) of the constant β is subsequently

extended by allowing changepoints to accommodate the varying treatment effectiveness du-

rations. Inference procedures including hypothesis testing and interval estimation are studied

in §3. Numerical studies are presented in §4. Further model extensions are laid out in §5.
Some concluding remarks and discussion are presented in §6.

2 Statistical Models

2.1 Models for treatment effectiveness duration

Let U and V be the possible treatment effectiveness lag and saturation times, respectively,

where 0 ≤ U ≤ V , for a subject in the study. Then the time interval [U, V ] is the effectiveness
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duration. Denote W = V − U the length of the effectiveness duration. Consider the joint

density function of the bivariate vectors of (U,W ), fU,W(u,w; θ), for the lag time and the

effectiveness duration, where θ is the parameter of p2-dimension. When U and W are

independent, fU,W(u,w; θ) is simply the product of the marginal density functions, fU(u)

and fW(w), say, of U and W , respectively. There are a variety of distributions that can be

used for fU(u) and fW(w), such as the exponential, Weibull or Gamma distributions.

In reality, since U and W reflect a human subject’s individual reaction to the treatment,

they are often not necessarily independent among subjects. In some instances, when a

subject has relatively a shorter metabolic cycle, he or she usually responds to the treatment

faster and reaches the full effect sooner. At the same time, the treatment’s full effect is

maintained for a relatively shorter duration of time. On the other hand, when the metabolic

cycle tends to be longer, both the treatment lag time and the effectiveness duration tend to

be longer. Thus U and W are positively correlated. The shared frailty models (Oakes, 1989)

can be then applied to the bivariate times (U,W ).

Assume that G is the subject’s underlying frailty, representing the effect of underlying

metabolism on U and W simultaneously. Let its density function be fG(g;α), where α is the

parameter. Conditional on G, the metabolism affects the hazard functions for U and W by

GλU(t) and GλW(t), respectively. Thus the bivariate survival function of (U,W ) is,

SU,W(u,w | G = g) = pr{U > u,W > w | g} = exp[−g{ΛU(u) + ΛW(w)}],

where ΛU(t) =
∫ t

0
λU(s)ds and ΛW(t) =

∫ t

0
λW(s)ds, respectively. By integrating out the

g’s, the marginal bivariate survival function for (U,W ) is SU,W(u,w) = E exp[−g{ΛU(u) +

ΛW(w)}], which is also the Laplace transform of G’s distribution, L(·), say, at ΛU(u)+ΛW(w).

As a result,

fU,W(u,w) = λU(u)λW(w)L(2){ΛU(u) + ΛW(w)}.

With different choices of fG(·), λU(·) and λW(·), fU,W(·, ·) embraces a variety of choices of

bivariate distributions for (U,W ).

One widely used family is the Clayton-Oakes model, or the Gamma frailty model (Clayton,

1978; Oakes, 1989). In this model, G is assumed to follow the Gamma density function,

fG(g;α) = (g/α2)
α1−1 exp (−g/α2)/{α2Γ(α1)}, where Γ(α) =

∫∞
0
sα−1 exp(−s)ds. There-

fore, the bivariate density function for (U,W ) is thus

α1(1 + α1)α
−α1
2 λU(u)λW(w){α−1

2 + ΛU(u) + ΛW(w)}−α1−2.
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In practice, given the multiplicative form of g on λU(·) and λW(·), it is usually sensible to

further assume that α1 = 1/α2, which leads to EG ≡ 1.

2.2 Mean response models with varying effectiveness durations

Suppose that the covariate vector of Z(t) = (Q(t)T, R(t)T)T mainly consists of two types of

covariates: Q(t) are the covariates that take full effect only on the effectiveness duration, and

R(t) are the concomitant variables that are not affected by the effectiveness durations. When

the treatment effectiveness duration defined by (U,W ) is known, we consider the following

model,

E{Y (t) | Z(s), U,W ; 0 ≤ s ≤ t} = µ(t) + βT

QQ(t)I(U ≤ t ≤ U +W ) + βT

RR(t), (3)

where I(·) is the indicator function, and (βT
Q, β

T
R)T = β are the parameters, respectively.

That is, conditional on (U,W ), the mean response of the repeated measurements is µ(t) +

βT

Q
Q(t) + βT

R
R(t) on the effectiveness duration [U,U + W ], and µ(t) + βT

R
R(t), otherwise.

Thus the parameter βQ characterises the subject-specific differences in the mean responses

associated with Q(t) on the effectiveness duration. When Q(t) is the treatment indicator,

βQ represents the subject-specific treatment effect.

This model is indeed a changepoint model with two subject-specific changepoints at U

and U +W , respectively. When U = 0 and W = ∞, it reduces to the model in (1). Most of

the previous methodological research on changepoint models has focused on the detection of

location and magnitude of changepoints, such as in Wu et al. (2001). The major interest of

the current model (3) still lies in the regression parameter of β’s, while the changepoints and

their distributions serve as nuisance to introduce the phenomenon of time-varying erosion

on the regression parameter, as observed in the marginalised version of (3),

E{Y (t)|Z(s); 0 ≤ s ≤ t} = µ(t) + βQ(t)TQ(t) + βT

R
R(t), (4)

with respect to the distribution of (U,W ), where βQ(t) = βQH(t; θ). Here, H(t; θ) =∫ t

0

∫∞
t−u

fU,W(u,w; θ)dwdu is the ‘erosion operator’ that modifies the subject-specific constant

regression parameter βQ to the marginal time-varying coefficient βQ(t), due to the vary-

ing treatment effectiveness durations of (U,W ). In §4, some specific examples are given to

demonstrate the generally U-shaped βQ(·).

