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PGS: a tool for association study of
high-dimensional microRNA expression data

with repeated measures

Yinan Zheng, Zhe Fei, Wei Zhang, Justin Starren, Lei Liu, Andrea Baccarelli, Yi
Li, and Lifang Hou

Abstract

Motivation: MicroRNAs (miRNAs) are short single-stranded non-coding molecules
that usually function as negative regulators to silence or suppress gene expres-
sion. Due to interested in the dynamic nature of the miRNA and reduced microar-
ray and sequencing costs, a growing number of researchers are now measuring
high-dimensional miRNAs expression data using repeated or multiple measures
in which each individual has more than one sample collected and measured over
time. However, the commonly used site-by-site multiple testing may impair the
value of repeated or multiple measures data by ignoring the inherent dependent
structure, which lead to problems including underpowered results after multiple
comparison correction using false discovery rate (FDR) estimation and less bi-
ologically meaningful results. Hence, new methods are needed to tackle these
issues.

Results: We propose a penalized regression model incorporating grid search
method (PGS), for analyzing association study of high-dimensional microRNA
expression data with repeated measures. The development of this analytical frame-
work was motivated by a real-world miRNA dataset. Comparisons between PGS
and the site-by-site testing revealed that PGS provided smaller phenotype predic-
tion errors and higher enrichment of phenotype-related biological pathways than
the site-by-site testing. Simulation study showed that PGS provided more ac-
curate estimates and higher sensitivity than site-by-site testing with comparable
specificities.



Availability: R source code for PGS algorithm, implementation example, and
simulation study are available for download at https://github.com/feizhe/PGS.
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Motivation: MicroRNAs (miRNAs) are short single-stranded non-coding molecules that 
usually function as negative regulators to silence or suppress gene expression. Due to 
interested in the dynamic nature of the miRNA and reduced microarray and sequencing 
costs, a growing number of researchers are now measuring high-dimensional miRNAs 
expression data using repeated or multiple measures in which each individual has more 
than one sample collected and measured over time. However, the commonly used site-by-
site multiple testing may impair the value of repeated or multiple measures data by 
ignoring the inherent dependent structure, which lead to problems including 
underpowered results after multiple comparison correction using false discovery rate 
(FDR) estimation and less biologically meaningful results. Hence, new methods are 
needed to tackle these issues. 
Results: We propose a penalized regression model incorporating grid search method 
(PGS), for analyzing association study of high-dimensional microRNA expression data 
with repeated measures. The development of this analytical framework was motivated by 
a real-world miRNA dataset. Comparisons between PGS and the site-by-site testing 
revealed that PGS provided smaller phenotype prediction errors and higher enrichment of 
phenotype-related biological pathways than the site-by-site testing. Simulation study 
showed that PGS provided more accurate estimates and higher sensitivity than site-by-
site testing with comparable specificities.  
Availability: R source code for PGS algorithm, implementation example, and simulation 
study are available for download at https://github.com/feizhe/PGS. 
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1 INTRODUCTION  

MicroRNAs (miRNAs) are short single-stranded RNAs of nearly 20-24 nucleotides in length that 

are transcribed from DNA but not translated into proteins (Singh, et al., 2008). Most miRNAs 

inhibit the translation of proteins, destabilize their target mRNAs, and control many cellular 

mechanisms dynamically (Baek, et al., 2008; Selbach, et al., 2008). Even small changes in 

miRNA expression levels may have profound consequences for the expression levels of target 

genes (Reinsbach, et al., 2012). The dynamic nature of miRNAs distinguishes it from genetics. 

Therefore, due also to reduced microarray and sequencing experiments cost, a growing number of 

researchers are conducting investigations that measure high-dimensional miRNAs expression 

data using repeated or multiple measures in which each individual has more than one sample 

collected and measured over time (Chen, et al., 2013; Hecker, et al., 2013). Repeated or multiple 

measures data allow the researcher to exclude miRNA expression variation between individuals 

depending on the outcomes and pinpoint the causal role of miRNA expressions such as 

longitudinal study design.  

