








Table 2: Analysis results for the study of physical activity in relation to breast cancer
mortality in the Nurses’ Health Study

Univariate Analysis Multivariate Analysis

E↵ect HR (95% CI) P HR (95% CI) P

Naive Cox Estimator (�̂NC)
Physical activity 1 0.788 (0.645, 0.963) .019 0.794 (0.651, 0.970) .024
Age at diagnosis (10 year) 2 1.107 (0.946 1.295) .210
Overweight (BMI � 25) 2 1.043 (0.819, 1.327) .740
Cancer stage II or III 2 3.815 (2.934, 4.961) <.001

Frailty-copula estimator using the Gaussian kernel (�̂FCG)
Physical activity 1 0.445 (0.201, 0.986) .023 0.453 (0.201, 1.020) .028
Age at diagnosis (10 year) 2 1.099 (0.933, 1.295) .129
Overweight (BMI � 25) 2 1.023 (0.799, 1.310) .429
Cancer stage II or III 2 3.846 (2.949, 5.015) <.001

Frailty-copula estimator using the Epanechnikov kernel (�̂FCE)
Physical activity 1 0.433 (0.229, 0.818) .005 0.448 (0.236, 0.849) .007
Age at diagnosis (10 year) 2 1.102 (0.934, 1.301) .124
Overweight (BMI � 25) 2 1.023 (0.799, 1.312) .427
Cancer stage II or III 2 3.844 (2.953. 5.003) <.001
1 error-prone covariate; per 20 MET-hrs/wk
2 error-free covariate
3 HR = Hazard Ratio; P = p-value
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as a special case.

Other attractive features of the method include its applicability to external validation

studies, for which very few existing methods are available. Moreover, compared to the

alternative methods such as regression calibration, this new frailty approach shows good

performance.

While the method has been restricted to a univariate error-prone covariate, extending

the methodology to allow multiple mis-measured exposures is straightforward, if the multi-

dimensional distribution of exposures is known or can be estimated from validation or reli-

ability data. Future e↵orts will be devoted to estimating the multi-dimensional conditional

distribution of the exposures given the surrogates using approaches for conditional copulas,

for example. To save computation time, we have studied several types of copulas without

considering model selection. However, it is worth considering methods for optimal copula se-

lection, such as goodness-of-fit tests based on the empirical copula (Durrleman et al., 2000),

the Kendall process (Genest and Rivest, 1993; Genest et al., 2009), and kernel density esti-

mation (Fermanian, 2005). Based on our simulation investigation, results were robust to the

choice of kernel function and its bandwidth, in terms of the mean squared errors of �̂. For

example, regardless of whether Gaussian, Epanechnikov or biweight kernel functions were

applied with di↵erent bandwidths b = c⇥min(�̂X , IQR(X)/1.34)n�1/5
v , where c = 0.9, 2.34,

or 2.78, the MSEs of �̂ changed by no more than 0.004. However, it will be worthwhile

to investigate whether e↵orts to reduce the asymptotic mean integrated squared error of

the frailty distribution function itself via bandwidth selection tools such as cross-validation

would appreciably improve the overall performance of � estimation.

This novel frailty-copula approach for solving the covariate measurement error problem

in Cox regression models establishes a previously unnoticed linkage between the frailty con-

cept and the measurement error framework, facilitating cross-fertilization between these two

fields. With this formulation, we have simultaneously advanced standard frailty models by

eliminating the restriction of the frailty term to a parametric distribution or to an assumed
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independence from model covariates. Future research will investigate the application of these

new developments to frailty models in survival data analysis.

Finally, although we mainly work on fX(x|z) in the paper, with the identity fZ(z|x) =

fX(x|z)fZ(z)/fX(x), our Copula-based approach can also handle fZ(z|x) when both X and

Z are continuous variables. This way, our formulation would encompass almost all the major

measurement error models.

6 Supplementary Materials

Web Appendices referenced in Section 3 are available from the corresponding author.
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Proofs of Asymptotic Properties

This section proves the asymptotic properties of the inference procedures proposed in Section

3. Let ✓ be the vector of (�, �T ) and let (✓0, ⇤0(·)) be the true parameter values of (✓, ⇤(·)).

We impose the following regularity conditions:

(C1) The parameter value of ✓0 belongs to the interior of a compact set ⇥ in the domain of

✓.