In fact, the erosion operator H(·) has the following properties:

5
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1. 0 ≤ H(t) ≤ 1;

2. limt→0H(t) = limt→∞H(t) = 0;

3. H ′(t) =
∫ t

0
f(u, t−u)du−

∫∞
0
f(t, w)dw; H(2)(t) = f(t, 0)+

∫ t

0
∂f(u,w)/∂w|w=t−udu−∫∞

0
∂f(u,w)/∂u|u=tdw.

The first property mandates that the marginal |βQ(t)| should be no larger than the subject-

specific |βQ|. The second property implies that the treatment efficacy diminishes to null at

the beginning of a randomised trial for the short-term and also toward the long-run, which

echoes the usual actual observation of regression effect erosion. The third property will allow

us to calculate the time point at which H(t) reaches its peak, and the turning points as well

when the overall trend of H(t) changes.

It is apparent that the two parameters, namely, the scale parameter of βQ and the shape

parameter of θ, jointly determine a specific βQ(·) in the marginalised model (4). When µ(·)
is parametric and the error structure of Y (·) is known, both parameters are identifiable

in model (4) using the maximum likelihood method. In general, however, when µ(·) is

unspecified as in Zeger & Diggle (1994) or the error structure is further unknown as in

Lin & Ying (2001), the parameters are identifiable only up to the function of βQ(·) itself. In

the latter semiparametric settings, similar to those in Chen et al. (2002), it can be shown

that the parameter of interest, βQ, is identifiable if and only if the nuisance parameter θ

is identifiable. In fact, the parameter θ is only meaningful and identifiable when βQ 6= 0,

as pointed out by Luo et al. (1997). When βQ = 0, it is usually of less scientific interest

to consider either the treatment effectiveness lag or the saturation time. Nevertheless, this

is the type of problem discussed in Davies (1977, 1987), that is, the nuisance parameter θ

is present only under the alternative of βQ 6= 0. In the following sections, we will develop

inference procedures by taking this complication into consideration.

3 Inferences

We first assume in this section that βQ 6= 0 as in Luo et al. (1997). Suppose that there

are n independent and identically distributed copies of {(Yij, Tij, Zij , Ci); j = 1, 2, . . . ,mi},
i = 1, 2, . . . , n, in the collected dataset. Denote Ni(t) =

∑mi

j=1 I(Tij ≤ t) and assume that

E{Ni(t)} = Ω(t) is unspecified. Let ∆i(t) = I(Ci ≥ t). Conditional on Z i(·), (Yi(·), Ci) are

assumed to be independent. The true parameters hereinafter are denoted by their respective
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counterparts with the subscript ‘∗.’ For instance, the true parameters for βQ and βR in

(3) are βQ∗ and βR∗, respectively. Consider the cumulative sum of the residuals for the ith

subject’s repeated measurements on [0, t], t > 0, Xi(t;β, θ) =
∫ t

0
{Yi(s) − νi(s;β, θ)}dNi(s),

where νi(t;β, θ) = βT

QQi(t)H(t; θ) + βT

RRi(t). Then

E{dXi(t) | Z i(s), Ci; 0 ≤ s ≤ t, β∗, θ∗} = ∆i(t)dΩµ(t). (5)

Here, dΩµ(t) = µ(t)dΩ(t).

Let Mi(t;β, θ,Ωµ) = Xi(t)−
∫ t

0
∆i(s)dΩµ(s). Then {Mi(·;β∗, θ∗,Ωµ∗)} are the zero-mean

stochastic processes. Although the infinite-dimensional functions of µ(·), Ω(·) and Ωµ(·)
are unknown in (6), an estimator of the Breslow-type can be obtained for Ωµ(·) by solving∑

i

∫∞
0

∆i(t)dMi(t;β, θ,Ωµ) = 0. That is, Ω̂µ(t;β, θ) =
∫ t

0

∑
i dXi(s;β, θ)/

∑
i ∆i(s). Let

M̂i(t;β, θ) = Xi(t;β, θ) −
∫ t

0
∆i(s)dΩ̂µ(s;β, θ). Therefore, similar to those in Lin & Ying

(2001) and Chen & Jewell (2001), the following estimating equations generalise the normal

equations of the least-squares for the linear regression models to estimate the parameters in

the proposed model (4),

n∑

i=1

∫ τ

0

∆i(t)ψi(t)dM̂i(t;β, θ,Ωµ) = 0, (6)

where ψi(t) are the known smooth functions of (p1 + p2)-dimension and measurable with

respect to σ{Zi(s), Ci; 0 ≤ s ≤ t, i = 1, 2, . . . , n}. Here, τ = maxi{Ci}. As suggested in

Chen & Jewell (2001), ψ(·) can be chosen as (Z(·)T, G(·)T)T, where the p2-dimensional G(·)
does not belong to the linear span of 1 and Z. For example, G(·) is selected to be some

nonlinear transformation of logZ or Z · Z. In fact, straightforward algebra further leads to

E(β, θ) =
n∑

i=1

∫ τ

0

∆i(t)
{
ψi(t)− ψ(t;β, θ)

}
dXi(t;β, θ) = 0, (7)

where ψ(t) =
∑

i ∆i(t)ψi(t)/
∑

i ∆i(t). Assume that β̂ and θ̂ are the solutions of β and θ in

(7), respectively.

