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Summary

Suppose that we are interested in making inferences about a vector of constrained
parameters. Confidence regions for these parameters are often constructed via a normal
approximation to the distribution of a consistent estimator for a transformation of the
parameters. In this article, we utilize the confidence distribution, a frequentist counter-
part to the posterior distribution in Bayesian statistics, to obtain optimal confidence
regions for the parameters. Members of such a region can be efficiently generated via a
standard Markov chain Monte Carlo algorithm. We then apply this technique to draw
inferences about the temporal profile of the survival function with censored observations.
We illustrate the new proposal with the survival data from the well-known Mayo primary
biliary cirrhosis study and show that the volume of the new 0.95 confidence region is only
one thirty fourth of that of the conventional confidence band.

Some key words: Confidence distribution; Highest posterior density region; Markov chain Monte Carlo;
Simultaneous confidence intervals; Survival analysis.

1. Introduction

Let θ0 be a vector of the unknown true values of p parameters. Suppose that we
are interested in constructing a confidence region for θ0 with a pre-specified confidence
level. Often these parameters have certain intrinsic constrains. Conventionally such a
confidence region is obtained via an estimator of a transformation of θ0. For example,
to make inferences about the Pearson correlation coefficient θ0 between two univariate
random variables, we customarily utilize a normal approximation to the distribution of
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the Fisher transformation

0.5 log{(1 + θ̂)/(1 − θ̂)}

of the sample correlation coefficient θ̂ to obtain confidence intervals of the transformed
parameter. We then apply the inverse of this transformation to the boundaries of such
intervals to obtain confidence intervals for θ0.

As another example, consider the simple one-sample problem with censored data in
survival analysis discussed in Chapter 5 of Fleming & Harrington (1991). Let the kth
component θk0 of θ0 be the survival probability at time tk, k = 1, · · · , p, where t1 < · · · <
tp. Here, the constrain is 0 ≤ θp0 ≤ · · · ≤ θ10 ≤ 1. A commonly used transformation for
this case is the complementary log-log. Specifically, for the kth component of θ0, let γk0 =
log{− log(θk0)} and γ′

0 = (γ10, · · · , γp0). One then uses a standard consistent estimator
γ̂ ′ = (γ̂1, · · · , γ̂p) for γ0, whose distribution can be approximated well by a multivariate
normal with mean γ0 when the sample size n is large. A conventional (1 − α), 0 < α < 1,
confidence region or simultaneous confidence band for γ0 is a p-dimensional rectangular

Πp
k=1(γ̂k − cσ̂k, γ̂k + cσ̂k), (1.1)

where σ̂k is the standard error estimate for γ̂k and the cutoff point c is chosen such that

pr(max{1≤k≤p}|γ̂k − γk|/σ̂k ≤ c) = 1 − α. (1.2)

Note that c in (1.2) can be easily obtained via the resampling-perturbation method
proposed by (Parzen et al., 1994). It follows that an asymptotic (1 − α) confidence region
for θ0 via (1.1) is a p-dimensional rectangular

Πp
k=1(exp{− exp(γ̂k − cσ̂k)}, exp{− exp(γ̂k + cσ̂k)}). (1.3)

This type of simultaneous confidence intervals has been extensively discussed, for exam-
ple, in Fleming & Harrington (1991, Chapter 6.3).

As an illustration, we use the well-known Mayo primary biliary cirrhosis mortality
data (Fleming & Harrington, 1991, Appendix D) to construct the confidence region
(1.3) for the survival function. The data were from a randomized trial in primary
biliary cirrhosis of the liver conducted at Mayo Clinic. A detailed description of this
data set can be found in Fleming & Harrington (1991, p.2). Here, we used all sur-
vival information from 418 patients in the study for illustration. Figure 1 presents the
Kaplan-Meier curve (solid curve) for the survival probabilities and the corresponding
0.95 simultaneous confidence band (gray area) obtained via (1.3) for seven time points,
(t1, · · · , t7) = (2, 4, 6, 7, 8, 9, 10)(years). It is important to note that the complementary
log-log transformation for the survival probability does not take into account of the or-
dered constrain among {θk0, k = 1, · · · , p}. Therefore, the resulting confidence region in
Figure 1 contains functions which are not non-increasing over time and, therefore, are
not possible candidates for θ0.