(C2) The function ⇤0(t) is strictly increasing and continuously di↵erentiable with derivative

�0(t) > 0 for every t 2 [0, ⌧ ], where ⌧ is the duration of the study. The baseline hazard

function �0(t) is bounded above by some constant �
max

for all t 2 [0, ⌧ ].

(C3) X, Z, and W are bounded.

(C4) With probability 1, there exists a positive constant �0 such that P (C � ⌧) > �0.

(C5) The limiting valueD(✓0) of �n�1 @U(✓, ⇤0)/@✓|✓=✓0 is positive definite with probability

1.

(C6) The function @f
X

(x|z; ⇠)/@⇠ is absolutely integrable.
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(C7) The density function f
X

(x|z; ⇠) = f
X

(x|z; ⇠0) almost surely if and only if ⇠ = ⇠0. In

addition, if ⌫T ḟ
Xz

(x|z; ⇠0) = 0 holds for any vector ⌫ almost surely, then ⌫ = 0, where

ḟ
Xz

denotes the derivative of f
X

(x|z) with respect to ⇠.

(C8)

lim
nv!1

n
v

b = 1, lim
nv!1

n
v

b5 = 0, and lim
nv!1

b log n
v

= 0.

(C9) ⇠̂ is an estimator for ⇠0 satisfying

k⇠̂ � ⇠0k = O(
p

log n
v

/n
v

) a.s. and E(⇠̂ � ⇠0)
2 = O(n�1

v

log n
v

).

(C10) C 0
⇠

is bounded on [0, 1]2 and

|C 0
⇠1
(u1, v1)� C 0

⇠2
(u2, v2)|  C1(|u1 � u2|+ |v1 � v2|+ |⇠1 � ⇠2|),

where u
j

= F
X

(x
j

), v
j

= F
Z

(z
j

), (u
j

, v
j

) 2 J ⇢ [0, 1]2 and ⇠
j

belongs to a compact

set D̃ ⇢ R for j = 1, 2. Here C1 > 0 is a constant and J is the intersection of an open

set and [0, 1]2.

(C11) (n
v

b)/n ! C3 for a constant C3 > 0.

In Condition (C8), the assumption that the lim
nv!1 n

v

b5 = 0 is used to make the bias in

f̂
X

(x) asymptotically negligible. Conditions (C9) - (C10) guarantee the consistency of the

copula parameter estimator ⇠̂, and Condition (C11) establishes the weak convergence of the

semi-parametric estimator
p
n(✓̂ � ✓0) in Theorem 3.

For simplicity, we rewrite the proposed estimating equation (7) as

U(✓, ⇤0) =
nX

i=1

Z
⌧

0


Q

i

�
P

n

i=1 Yi

(t) ⌘
i

(✓,⇤0(t))QiP
n

i=1 Yi

(t) ⌘
i

(✓,⇤0(t))

�
dN

i

(t), (A.1)
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and simple algebraic manipulation yields

U(✓0, ⇤0) =
nX

i=1

Z
⌧

0


Q

i

�
P

n

i=1 Yi

(t) ⌘
i

(✓0,⇤0(t))QiP
n

i=1 Yi

(t) ⌘
i

(✓0,⇤0(t))

�
dM

i

(t), (A.2)

where Q
i

= (µ(Z
i

), W T

i

)T .

Web Appendix A. Consistency of ✓̂

We introduce the notation

S(k)(t; ✓,⇤) = n�1
nX

i=1

Y
i

(t)Q⌦k

i

⌘
i

(✓,⇤(t)),

S(k)
✓

(t; ✓,⇤) = n�1
nX

i=1

Y
i

(t)Q⌦k

i

⌘̇
✓i

(✓,⇤(t)),

S(k)
⇤ (t; ✓,⇤) = n�1

nX

i=1

Y
i

(t)Q⌦k

i

⌘̇⇤i(✓,⇤(t)),

for k = 0, 1, 2, where a⌦0 = 1, a⌦1 = a, a⌦2 = aaT , ⌘̇
✓i

= @⌘
i

(✓,⇤(t))/@✓ and ⌘̇⇤i =

@⌘
i

(✓,⇤(t))/@⇤(t) at a fixed time t. In addition, we define s(0)(t), s(1)(t), s(0)
✓