Let ν ′i(t) be the derivative of νi(t), i = 1, 2, . . . , n. Then −n−1E ′(β∗, θ∗) goes to

D = E

[∫ τ

0

∆1(t){ψ1(t)− ψ∗(t}ν ′1(t)TdΩ(t)

]
,

where ψ∗(t) is the limit of ψ(t) almost surely, as n → ∞. When fU,W(u,w) degenerates to

1 at (u,w) = (0,∞) and 0 otherwise, and ψi(·) are chosen to be Z i(·), the proposed model

7
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(4) becomes the model (1) and D reduces to the nonsingular matrix of D̃ in Lin & Ying

(2001). In general, when the elements in ψi(·) are not linearly related, D is nonsingular.

Thus as shown in the Appendix, the solutions to E(β, θ) = 0 are strongly consistent under

mild conditions as n → ∞. If the total variation of ψi(·), i = 1, 2, . . . , n, are bounded, it is

then true that

n−1/2E(β∗, θ∗) l n−1/2

n∑

i=1

∫ τ

0

∆i(t){ψi(t)− ψ∗(t)}dMi(t;β∗, θ∗).

By the Central Limit Theorem, it is also shown in the Appendix that n−1/2E(β∗, θ∗) is

asymptotically normal with mean zero and the variance-covariance matrix,

Σ = E

[∫ τ

0

∆1(t)ψ(t){ψ1(t)− ψ∗(t)}dM1(t)

]⊗2

,

where a⊗2 denotes aaT. In addition, a Taylor’s expansion of E(β̂, θ̂) at (β∗, θ∗) yields that

n1/2(β̂T − βT
∗ , θ̂

T − θT
∗ )

T is asymptotically equivalent to {−E ′(β∗, θ∗)/n}−1 · n−1/2E(β∗, θ∗).

Therefore, β̂ and θ̂ are consistent, and n1/2(β̂T − βT
∗ , θ̂

T − θT
∗ )

T → N(0,D−1ΣD−1) in distri-

bution in a neighbourhood of (β∗, θ∗), whereD and Σ can be approximated by their empirical

counterparts, D̂ = n−1
∑

i

∫ τ

0
∆i(t){ψi(t)−ψ(t)}ν ′i(t)TdNi(t), and Σ̂ = n−1

∑
i[
∫ τ

0
∆i(t){ψi(t)−

ψ(t)}dM̂i(t; β̂, θ̂)]
⊗2, respectively.

To estimate the baseline µ(·), consider the estimator of µ̃(t) = Y (t) − ν(t; β̂, θ̂), where

Y (t) =
∑n

i=1 ∆i(t)Yi(t)/
∑n

i=1 ∆i(t) and ν(t;β, θ) =
∑n

i=1 ∆i(t)νi(t;β, θ)/
∑n

i=1 ∆i(t), respec-

tively. When the observation times are observed in a continuous time scale, some smoothing

technique has to be implemented to obtain a reasonable estimate. For example, the tech-

nique by Capra & Müller (1997) can be adapted to estimate µ(·). Specifically, consider that

the time interval [0, τ ] is partitioned into L consecutive equidistant intervals: (tl−1, tl), with

t0 = 0 and l = 1, 2 . . . , L → ∞. Assume the smoothing parameter h such that h → 0 and

n∗h → ∞, as n∗ → ∞, where n∗ is the total number of observation time points. Cou-

pled with additional conditions for the consistency in Capra & Müller (1997), a smoothed

estimate of µ̃(·) is

µ̂(t) = arg min
a0,a1

[
L∑

l=1

K

(
t− tl
h

)
{µ̃(tl) − a0 − a1(tl − t)}2

]
.

Here K(s) = (1 − s2)I(|s| ≤ 1). Other smoothers including higher-order kernel smoothers

or local fitting with high-order polynomials can be also used under the necessary conditions

of linearity, consistency and consistency with needed rate in Capra & Müller (1997).
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When βQ = 0, the parameter θ is not identified in the model (4). As in Davies (1977,

1987), θ cannot be estimated under the null hypothesis and, subsequently, traditional large

sample theory does not apply. If θ were known, however, we would only need to solve for

β = (βT
Q, β

T
R)T in the reduced E(β, θ) = 0 of (7), e.g., the first p1 equations with ψ(t) = Z(t).

Denote S(βR, θ) = E(0, βR, θ)Σ̂
−1(β̂, θ)E(0, βR, θ). Then at the known θ, S(θ) = infβR

S(βR, θ)

is asymptotically χ2
q-distribution with q = dim{Q(t)} under H0 : βQ = 0 of no treatment

efficacy, and larger S(θ) would lead to more evidence against H0 as in Wei et al. (1990).

Since θ is usually unknown, we consider the one-sided test statistic against H1 : βQ > 0 as

S = sup
θ ∈ [θl, θu]

{S(θ)},

where θl and θu are the lower and upper limits of the possible values of θ, respectively.

Following Davies (1987), for some s ≥ 0, it is calculated that

pr (S ≥ s | H0) ≤ pr(χ2
q > s) +

2−q/2e−s/2s(q−1)/2

Γ(q/2)

∫ θu

θl

E

∣∣∣∣
∂S(θ)1/2

∂θ

∣∣∣∣dθ. (8)

In particular, when Q(·) is the treatment indicator of q = 1, an approximate significance p-

value given the observed S = S0 can thus be calculated as pr(χ2
1 > S0)+2−1/2e−S0/2/Γ(1/2) ·M ,

where M is the piecewise numerical difference approximation of
∫ θu

θl
E|∂S̃(θ)1/2/∂θ|dθ, i.e.,

M =
∑J

j=1 |S̃(θj)
1/2 − S̃(θj−1)

1/2|. Here, θl = θ0 ≤ θ1 ≤ . . . ≤ θJ = θu are the turning points

such that ∂2{S(θ)1/2}/∂θ2 = 0. For a two-sided test, S = supθ ∈ [θl, θu]{|S(θ)|} can be used.