In this article, under a general setting we utilize the confidence distribution to con-
struct classical confidence regions for θ0. We show that the (1 − α) highest confidence
density region, HCDR, is a bona fide (1 − α) asymptotic confidence region and has the
smallest volume among a rather large class of (1 − α) confidence regions for θ0. Points in
the HCDR can be obtained efficiently via a Markov chain Monte Carlo procedure. The
concept of a confidence distribution is purely based on a frequentist interpretation and
can be regarded as a counterpart to the posterior distribution in Bayesian statistics. The
inference procedures using the confidence distribution have been discussed extensively,
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Fig. 1. The traditional 0.95 confidence band (gray region) and the Kaplan-
Meier estimator (solid curve) for the survival probabilities at Years 2, 4, 6,
7, 8, 9 and 10 based on the Mayo primary biliary cirrhosis mortality data

for example, by Efron (1993, 1998), Fraser (1991, 1996), Lehmann (1986, 1993), Schweder
& Hjort (2002, 2003), and Singh et al. (2007).

We illustrate the new proposal with the data from the above Mayo liver study. We
show that the volume of the resulting 0.95 highest confidence density region for the
aforementioned seven survival probabilities is one thirty fourth of the volume of the
confidence region displayed in Figure 1. After deleting those impossible candidates for
the survival function from the band in Figure 1, the resulting region is still 9 times
as big as the HCDR with respect to the volume. Lastly, to draw inferences about the
temporal profile of the survival function, we show how to generate possible candidates
of the survival function from the 0.95 HCDR via a MCMC algorithm.

2. The highest confidence density region

Let A ∈ Rp be the set of all possible values of θ0 and X be the data. Assume that
there is a smooth, one-to-one transformation g(·) from A to Rp such that any point
in Rp is a possible value of ω0 = g(θ0). Furthermore, assume that there is a consistent
estimator ω̂ such that with a large sample size n, the distribution of (ω̂ − ω0) can be

approximated well by a normal with mean 0 and covariance matrix Σ̂. Moreover, assume
that nΣ̂ converges to a deterministic matrix, as n → ∞.

Let Ω be a random vector whose distribution is MN(ω̂, Σ̂), which can be interpreted
as a confidence distribution of ω0 (Singh et al., 2007, Chapter 5). From a frequentist
point of view, this distribution contains all the information about ω0. For example, let
Dα ∈ Rp be a region such that

pr(Ω ∈ ω̂ + Dα | X) = 1 − α,
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where the probability is with respect to Ω conditional on X. Then, asymptotically the
set

D̂α = ω̂ + Dα (2.1)

is a (1 − α) confidence region for ω0.

Now, let the random vector Θ = g−1(Ω) and f̂(θ) be the density function of Θ. Based

on Theorem 5.1 of Singh et al. (2007), f̂(θ) is a confidence density function of θ0. Consider

a region R̂α ⊂ A such that

pr(Θ ∈ R̂α | X) ≥ 1 − α. (2.2)

Furthermore, assume that R̂α is an asymptotic confidence region for θ0 with at least
(1 − α) confidence level. The class of such regions is quite large. For instance, any set

g−1(D̂α) from (2.1) is in this class. Given data X, let

P̂α = {θ : f̂(θ) ≥ d}, (2.3)

where d is obtained such that

pr(Θ ∈ P̂α | X) ≥ 1 − α. (2.4)

It follows from the justification for the optimality property of the highest posterior density
region in Bayesian statistics (Box & Tiao, 1992) that the (1 − α) “credible” region P̂α

has the smallest “volume” among all (1 − α) confidence or confidence regions R̂α in (2.2).