(t), s(1)
✓

(t),

s(0)⇤ (t), and s(1)⇤ (t) as the corresponding expected values at (✓, ⇤) = (✓0, ⇤0). It then follows

that n�1 U(✓, ⇤0) converges a.s. uniformly in ✓ 2 ⇥ to its limit u(✓, ⇤0). We can show that

sup
✓2⇥||n�1 U(✓, ⇤̂)�n�1 U(✓, ⇤0)|| ! 0 as n ! 1 from the uniform convergence of ⇤̂(t) to

⇤0(t) in t, as proven by Zucker (2005, A.3), together with the uniform Lipschitz continuity

of ⌘(✓,⇤), ⌘̇
✓

(✓,⇤), and ⌘̇⇤(✓,⇤) with respect to any fixed continuous ⇤, which consists of

monotone and bounded functions. Hence, we have that sup
✓2⇥||n�1 U(✓, ⇤̂)�u(✓, ⇤0)|| ! 0

almost surely. Moreover, we can show that �n�1 @U(✓, ⇤̂)/@✓ converges in probability to

�@u(✓, ⇤0)/@✓ = D(✓) uniformly in ✓, which is positive definite at ✓ = ✓0 by Condition

(C5). Finally, since

u(✓0, ⇤0) = E

Z
⌧

0

⇢
Q1 �

S(1)(t; ✓0,⇤0(t))

S(0)(t; ✓0,⇤0(t))

�
Y1(t) ⌘1(✓0,⇤0(t))d⇤0(t)

�
= 0,
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and n�1 U(✓0, ⇤̂) ! 0 as n ! 1, by applying arguments in Foutz (1977), there exists a

unique consistent solution ✓̂ such that U(✓̂, ⇤̂) = 0 with probability one.

Web Appendix B. Weak convergence of ✓̂ when fX(x|z) is completely

known

Here, we derive the asymptotic normality of ✓̂ when f
x

(x|z) is completely known.

By a Taylor series expansion of U(✓̂, ⇤̂) at U(✓, ⇤̂) and the consistency of ✓̂, we obtain

D(✓0)
p
n (✓̂ � ✓0) = n�1/2 U(✓0, ⇤0) + n�1/2 [U(✓0, ⇤̂)� U(✓0, ⇤0)] + o

p

(1), (A.3)

where D(✓0) ⌘ E [
R

⌧

0 {s
(1)
✓

/s(0)(t)�s(1)s(0)
✓

/(s(0))2(t)} dN1(t)], which is consistently estimated

by

D̂ = �n�1 @U(✓, ⇤̂)/@✓ |
✓=✓̂

= n�1
nX

i=1

Z
⌧

0

{S(1)
✓

/S(0)(t; ✓̂, ⇤̂)� S(1)S(0)
✓

/(S(0))2(t; ✓̂, ⇤̂)} dN
i

(t).

It follows from the martingale representation of U(✓0, ⇤0) in (A.2) and from the multi-

variate central limit theorem that n�1/2 U(✓0, ⇤0) is asymptotically zero-mean normal with

covariance matrix D(✓0).

We derive the limiting distribution of n�1/2 [U(✓0, ⇤̂)�U(✓0, ⇤0)] by following arguments

similar to those given by Zucker (2005, A.4-A.5). Applying the mean value theorem, we

obtain

U(✓0, ⇤̂)� U(✓0, ⇤0) =
nX

i=1

Z
⌧

0

�(t; ✓0,⇤0) {⇤̂(t)� ⇤0(t)} dNi

(t) (A.4)

+O(sup
t2[0,⌧ ]||⇤̂(t)� ⇤0(t)||),

where �(t; ✓,⇤) = S(1)S(0)
⇤ /(S(0))2(t; ✓,⇤) � S(1)

⇤ /S(0)(t; ✓,⇤). Now, from the Taylor series
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expansion and the fact that dM
i

(t) = dN
i

(t) � Y
i

(t) ⌘
i

(✓0,⇤0(t)) d⇤0(t), {⇤̂(t) � ⇤0(t)} can

be approximated by

n�1
nX

i=1

Z
t

0

dM
i

(u)

S(0)(u; ✓0,⇤0)
� S(0)

⇤

(S(0))2
(u; ✓,⇤){⇤̂(u)� ⇤0(u)} dNi

(u),

which has the solution (Yang & Prentice, 1999)

⇤̂(t)� ⇤0(t) ⇡
1

R0(t)

nX

i=1

Z
t

0

R0(u�)

nS(0)(u; ✓0,⇤0)
dM

i

(u), (A.5)

where

R0(t) =
Y

ut

(
1 +

nX

i=1

nS(0)
⇤ /(S(0))2(u; ✓0,⇤0) dNi

(u)

)
.