For the θ ∈ Θ ⊂ Rp2 of higher dimension, i.e., p2 > 1, a natural extension of S =

supθ∈Θ{S(θ)} can be used, although its theoretical calculation of significance probabil-

ity bounds is foreseeably complicated. In practice, we can instead adapt a computer-

intensive resampling method by Parzen et al. (1994) for ease of calculation. Specifically,

for a given set of n iid standard normal deviates, {ε1, ε2, . . . , εn}, say, multiplying the indi-

vidual terms in (7) as Ẽ(β, θ) =
∑

i εi
∫∞
0

∆i(t){ψi(t) − ψ(t)}dXi(t), n
−1/2Ẽ(β, θ) is mean-

zero with the variance of Σ̂ conditional on the observed data. Thus, n−1/2Ẽ(β, θ) would

have the same limiting distribution as n−1/2E(β, θ). As a result, we would generate a

large number of sets of {εi}’s to calculate the empirical distribution of S̃ = supθ∈Θ S̃(θ) =

supθ∈Θ infβR
{Ẽ(0, βR, θ)Σ̂

−1(β̂, θ)Ẽ(0, βR, θ)}. Then an approximate significance p-value is

the proportion of S̃ ≥ S0.

9
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4 Examples

4.1 Distributions of bivariate action duration times

As proposed in §2.1, the bivariate action duration times can be modelled by the Gamma

frailty model. To gain some concrete sense about this family of distributions and their

ultimate impact on the mean response curve, we examine a few examples. One choice is to

use the Weibull forms for λU(·) and λW(·), i.e., λUωt
ω−1 and λWωt

ω−1, respectively, where ω

is a parameter. Thus, the bivariate density function and survival function of (U,W ) becomes

fU,W(u,w; θ) = α(1 + α)α−αλUλWu
ωwω(α−1 + λUu

ω + λWw
ω)−α−2,

and SU,W(u,w; θ) = {1 + (λUu
ω + λWw

ω)/α}−α, where θ = (αT, ω, λU, λW)T, respectively.

This is the generalised Pareto power distribution, also called the bivariate Burr distribution.

When ω = 1, the marginal distributions of (U,W ) become exponential. The bivariate density

and survival functions when λU = λW = ω = 1 and α = 0.5 are demonstrated in Fig. 1.

[Fig. 1 about here]

The impact of the inclusion of varying effectiveness duration on the mean response model

is reflected in the shape of the function of H(t), as demonstrated in model (4). The function

of H(t) under the mentioned distributions of (U,W ) are plotted in Fig. 2 under three

λW = 0.5, 1.0 and 1.5, which represent the relatively short/long length of the effectiveness

durations. It is not surprising to see that all of the curves appear to be tied down toward

t = 0 and t = ∞ with a peak in the middle. This mimics the phenomenon of effect erosion

that is often observed, which is for the treatment to take effect gradually, reach peak efficacy

and then dampen as time goes on. More interestingly, as λW increases, the time period of

action onset becomes shorter, and the curves appear to have uniformly lower efficacy, i.e.,

H(t;λW = 1.5) ≤ H(t;λW = 1.0) ≤ H(t;λW = 0.5).

[Fig. 2 about here]

4.2 Simulations

Moderate simulations are conducted mainly to demonstrate the validity of the estimation

procedures. According to our models, there are three steps to simulating the data sets (1)
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http://biostats.bepress.com/uwbiostat/paper265



Varying effectiveness times (ui, wi): these bivariate times are simulated following the Gamma

frailty model. The ultimate density function used for the bivariate times is 0.75
√

2uw(u +

w + 2)−2.5. (2) Observation times (ti1, ti2, . . . , ti,mi). The observation times are simulated

according to a random effect Poisson process with intensity rate following Gamma (1,0.5).

The total time period of observation following uniform distribution with mean of 20 yields

about 11 observation times per subject. (3) Repeated responses (y(ti1), y(ti2), . . . , y(ti,mi)):

the repeated responses are simulated according to the following model:

yij(tij) = µ(tij) + βQQI(ui < tij < ui + wi) + βRR(tij) + ε(tij).

Here Q is the treatment indicator of a Bernoulli random variable with success probability of

50%, R(t) are standard normal, ε(t) is a Gaussian process with cov{ε(s), ε(t)} = exp(−|s−t|)
and µ(t) = t1/2 and sin(2πt), respectively. The true values of (βR, βQ) are (1, 0), (−1, 0),

(1, 1) and (−1, 1), respectively. The simulation results are summarised in Table 1. For each

entry in the table, 1,000 replicates are simulated to estimate the bias and empirical coverage

probability. The bias is defined as the difference between the sample mean of the estimates

over the 1,000 replicated data sets and its true value. The empirical coverage probability is

the percentage of Wald-type 95% confidence intervals that include the true parameters. It

is evident that the estimators are virtually unbiased and the nominal confidence intervals

carry reasonable coverages.