However, it is not clear that the credible region P̂α is an asymptotic (1 − α) confidence
region. In the Appendix, we show that this region is indeed a (1 − α) confidence region.

To obtain an approximation to the cut-off point d in (2.3), one may generate a large
number, M, of realizations {θ(j) = g−1(ω(j)), j = 1, · · · ,M}, where {ω(j)} are indepen-
dent realizations from the multivariate normal vector Ω. Then the 100αth empirical
percentile of {f̂(θ(j)) | j = 1, · · · ,M} can be treated as an estimate for the cut-off d.

To generate points in the optimal region (2.3) or equivalently realizations from a

uniform random vector Ψ with its support being P̂α, one may employ a standard
Metropolis MCMC algorithm (Liu, 2001). Note that for any set B ⊂ P̂α, pr(Ψ ∈ B)

is the ratio of the volumes of the above two sets. Specifically, one may let ψ0 = θ̂ =
g−1(ω̂). For j = 1, · · · ,M0, we iteratively generate realizations ψ via the Markov chain
ψj = ψj−1I{g(θ∗) < d} + θ∗I{g(θ∗) ≥ d}, where I(·) is the indicator function and θ∗

is simulated from the proposal multivariate normal distribution MN(ψj−1, Σ̃). Here, an

obvious candidate for Σ̃ is a matrix which is proportional to the variance-covariance
matrix for g−1(ω̂) derived from the standard δ-method with the aforementioned Σ̂.
Now, deleting the first L0 “burn-in period” realizations from this chain, the resulting
V = {ψj , L0 ≤ j ≤ M0} are realizations approximately from the uniform vector Ψ on P̂α.
Like any other problem handled with MCMC procedures, the efficiency of this Metropo-
lis algorithm depends on the choice of the proposal distribution. The scaling parameter
can be tuned to control the rejection rate of the Markov chain.

Note that the volume of the confidence region P̂α can be easily estimated by

M−1
M∑

j=1

I(f̂(θ(j)) ≥ d)

f̂(θ(j))
. (2.5)
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3. Application to one sample problem in survival analysis

Let T̃ be a random continuous “survival” time and its survival function be S(t) =
pr(T̃ ≥ t) for t ≥ 0. Let θ′0 = (S(t1), · · · , S(tp)) as discussed in the Introduction section.

Let C be the independent censoring variable for T̃ . One can only observe T = min(T̃ , C)
and ∆ = I(T = T̃ ). Furthermore, let the data {(Ti,∆i), i = 1, · · · , n} be n independent
copies of (T,∆). We are interested in obtaining the HCDR for θ0 with such censored
data.

Now, let Λ(t) = − log{S(t)}, the cumulative hazard function of T̃ . Also, let

ω0 = g(θ0) = (log{Λ(t1)}, log{Λ(t2) − Λ(t1)}, · · · ,− log{Λ(tp) − Λ(tp−1)})
′.

Note that with this transformation g(·), any point in Rp is a possible value for ω0.

To obtain ω̂, let Λ̂(t) =
∑n

i=1

∫ t
0 Y −1(s)dNi(s), the Nelson estimator for Λ(t), where

Y (t) =
∑n

i=1 I(Ti ≥ t) and Ni(t) = I(Ti ≤ t)∆i. Then, it follows from the resampling-
perturbation method (Lin et al., 1994) that the distribution of

{Λ̂(tk) − Λ̂(tk−1)} − {Λ(tk) − Λ(tk−1)}, 1 ≤ k ≤ p, (3.1)

can be approximated well by the conditional distribution (conditional on the data) of

n∑

i=1

∫ tk

tk−1

Y −1(s)dNi(s)Gi, (3.2)

where t0 = 0 and {Gi} is a random sample from N(0, 1), which is independent of the data.
The distribution of (3.2) can be approximated easily with a large number of realized sam-
ples from {Gi}. The joint distribution of the standardized (3.1) is normal asymptotically.
With the standard δ-method, one can show that (ω̂ −ω0) is approximately normal with

mean 0 and covariance matrix Σ̂, which is the corresponding consistent estimator for the
covariance matrix of ω̂.