Since sup
t2[0,⌧ ]||⇤̂(t)� ⇤0(t)|| = o

p

(1), replacing {⇤̂(t)� ⇤0(t)} in (A.4) with (A.5) yields

n�1/2 [U(✓0, ⇤̂)� U(✓0, ⇤0)] = n�1/2
nX

i=1

Z
⌧

0

G(u; ✓0,⇤0)R0(u�)

nS(0)(u; ✓0,⇤0)
dM

i

(u) + o
p

(1),

where G(u; ✓0,⇤0) =
P

n

i=1

R
⌧

u

�(t; ✓0,⇤0)/R0(t) dNi

(t). This is a sum of n independent

mean-zero random vectors plus an asymptotically negligible term. Therefore, by the central

limit theorem, we can show that n�1/2 [U(✓0, ⇤̂)� U(✓0, ⇤0)] converges in distribution to a

mean-zero normal random vector with covariance matrix H, where

H = E

Z
⌧

0

G(t; ✓0,⇤0)R0(t�)

{
P

n

i=1 Yi

(t) ⌘
i

(✓0,⇤0(t))}2
dM1(t)

�⌦2

,

which can be consistently estimated by

Ĥ = n�1
nX

i=1

Z
⌧

0

G(t; ✓̂, ⇤̂)⌦2 R̂(t�)2

{
P

n

i=1 Yi

(t) ⌘
i

(✓̂, ⇤̂(t))}2
dN

i

(t).

Finally, since the first and second terms in (A.3) are asymptotically independent by an

argument similar to that given by Zucker (2005, A.5), the desired asymptotic distribution
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of
p
n (✓̂� ✓0) can be established as a zero-mean normal distribution with covariance matrix

D�1 +D�1HD�1.

Web Appendix C. Weak convergence of ✓̂ when fX(x|z) is known up

to a parametric form

We now study the case in which f
X

(x|z) belongs to a parametric family indexed by a vector

parameter ⇠ in Rp. That is, the conditional density f
X

(x|z) may be written as

f
X

(x|z; ⇠) = C 0
⇠3
(F

X

(x; ⇠1), FZ

(z; ⇠2)) fX(x; ⇠1),

where ⇠ = (⇠T1 , ⇠
T

2 , ⇠
T

3 )
T , the margins F

X

and F
Z

and their corresponding univariate densities

f
X

and f
Z

are indexed by parameter vectors ⇠1 and ⇠2, respectively, and C 0
⇠3

denotes the

copula density function with an unknown parameter ⇠3.

Suppose we observe {Z
i

; i = 1, . . . , n} in the main study and {X
j

, Z
j

; j = 1, . . . , n
v

} in

the external validation study. Under our assumptions, {Z
i

} and {X
j

, Z
j

} are i.i.d. random

vectors, and since the log-likelihood of the measurement error model is

`(⇠) =
nX

i=1

log f
Z

(z
i

; ⇠2)+
nvX

j=1

{logC 0
⇠3
(F

X

(x
j

; ⇠1), FZ

(z
j

; ⇠2))+log f
X

(x
j

; ⇠1)+log f
Z

(z
j

; ⇠2)},

⇠̂ is the maximizer of `(⇠). Then, following standard maximum likelihood theory, the con-

sistency of ⇠̂ to the true value ⇠0 as well as the asymptotic normality of
p
n (⇠̂ � ⇠0) with

covariance matrix ⌦ follows.

The estimating equation for ✓ with unknown parameter ⇠ is denoted by U(✓,⇤0, ⇠),

which can be obtained by replacing µ(Z
i

), Q
i

and ⌘
i

(✓, ⇤0(t)) with µ(Z
i

; ⇠), Q
i

(⇠) and

⌘
i

(✓, ⇤0(t), ⇠), respectively, in (A.1).