[Table 1 about here]

4.3 A real randomised clinical trial

Between November 1997 and April 1999, a landmark randomised trial, HIVNET 012, was

conducted to assess the safety and efficacy of single-dose nevirapine versus zidovudine for the

prevention of mother-to-child HIV-1 vertical transmission among pregnant women in less-

developed countries (http://www.hptn.org/research studies/hivnet012.asp). In this trial,

a total of 626 HIV-1 infected pregnant women in Uganda were recruited and randomly

assigned to either nevirapine or zidovudine at more than 36 weeks’ gestation. Complete

medical histories and physical examinations of all participants were collected before their

entry to the study, on enrolment, at delivery, at discharge from hospital, and at 7 days and

6 weeks after delivery. According to the trial protocol, the primary efficacy endpoint was

the HIV-1 infection of neonates and HIV-1-free survival rates. By the end of this trial, the

primary efficacy analysis showed that the HIV-1 transmission risk in the zidovudine and

11
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nevirapine groups was 10.4% and 8.2% at birth (p > 0.3); 21.3% and 11.9% by age 6-8

weeks (p < 0.003); and 25.1% and 13.1% by age 14-16 weeks (p < 0.001), respectively, which

suggests that single-dose nevirapine could significantly lower the vertical HIV-1 transmission

risk in less-developed countries significantly (Guay et al., 1999).

One of the important secondary objectives of this trial specified in the protocol is to

determine the relationship of maternal plasma RNA levels at the delivery with the rate of

perinatal transmission. Therefore, it is critical to first focus on how the administration of

nevirapine would affect the maternal viral load. In fact, quantitative plasma HIV-1 RNA

measurements were taken repeatedly before entry, at delivery, and at 7 days and 6 weeks

after delivery, respectively. These measurements can be used to compare the immunologic

disease progression over time.

Unlike the control drug, zidovudine, nevirapine is a non-nucleoside benzodiazepine deriva-

tive. It does not have to be taken in by the human cell and metabolized to its active form

and, thus, it generally takes effect against intracellular and extracellular virus immediately

after administration (Zhang et al., 1996). However, the administration of nevirapine in labor

is not soon enough to cause a decrease in viral load in labor, and it is difficult to determine

precisely at what time the nevirapine takes the immediate effect. On the other hand, the

nevirapine was administered only once in order to maintain certain plasma drug concen-

tration for up to seven days. Preliminary studies showed that the potent antiviral effect

usually persists for one to two weeks, followed by a rapid development of viral resistance to

nevirapine and an increase in plasma virus. By the fourth week after drug administration,

usually all of the subjects would develop viral resistance. In Fig. 3, the maternal plasma

viral loads are plotted for both treatment arms. As shown in the figure, their mean functions

do not vary dramatically at immediate administration or in the relative long-run after the

fourth week. More smoothed lowess curves also show similar patterns.

[Fig. 3 about here]

For demonstration purposes, we let Q(t) be the treatment indicator of nevirapine versus

zidovudine and R(t) be the number of days since first dose of drug administration and

maternal age, respectively, in the proposed model (3). The estimates of regression parameters

and their estimated standard errors are tabulated in Table (2). In contrast, this table also

shows the usual generalized estimating equation estimates without considering the varying

effectiveness durations. As shown in the table, the use of nevirapine significantly lowers
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the HIV RNA viral load in both methods. Specifically, when the varying durations were

ignored, the generalised estimating equation estimates of HIV viral load reduction by the

nevirapine was merely 0.0434 in log10, i.e., 100.434 = 2.7 times that of the zidovudine. The

subject-specific reduction, however, shows a much larger magnitude of 1.379 in log10, i.e.,

101.379 = 23.9 times when the varying treatment effectiveness durations are included in

the mean response model. In fact, the latter estimate is quite consistent with the estimated

reduction of 1.3 in log10 that was reported in a phase I/II pharmacokinetic study of nevirapine

(Musoke et al., 1999).

[Table 2 about here]

5 Extensions

In this section, we discuss some potential extensions of the proposed methods and the as-

sociated estimation procedures. To simplify our presentation, we assume that βQ 6= 0. As

shown earlier, when βQ 6= 0, all the discussed extensions can accommodate the hypothesis

testing of treatment efficacy by considering the test statistics similar to S.

5.1 Multiplicative mean response models

In addition to the additive model in (1), there is also a parallel multiplicative model proposed

in the literature (Cheng & Wei, 2000),

E{Yi(t) | Z i(s); 0 ≤ s ≤ t} = µ(t) exp{βTZ i(t)}, (9)

to analyze the repeated measurements. The mean structure of this model is equivalent to

those of the additive model when the response curves are properly transformed, for instance,

if the Y (t) in model (9) is log-transformed. Nevertheless, the multiplicative model also

assumes constant treatment effect and may not be appropriate in the presence of varying

effectiveness durations, either. To include varying effectiveness durations, we propose the

following model:

E{Yi(t) | Z i(s), Ui,Wi; 0 ≤ s ≤ t} = µ(t) exp{βT

Q
Qi(t)I(Ui ≤ t ≤ Ui +Wi) + βT

R
Ri(t)}. (10)

The marginalised version of this model is thus

E{Yi(t) | Z i(s); 0 ≤ s ≤ t} = µ(t) exp{βT

RRi(t)}
[
exp{βT

QQi(t)}H(t; θ) + {1 −H(t; θ)}
]
.