Let Ω be a MN(ω̂, Σ̂) and Θ = g−1(Ω). Then, Θ has the density function

f̂(θ) = (|2πΣ̂|)−1/2 exp(−
{g(θ) − ω̂}′Σ̂−1{g(θ) − ω̂}

2
)

∣∣∣∣
∂g(θ)

∂θ

∣∣∣∣ ,

where
∣∣∣∣
∂g(θ)

∂θ

∣∣∣∣ =
[
Πp

k=1θkΠ
p
k=1{log(θk−1) − log(θk)}

]−1
,

0 ≤ θp ≤ · · · ≤ θ1. The (1 − α) HCDR P̂α (2.3) can then be obtained accordingly.
To illustrate the new proposal, we use the survival data set from the Mayo liver

study discussed in the Introduction. First, suppose that we are interested in making
inference about the survival probabilities only at Years 9 and 10. Here, p = 2 and
θ′0 = {S(9), S(10)}. The conventional 0.95 confidence band is the rectangular region given

in Figure 2. The black dot is the estimate θ̂ = g−1(ω̂) = (0.52, 0.44)′ . The light gray area
is the region obtained by deleting points that violate the constrain S(9) ≥ S(10) in the
above rectangular. To obtain the 0.95 HCDR for θ0, we generated M = 106 θ(j) to ob-

tain the cutoff point d = 8.50 in (2.3). To locate points in P̂0.05, we let the proposal

distribution be MN(ψj−1, 3 × Σ̃), where Σ̃ is the estimated variance-covariance matrix

of g−1(ω̂). Deleting the first L0 = 3000 realizations of Ψ in the run-in period, we gener-
ated 5 × 105 ψ’s. The average rejection rate is 54.2%. To examine whether the generated
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Fig. 2. The 0.95 HCDR (dark gray), the conventional rectangular-shape
confidence region (rectangular), and the trimmed conventional confidence
region considering order constrains (light gray) for θ0 = {S(9), S(10)}′

based on the Mayo primary biliary cirrhosis mortality data. The black dot
is the point estimator for the survival probabilities.

realizations from the Markov chain were stabilized, we continued generating another set
of fresh 5 × 105 ψ’s. The frequency distributions from these two sets of ψ’s are quite
similar, indicating that after the run-in period, the Markov chain became stationary.
Lastly, we combined these two sets of generated ψ’s to estimate the distribution of the
uniform random vector over P̂0.05. In Figure 2, the dark gray region is the resulting 0.95
HCDR. The conventional rectangular region and its trimmed counterpart (light gray)
are 48% and 27% bigger than the HCDR, respectively.

Next, suppose that we are interested in the survival function at the seven time points
discussed in the Introduction. Using the same procedure as the above two-dimensional
case, for α = 0.05, the cutoff point d = 2.60 × 106. The 0.95 conventional confidence
region in Figure 1 is 34 times as big as the HCDR. By deleting the impossible candidates
for the survival function from the above confidence region, the resulting region is still 9
times as big as the HCDR.

The only advantage of using the conventional band (1.3) for the survival function is
its ease of the graphical display shown in Figure 1. For visualizing typical members of
the 0.95 HCDR, we chose points from the above M = 106 realizations of the Markov
chain sequentially, but separated from each other by a block of 100 realizations of the
chain. This may sample up to 104 empirically “uncorrelated” sample points from this
optimal region. We can then interactively display each member using a survival curve by
connecting seven components of the above sample point over time. In Figure 3, we show
six such curves with the observed Kaplan-Meier estimate. In contrast to the conventional
confidence band in Figure 1, these curves show the possible temporal patterns of the
true survival function. Like the curves presented in Figure 3, in general we find that the
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Fig. 3. The independent realizations randomly generated from the 0.95
HCDR (dark curve) with the Kaplan-Meier estimator (gray curve) for the
survival probabilities at Years 2, 4, 6, 7, 8, 9 and 10 based on the Mayo

primary biliary cirrhosis mortality data.

temporal profiles of members in the optimal region are quite similar except for their right
tail parts, which is likely due to relatively low event rates and small numbers of patients
in the risk sets beyond seven study years.