By the functional delta method and the fact that ✓̂ ! ✓0 in probability, the estimating

6
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equation n�1/2 U(✓̂, ⇤̂, ⇠̂) can be expressed as

0 = n�1/2 U(✓̂, ⇤̂, ⇠̂)

= n�1/2 U(✓0, ⇤̂, ⇠̂) +
1

n

@U(✓0, ⇤̂, ⇠̂)

@✓

p
n (✓̂ � ✓0) + o

p

(1),

and by ⇠̂ ! ⇠0,

n�1/2 U(✓0, ⇤̂, ⇠̂) = n�1/2 U(✓0, ⇤̂, ⇠0) +
1

n

@U(✓0, ⇤̂, ⇠0)

@⇠

p
n (⇠̂ � ⇠0) + o

p

(1). (A.6)

We can demonstrate the consistency of n�1@U(✓0, ⇤̂, ⇠̂)/@✓ and n�1@U(✓0, ⇤̂, ⇠0)/@⇠ in the

same way as shown in Web Appendix B, and hence we can show that �n�1@U(✓0, ⇤̂, ⇠̂)/@✓

converges in probability to D(✓0), and that n�1@U(✓0, ⇤̂, ⇠0)/@⇠ converges in probability to

V (⇠0), which can be consistently estimated by

V̂ = n�1
nX

i=1

Z
⌧

0

"
Q̇

⇠i

(⇠̂) +

P
i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂)Q
i

(⇠̂)
P

i

Y
i

(t) ⌘̇
⇠i

(✓̂, ⇤̂, ⇠̂)T

{
P

i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂)}2

#
dN

i

(t)

�n�1
nX

i=1

Z
⌧

0

"P
i

Y
i

(t)Q
i

(⇠̂) ⌘̇
⇠i

(✓̂, ⇤̂, ⇠̂)T
P

i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂) Q̇
⇠i

(⇠̂)
P

i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂)

#
dN

i

(t),

where Q̇
⇠i

and ⌘̇
⇠i

are partial derivatives of Q
i

(⇠) and ⌘
i

(✓,⇤, ⇠) with respect to ⇠. Finally,

since the first term and the second term in (A.6) are asymptotically independent, we have

just proven that the limiting distribution of
p
n (✓̂ � ✓0) is a mean-zero normal distribution

with covariance matrix D�1(✓0) +D�1(✓0)[H + V (⇠0)⌦V (⇠0)T ]D�1(✓0).

Web Appendix D. Weak convergence of ✓̂ when a parametric form

of fX(x|z) is unknown

When the parametric form of f
X

(x|z) is unknown, we propose to use a semi-parametric

estimator f̂
X

(x|z) = C 0
⇠̂

(F̂
X

(x), F̂
Z

(z)) f̂
X

(x) as described in Section 3.2. We rewrite the
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estimating equation for ✓ to emphasize that it is a function of f̂
X

(x|z) as follows:

0 = U(✓̂, ⇤̂, f̂
X|Z) (A.7)

= {U(✓̂, ⇤̂, f̂
X|Z)� U(✓, ⇤̂, f̂

X|Z)}+ {U(✓, ⇤̂, f̂
X|Z)� U(✓, ⇤, f̂

X|Z)}

+ {U(✓, ⇤, f̂
X|Z)� U(✓, ⇤, f

X|Z)}+ U(✓, ⇤, f
X|Z).

The asymptotic properties of ✓̂ can be established by analyzing the four terms of (A.7).

If we can establish the asymptotic properties of the third term of (A.7), the asymptotic

properties of the remaining terms can be found as in Web Appendices A and B, and using

Lemma 1 which we will prove later. First, we focus on deriving the asymptotic properties of
p
n [U(✓, ⇤, f̂

X|Z)� U(✓, ⇤, f
X|Z)].

We start by proving the consistency of f̂
X

(x|z).

Lemma 1 Let f
X

(x|z) be a continuous and bounded probability density function. Under

Conditions (C8) - (C10), for any compact set D ⇢ {(x, z) 2 R2 : (F
X

(x), F
Z

(z)) 2 J},

sup
(x,z)2D

|f̂
X

(x|z)� f
X

(x|z)| ! 0 a.s. as n
v

! 1.

For ease of notation, we let F
X

(x) = F1, FZ

(z) = F2, and f
X

(x) = f1. Then,

f̂
X

(x|z)� f
X

(x|z) = C 0
⇠̂

(F̂1, F̂2)f̂1 � C 0
⇠0
(F1, F2)f1 (A.8)

= {C 0
⇠̂

(F̂1, F̂2)� C 0
⇠0
(F1, F2)}f̂1 + C 0

⇠0
(F1, F2)(f̂1 � f1).