(11)

13
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Apparently, exp{βT

QQi(t)}H(t)+ {1−H(t)}, which is the weighted average of exp{βT

QQi(t)}
and 1, would approach 1 as t goes to 0 or ∞. When Qi(·) is the treatment indicator,

this property reflects the erosion phenomenon in the observed response curves. Unlike the

additive model (4), however, the marginalised multiplicative model does not maintain the

linear structure on βQ, which may add complexity in estimation.

To estimate the parameters (β, θ) in model (10), consider Xi(t) =
∫ t

0
Yi(s)dNi(s). Since

E{dXi(t)|Zi(s), Ci; 0 ≤ s ≤ t, β∗, θ∗} = ∆i(t) exp{ρi(t;β∗, θ∗)}dΩµ(t),

where ρi(t;β, θ) = βT

RRi(t)+log[exp{βT

QQi(t)}H(t; θ)+{1−H(t; θ)}], then Mρ,i(t) = Xi(t)−∫ t

0
∆i(s) exp{ρi(s)}dΩµ(s) are the zero-mean stochastic processes. The following estimating

equations can thus be used

Eρ(β, θ) =

n∑

i=1

∫ τ

0

∆i(t)
{
ψi(t)− ψρ(t;β, θ)

}
dXi(t) = 0,

where ψρ(t;β, θ) =
∑n

i=1 ∆i(t) exp{ρi(t;β, θ)}ψi(t)/
∑n

i=1 ∆i(t) exp{ρi(t;β, θ)}. Again, de-

note (β̂, θ̂) as the solutions to Eρ(β, θ) = 0. Then the similar techniques proposed earlier

lead to the large-sample properties of consistency as well as asymptotic normality, n1/2(β̂T−
βT
∗ , θ̂

T−θT
∗)

T → N(0,D−1
ρ ΣρD

−1
ρ ) in distribution, whereDρ = −E

∫ τ

0
∆1(t) exp{ρ1(t)}ψ

′
ρ(t)dΩµ(t)

and Σρ = E[
∫ τ

0
∆1(t){ψi(t) − ψρ(t;β, θ)}dMρ,1(t)]

⊗2, respectively. Here, Dρ and Σρ can be

estimated by their empirical counterparts respectively.

5.2 Covariate-dependent observation times

Usually in a well-designed randomised clinical trial, repeated measurements are supposed

to be collected at a pre-determined or fixed set of time points to avoid potential bias or

missing values in the data set. In reality, however, measurements may be actually observed

at varying sets of time points for different individuals, and may be further affected by the

subjects’ covariates (Sun & Wei, 2000; Lin & Ying, 2001). In the statistical literature, when

the mean functions of the counting processes are different, the following model is usually

used,

E{Ni(t) | Z i(s); 0 ≤ s ≤ t} = η(t) exp{κTZ i(t)}, (12)

where κ is a parameter and η(·) is an unspecified baseline function, as in Pepe & Cai (1993)

and Lawless & Nadeau (1995). Hence, the following estimating equations can be used to
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estimate κ,

EN (κ) =

n∑

i=1

∫ τ

0

{Z i(t)− Z(t;κ)}dNi(t) = 0,

where Z i(t;κ) =
∑n

i=1 ∆i(t) exp{κTZ i(t)}Z i(t)/
∑n

i=1 ∆i(t) exp{κTZ i(t)}, by differentiating

the log of partial likelihood function of
∑

i

∫ τ

0
{κTZ i(t)− log[

∑
k ∆k(t) exp{κTZ i(t)}]}dNi(t)

with respect to κ. Let dΩµ,η(t) = η(t)dΩµ(t). Since E{dXi(t) | Z i(s), Ci; 0 ≤ s ≤
t, β∗, θ∗, κ∗} = ∆i(t) exp{κT

∗Zi(t)}dΩµ,η(t), the following estimating equations can be simi-

larly established for (βT, θT, κT)T as in (7),

E1(β, θ, κ) =
n∑

i=1

∫ τ

0

∆i(t)
{
ψi(t) − ψ1(t)

}
dXi(t) = 0,

where ψ1(t) =
∑n

i=1 ∆i(t) exp{κTZ i(t)}ψi(t)/
∑n

i=1 ∆i(t) exp{κTZ i(t)}. Denote (β̂, θ̂, κ̂) as

the solutions such that EN(κ̂) = E1(β̂, θ̂, κ̂) = 0. Then following the arguments in Sun & Wei

(2000), it is true that they are consist and have the asymptotic normality as,

n1/2

(
β̂ − β∗

θ̂ − θ∗

)
l n1/2

(
D−1

1 (β∗, θ∗, κ∗),−D−1
N (κ∗)

)
(

E1(β∗, θ∗, κ∗)

EN(κ∗)

)
, (13)

where D1 = − limn→∞ n−1E ′
1 and DN = − limn→∞ n−1E ′

N. Hence, by the normal approxima-

tion of (E1, EN) as shown the Appendix, the asymptotic variance of (13) can be estimated by

(D̂−1
1 ,−D̂−1

N
)Σ̂1(D̂

−1
1 ,−D̂−1

N
)T, where D̂N, D̂1 and Σ̂1 are their respective empirical estimates.

5.3 Isotonic regression of mean response models

In either the additive model (1) or the multiplicative model (9), the mean of the baseline

response curves is assumed to be arbitrarily unspecified. In some randomised trials, for

instance, the subjects’ baseline mean response curves may have special monotonic shapes.