We conducted a small simulation study to compare the performance of the proposed
HCDR and conventional confidence regions. The simulation study was designed to mimic
the underlying stochastic mechanism generating the primary biliary cirrhosis liver data.
Specifically, the survival times were generated from a two-parameter Weibull distribu-
tion fitted by the Mayo liver study data via the parametric maximum likelihood. The
censoring times were generated with the observed Kaplan-Meier estimator constructed
from the liver data for the censoring distribution. Here, the sample size n = 400. With
each simulated data set, we constructed the 0.95 HCDR and the conventional confidence
region for the survival function at Years 2, 4, 6, 7, 8, 9 and 10. With 2000 replications, the
empirical coverage levels for the 0.95 HCDR and its conventional counterpart are 0.954
and 0.964, respectively. The ratio of the average volumes (conventional/HCDR) is about
34, indicating that on average the new proposal is much smaller than the conventional
region.

4. Remarks

For cases with multiple parameters involved, one usually constructs marginal confi-
dence or Bayesian credible intervals for each parameter by treating others as nuisance
parameters. In fact, many modern novel statistical inference procedures were developed
mainly for eliminating “nuisance parameters” effectively. However, oftentimes it is impor-
tant and interesting to know the relationships among these parameters and their overall
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profile such as the temporal pattern of the survival function discussed in this paper. An
obstacle of making efficient joint inference is the difficulty of displaying or visualizing a
possibly odd shaped confidence or credible region for a high dimensional vector of param-
eters. On the other hand, with modern numerical and computing techniques, members
of such a joint region can be generated efficiently and displayed interactively as we did
in the article.

For the case with a moderate sample size, different transformations ω0 = g(θ0) may
create quite different confidence density functions of θ0. Moreover, the adequacy of the
highest confidence density region estimation procedure depends on the accuracy of the
normal approximation to the distribution of (ω̂ − ω0). It would be interesting and chal-
lenging to investigate how to choose a transformation which produces the “optimal”
highest confidence density regions with correct coverage levels.

It is not clear how to generalize the HCDR estimation proposal to the case when the
dimension of θ0 is infinity, for example, the parameter of interest is the entire survival
function. Further theoretical development along this line is needed.

Appendix

Justification for P̂α being an asymptotic (1 − α) confidence region

To show that pr(θ0 ∈ P̂α) → 1 − α as n → ∞, we note that

pr(θ0 ∈ P̂α) = pr(Ẑθ0
∈ Ŝα) = pr(ϕnΣ̂

(Ẑθ0
){g(θ0)} ≥ n1/2d),

where

Ŝα = {z : ϕnΣ̂
(z){g(θ̂) + n−1/2

z} ≥ n1/2d},

Ẑθ = n1/2{g(θ) − g(θ̂)}, ϕΓ(·) is the density function of MN(0, Γ), (ω) = J{g−1(ω)}, and J(θ)
is the determinant of the matrix of partial derivatives of g(θ) with respect to θ. It follows from

the convergence of nΣ̂
P
→ Σ0, a deterministic matrix, and the consistency of θ̂ that n1/2d → d0

in probability, where d0 is the solution to

pr{ϕΣ0
(Z){g(θ0)} ≥ d0} = 1 − α,

where the probability is with respect to Z and Z is MN(0, Σ0). This, coupled with the convergence

of Ẑθ0

D
→ MN(0, Σ0), implies that

pr(Ẑθ0
∈ Ŝα) = pr(ϕΣ0

(Ẑθ0
){g(θ0)} ≥ d0) + o(1)

= pr(ϕΣ0
(Z){g(θ0)} ≥ d0) + o(1) = 1 − α + o(1)
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