The popular site-by-site testing using Generalized Estimation Equation (GEE) (Zeger, et al., 

1988) or Linear Mixed Model (LMM) (Henderson, et al., 1959) represents a feasible approach to 

accommodate the presence of high-dimensional miRNA expression data measured at different 

time points. Site-by-site testing is a type of analysis that performs univariate tests of associations 

for each of the biomarker sites, followed by multiple-testing adjustments, for example, the 

Bonferroni’s p-value correction or the false discovery rate (FDR) q-value (Storey and Tibshirani, 

2003). However, this approach is particularly problematic in high-dimensional miRNA 

expression data, because it ignores the underlying dependent structure between miRNAs. In 

addition, not like genetics, miRNA expressions are modifiable by environmental factors including 

diet, air pollution, and other external exposures (Hamm, et al., 2010). Hence, for better 

delineation of the direct effects of miRNAs, adjusting for these environment factors in models are 

recommended (Rakyan, et al., 2011). But issues such as overfitting, collinearity, and obscuring 

biomarkers with small effect sizes are usually encountered in typical regression approaches, e.g. 

GEE and LMM. Therefore, computationally feasible methods are required to tackle these 

problems.  

We propose to apply a variable selection method with specific application in high-dimensional 

miRNA expression data with repeated or multiple measures. Wang et al. proposed a novel 

penalized GEE (PGEE) (Wang, et al., 2012) method to select variables when the number of 

covariates is moderate in a repeated or multiple measures setting. PGEE is able to account for 
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both within subject correlation and dependencies between different biomarkers. However, PGEE 

typically fails in the presence of high-dimensional biomarkers, i.e. when the number of 

biomarkers is larger than the sample size. To tackle this issue, we developed a pre-screening-

based PGEE with grid search method (PGS). Our method consists of an iterative two-step 

approach. Step 1, uses the screening method to downsize the biomarkers, while step 2 feeds the 

“survived” biomarkers to the PGEE. We repeat these two steps in a grid search and perform K-

fold cross validation to determine tuning parameters.  

We test our methods in a miRNA profiling dataset generated from our Beijing Truck Driver Air 

Pollution Study (BTDAS) (Baccarelli, et al., 2011; Byun, et al., 2013; Guo, et al., 2014; Hou, et 

al., 2012; Hou, et al., 2013; Hou, et al., 2013). In BTDAS, we measured air pollution and health 

outcomes, including lung functions, twice with 1-2 weeks apart. We also collected blood samples 

twice for biomarker measurements, including miRNA profiling.  

Based on repeated measures miRNA collected in BTDAS, we apply PGS to model the lung 

function levels measured by forced expiratory volume in 1 second (FEV1), with the goal of 

detecting lung function related miRNAs and uncovering regulatory pathways. We also compare 

PGS with GEE and LMM site-by-site testing in terms of prediction error of lung function levels 

and enrichment of lung function related biological pathways. In addition, a simulation study is 

conducted to examine the extensions of PGS. 

2 METHODS 

2.1 Penalized Generalized Estimating Equations (PGEE) 

PGEE (Wang, et al., 2012) can be used for analyzing repeated or multiple measurement data with 

moderate number of covariates. The algorithm is able to select non-zero effects among a number 

of predictors via adding penalty terms to the traditional GEE. The penalized generalized 

estimating functions U(β) are defined as below:  

U(β) = S(β) - qλ(|β|)sign(β) 

where S(β) are the estimating functions defining a GEE; qλ(|β|) are the penalty functions that 

introduce penalties to each of non-zero β estimate, so that if certain true βi are zero, the algorithm 

would force the estimates to be zeroes; sign(β) is the sign vector for β. Tuning parameter λ within 

the penalty functions qλ(|β|), is the coefficient of penalty terms and it determines the amount of 

shrinkage, i.e., bigger λ leads to smaller overall size of estimated effects. In order to select the 
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effect size that best fits the data, λ will be tuned among a sequence of candidate values using K-

fold cross validation. 