Under the continuity of the distribution functions F1 and F2, we have sup
x,z2R |F̂j

� F
j

| =

O(
p
log(log n

v

)/n
v

) (j = 1, 2) almost surely (see Shorack & Wellner, 2009, Chap 13). Then,

by Conditions (C9) - (C10),

sup
(x,z)2D

|C 0
⇠̂

(F̂1, F̂2)� C 0
⇠0
(F1, F2)| = O(n�1/2

v

p
log n

v

) a.s.

8
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For x in a compact set D̃,

sup
x2D̃

|f̂1 � f1| = O((n
v

b)�1/2
p

log n
v

+ bp) a.s.

for p times continuously di↵erentiable f1 on R for some p � 2 (Newey, 1994, see). Then,

from (A.8),

sup
(x,z)2D

|f̂
X

(x|z)� f
X

(x|z)| = O((n
v

b)�1/2
p

log n
v

+ bp).

Therefore, by Condition (C8), Lemma 1 holds.

We next establish the asymptotic normality of f̂
X

(x|z).

Lemma 2 Suppose that f
X

is twice continuously di↵erentiable at x 2 R. Under Conditions

(C8) - (C10), for any compact set D ⇢ {(x, z) 2 R2 : (F
X

(x), F
Z

(z)) 2 J}, we have

p
n
v

b (f̂
X

(x|z)� f
X

(x|z)) D�! N(0, ⌃),

where ⌃ = C 02
⇠0
(F

X

, F
Z

) f
X

R
K2(u) du.

From Conditions (C9) - (C10) and using the consistency of the density estimator f̂1, we have

|{C 0
⇠̂

(F̂1, F̂2)� C 0
⇠0
(F1, F2)}f̂1| = O

p

(n�1/2
v

p
log n

v

). Thus, from (A.8),

f̂
X

(x|z)� f
X

(x|z) = C 0
⇠0
(F1, F2)(f̂1 � f1) +O

p

(n�1/2
v

p
log n

v

). (A.9)

The next step is to show the asymptotic normality of
p
n
v

b (f̂1 � f1). Let wj

= b�1/2K((x�

X
j

)/b) � b�1/2EK((x � X
j

)/b). Under the assumptions that n
v

b ! 1 and
p
n
v

b5 ! 0 as

9
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n
v

! 1, we can show

p
n
v

b (f̂1 � f1) = n�1/2
v

nvX

j=1

{b�1/2K((x�X
j

)/b)� b�1/2EK((x�X
j

)/b)}

+
p

n
v

b {b�1EK((x�X1)/b)� f
X

(x)}

= n�1/2
v

nvX

j=1

w
j

+O
p

((n
v

b)1/2 b2)

= n�1/2
v

nvX

j=1

w
j

+ o
p

(1),

since b�1EK((x�X
j

)/b)� f
X

(x) = O(b2). Now, we can show that as n
v

! 1,

Ew2
j

= b�1EK2((x�X
j

)/b)� b�1{EK(x�X
j

)/b)}2

= b�1

Z
K2((x� u)/b) f

X

(u) du� b�1{b
Z

K(u) f
X

(x� ub) du}2

=

Z
K2(u) f

X

(x� ub) du+O(b)

�! f
X

(x)

Z
K2(u) du

by the dominated convergence theorem. We can further show that for independent w0
j

s (j =

1, . . . , n
v

), Ew
j

= 0 and n��̃/2
v

E|w
j

|2+�̃ ! 0 for some �̃ > 0. Therefore, by the Lyapunov

central limit theorem, we obtain

p
n
v

b (f̂1 � f1)
D�! N(0, f1

Z
K2(u) du).

Hence, from (A.9), we have proved that
p
n
v

b (f̂
X

(x|z)�f
X

(x|z)) follows a mean-zero normal

distribution with covariance matrix C 02
⇠0
(F1, F2) f1

R
K2(u) du.

Finally, using the functional delta method, we can show
p
n [U(✓, ⇤, f̂

X|Z)�U(✓, ⇤, f
X|Z)]

weakly converges to U 0
f

(M), where U 0
f

is the Hadamard derivative of U(✓, ⇤, f
X|Z) at fX|Z ,

and M is a random variable following the same distribution as the limiting distribution of
p
n
v

b {f̂
X

(x|z)� f
X

(x|z)}, i.e., a mean-zero normal with the covariance matrix ⌃, assuming

10
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(n
v

b)/n ! C3 for a constant C3 > 0. Thus, the proof of the Theorem 3 is completed by

combining this result with the asymptotic normality that have been proven for the other

terms in (A.7).
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