They can be either monotonically increasing or decreasing, depending upon the underlying

measurement progression being persistently ameliorating or deteriorating. Therefore the

marginal model (4) is extended as in

E{Yi(t) | Zi(s); 0 ≤ s ≤ t} = µ(t) + βT

QQi(t)H(t; θ) + βT

RRi(t), (14)

with µ(·) ∈ M, where M is the set of all the monotonically nonincreasing functions, or

monotonically nondecreasing functions, denoted by M− or M+, respectively. Without loss

of generality, we focus on M− in this section.
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When there is no covariate information included in (14), the regression model reduces to

a simple isotonic estimation problem. That is, we need to find µ(·) ∈ M− such that

µ−(·) = arg min
µ∈M−

n∑

i=1

‖Yi − µ‖2
,

with the norm ‖ · ‖ defined as in Rice & Silverman (1991). Thus the computational algo-

rithms, such as the most widely used Pooled Adjacent Violators Algorithm or the Minimum

Lower Set Algorithm, can be used (Robertson et al., 1988). When the covariate informa-

tion is included as proposed in the model, we can adapt the back-fitting algorithm as in

Zeger & Diggle (1994) to obtain the final estimates of the baseline function µ(·) and the

parameters.

Algorithm.

1. Consider (β̂[k], θ̂[k]) are obtained in the kth iterative step, k = 1, 2, . . ., where β̂[0] =

θ̂[0] = 0. Use one of the aforementioned algorithms to compute µ−
[k+1](·) ∈ M such that

µ−
[k+1](·) = arg min

µ∈M−

n∑

i=1

∥∥Y[k],i − µ
∥∥2
,

where Y[k],i(t) = Yi(t) − {βT

Q,[k]Qi(t)H(t; θ[k]) + βT

R,[k]Ri(t)};

2. Given µ−
[k+1](·), obtain (β̂[k+1], θ̂[k+1]) by minimizing

n∑

i=1

∫ τ

0

ψi(t)[Yi(t) − {µ−
[k+1](t) + βT

QQi(t)H(t; θ) + βT

RRi(t)}]2dNi(t).

In fact, the proposed isotonic regression model belongs to a more general additive isotonic

model (Bacchetti, 1989),

E{Yi(t) | Zi(s); 0 ≤ s ≤ t} =

P∑

l=1

µl(t) + βT

QQi(t)H(t; θ) + βT

RRi(t),

where (µ1, µ2, . . . , µP ) are the P -dimensional isotonic function vectors. When there is no

covariate information involved, the backfitting algorithm by Hastie & Tibshirani (1990) can

be used with the Pooled Adjacent Violators Algorithm to individual µi iteratively. When the

covariate information is included, it is straightforward to further extend the above algorithm

for the estimation in this model. To avoid complicated variance calculation of the estimators,

computer-intensive methods, such as the bootstrap method (Efron & Tibshirani, 1994), can

be used.
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6 Discussion

As shown earlier, the marginalised model (4) is in fact a type of time-varying coefficient

model. Mathematically, the introduction of varying treatment effectiveness duration is

equivalent to most of the smoothing techniques applied in the nonparametric estimation

approaches: the distributional assumption on the unobserved varying effectiveness durations

and its marginalisation essentially smoothes the differences in the mean responses. Com-

pared with a flexible nonparametric time-varying coefficient, the proposed model may offer

more specific interpretation of the parameters. Like the time-varying coefficient model, the

proposed model also serves as a post hoc tool to analyze repeated measurements, although

its estimation on EU and EW may serve future designs of clinical trials to account for such

potential treatment effectiveness lag and saturation times. Nevertheless, the proposed meth-

ods may be a useful secondary analysis tool to explore and study treatment efficacy when

treatment effectiveness durations potentially exist.

The estimation approaches in this article follow the counting processes formulation in

analysis of repeated measurements by Cheng & Wei (2000), Sun & Wei (2000), Lin & Ying

(2001) and others. This formulation is simple and does not require complicated smoothing,

with room for significant improvement in efficiency. In Lin & Ying (2001), an estimate of the

baseline function was introduced to improve the efficiency by minimizing the variance of the

proposed estimating equations. It is still ad hoc and unknown whether or not the efficiency

reaches the semiparametric efficiency bound. Although there are other approaches that

do not need smoothing and may have more efficient estimation, for instance, the difference-

based method by Yatchew (1997) for the partial linear models with less loss of efficiency, more

future in the semiparametric model efficiency framework of Bickel et al. (1993) is needed.

Along with the efficiency calculation, the technical development of asymptotic theory for

the smoothing baseline estimators in §2 and the isotonic regression algorithms in §3 will

be addressed in separate manuscripts, given the interest in development of these theories

beyond the scope of the current manuscript.
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Appendix A: Asymptotics

A.1. Weak Convergence of n−1/2E(·;β∗, θ∗)

Our proof follows an extension of Appendix 2 in Cheng & Wei (2000). Denote B(t) =∑n
i=1

∫ t

0
∆i(s)Φ(s)dMi(s) and Bϕ(t) =

∑n
i=1

∫ t

0
∆i(s)Φ(s)ϕ(s)dMi(s). Then E(β∗, θ∗) =

Bϕ(τ ) −
∫ τ

0
ϕ(t)dB(t). For any t > 0, B(t) and Bϕ(t) are the sums of independent and

identically distributed zero-mean terms. By the Central Limit Theorem, n−1/2(B(t),Bϕ(t))

converges in distribution to a zero-mean Gaussian process, (W(t),Wϕ(t)), say.

Assume that ϕi(·), i = 1, 2, . . . , n, are of bounded variation. Moreover, without loss of

generality, ϕi(·) are assumed to be non-negative. Then the individual terms of B(·) and

Bϕ(·) can be written as sums of monotone functions in t and hence “manageable.” Thus

n−1/2(B(t),Bϕ(t)) converges weakly to (W,Wϕ), as n→ ∞ (Pollard, 1990, p. 38 and p.53).

By the strong embedding theorem in Shorack & Wellner (1986, p. 47), there exists an in-

duced probability space such that (n−1/2B(t), n−1/2Bϕ(t), n−1
∑n

i=1 ∆i(t), n
−1
∑n

i=1 ∆i(t)ϕi(t))

converges almost surely. By the Lemma 8.2.3 in Chow & Teicher (1988, p.265) coupled with

Helly’s theorem in Serfling (1980, p.352), it is true that

n−1/2

∫ t

0

n∑n
i=1 ∆i(s)

dB(s) →
∫ t

0

1

E∆1(s)
dW(s) and n−1/2

∫ t

0

ϕ(s)dB(s) →
∫ t

0

ϕ∗(s)dW(s)

almost surely and uniformly in t. The weak convergence of n−1/2E(β∗, θ∗) thus follows in the

original probability space, due to their convergence almost surely to Wϕ(τ )−
∫ τ

0
ϕ∗(s)dW(s)

in the induced probability. The calculation of the variance-covariance matrix of Σ is straight-

forward.

A.2. Asymptotic variance of n−1/2(E1(β∗, θ∗, κ∗)
T, EN(κ∗)

T)T

The asymptotic normality of the joint distribution of n−1/2(E1(β∗, θ∗, κ∗)
T, EN(κ∗)

T)T can be

similarly established following the arguments in Lin & Wei (1989) and Sun & Wei (2000).

To calculate its associated asymptotic variance, it is noted that

n−1/2EN(κ∗) = n−1/2
n∑

i=1

∫ τ

0

{
Z i(t) − Z(t;κ)

}
dMN,i(t),

whereMN,i(t) = Ni(t)−
∫ t

0
∆i(s) exp{κTZ i(s)}dΩ(s). Let ei = E

∫ τ

0

{
Z i(t)− Z(t;κ)

}
dMN,i(t)

and its empirical estimates as êi, respectively. Thus the variance-covariance matrix of
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n−1/2(E1(β∗, θ∗, κ∗)
T, EN(κ∗)

T)T can be approximated by

Σ̂1 =

(
n−1

∑n
i=1 ε̂îε

T

i n−1
∑n

i=1 ε̂iê
T

i

n−1
∑n

i=1 êi ε̂
T

i n−1
∑n

i=1 êiê
T

i

)
,

where ε̂i =
∫ τ

0
∆i(t)Φ(t){ϕi(t) − ϕ1(t)} exp{κ̂TZ i(t)}dΩ̂µ,η(t) and

Ω̂µ,η(t) =

∫ t

0

∑n
i=1 dXi(s)∑n

i=1 ∆i(t) exp{κ̂TZ i(s)}
.
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Fig. 1: Density function and survival function of the bivariate action onset
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Fig. 3: Maternal HIV plasma viral load and their mean functions in HIVNET 012 trial:

smoothed lines are lowess curves
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Table 1: Summary of simulation results. Each entry is the estimated bias with 95% empirical

coverage probabilities in brackets

(βQ*, βR*) = (1, 0) (βQ*, βR*) = (−1, 0) (βQ*, βR*) = (1, 1) (βQ*, βR*) = (−1, 1)

n µ(t) βQ βR βQ βR βQ βR βQ βR

50
√

t 0.003 -0.005 0.011 0.008 -0.008 0.015 -0.017 0.013

(0.944) (0.971) (0.960) (0.930) (0.938) (0.951) (0.959) (0.961)

50 sin(2πt) -0.004 -0.003 0.010 -0.002 0.014 0.001 -0.003 -0.007

(0.929) (0.938) (0.949) (0.941) (0.937) (0.939) (0.967) (0.935)

100
√

t 0.002 -0.003 -0.005 0.004 -0.006 0.011 0.013 0.002

(0.966) (0.958) (0.971) (0.957) (0.919) (0.947) (0.944) (0.958)

100 sin(2πt) 0.014 0.023 -0.004 0.004 0.007 -0.002 0.006 -0.009

(0.952) (0.951) (0.955) (0.952) (0.947) (0.961) (0.977) (0.936)

200
√

t 0.011 -0.009 -0.006 -0.016 0.005 0.006 0.006 0.004

(0.968) (0.969) (0.931) (0.958) (0.955) (0.976) (0.975) (0.966)

200 sin(2πt) 0.006 0.002 -0.016 -0.014 0.012 -0.004 0.006 0.005

(0.972) (0.941) (0.971) (0.973) (0.936) (0.958) (0.953) (0.968)

Table 2: Parameter estimates in model (4) with/without varying effectiveness onset con-

sidered: Cov., covariates; Est., parameter estimates; s.e., standard errors; CI, confidence

interval.
Without varying onset With varying onset

Cov. Est. s.e. 95% CI Estimate s.e. 95% CI

Nevirapine vs. Zidovudine -0.434 0.070 (-0.572,-0.296) -1.379 0.083 (-1.542,-1.216)

Days since first dose 0.008 0.001 (0.006,0.009) 0.012 0.056 (-0.098,0.122)

Age 0.009 0.008 (-0.070,0.025) -0.001 0.009 (-0.019,0.017)
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