2.2 PGEE with Grid Search (PGS) 

In order to enhance the reliability of PGEE selection result, we perform PGEE on a sequence of 

subsets of the biomarkers based on the ranking of significance (e.g., p-values) obtained by a 

univariate pre-screening analysis adjusted for confounders. Each time a certain number of top 

biomarkers (denoted as Pm) enter the PGEE model. Pm becomes a tuning parameter and constitute 

a searching grid together with PGEE penalty parameter λ. By running PGEE throughout all 

parameter pairs (Pm, λ) in the grid, the best pair would be achieved in terms of the smallest 

prediction error calculated by 20-fold cross validation. With the best parameter pair setting, 

biomarkers with absolute coefficient (β) estimates > 0.001 were selected as influential 

biomarkers. 

2.3 Model Comparison between PGS and GEE/LMM 

Two evaluation matrices were considered in model comparison: phenotype prediction 

performance and enrichment of phenotype-related biological pathway. 

2.3.1 Phenotype prediction performance Smaller prediction error indicates better phenotype 

prediction performances and thus higher value of disease diagnosis using the biomarkers selected 

from a model. To obtain comparable prediction errors between PGS and site-by-site testing, the 

10-fold cross validation procedure used in PGS was implemented to site-by-site testing. 

2.3.2 Enrichment of phenotype-related biological pathway A higher enrichment of biological 

pathway suggests that the sites selected from a model is biologically plausible. MiRNA pathway 

enrichment analysis was conducted using DIANA-mirPath v2.0 (Vlachos, et al., 2012) 

(http://www.microrna.gr/miRPathv2), a web-based computational tool incorporating an in silico 

miRNA target prediction tool using high prediction accuracy algorithm DIANA-microT-CDS 

(Paraskevopoulou, et al., 2013). Gene union set targeted by at least one selected miRNA were 

identified. MiRNA and pathway related information was obtained from miRBase 18 (Kozomara 

and Griffiths-Jones, 2011) and KEGG v58.1 (Kanehisa, et al., 2012), respectively. To define a 

reliable miRNA-gene target prediction, microT score threshold > 0.9 was used in DIANA-

microT-CDS such that the miRNA-predicted genes were also predicted by miRanda (John, et al., 

2004) and/or TargetScan 5.0 (Friedman, et al., 2009). For enrichment tests, we applied Fisher's 
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Exact test based on jackknifing the test's probability (Hosack, et al., 2003), which is more 

conservative than Fisher's Exact test so that pathways with fewer targeted genes are penalized. 

The Benjamini and Hochberg false discovery rate (FDR) (Benjamini and Hochberg, 1995) was 

calculated to adjust for multiple hypothesis testing. Signaling pathways that have been shown to 

be associated with lung function were identified (Zander, et al., 2007). The enrichment of lung 

function related signaling pathway were quantified using negative log10 of the FDR. 

2.4 Beijing Truck Driver Air Pollution Study 

The Beijing Truck Driver Air Pollution Study (BTDAS), conducted between June 15 and July 27, 

2008, included participants with high exposure to air pollution in Beijing. All participants were 

examined on two separate examination days with 1-2 weeks apart. Detailed study design and data 

measurements were described previously (Baccarelli, et al., 2011). Lung function was quantified 

by forced expiratory volume in 1 second (FEV1) on both examination days. Total RNA was 

extracted from peripheral blood collected from each participant on both examination days. For 

better delineation of the direct effects of miRNAs, 10 potential confounders including PM2.5, sex, 

age, BMI, smoking status, usage of central heating, commuting time, working hours per day, dew 

point, and temperature were adjusted in lung function in GEE/LMM site-by-site testing and PGS. 

3 RESULTS 

3.1 MiRNA Profiling Data 

We conducted miRNA analysis on 240 blood samples collected at two examination days 

separated by a 1-2 week interval from 120 study subjects (sample size n=120). Detailed miRNA 

extraction and profiling data preprocessing can be found in the Supplementary Material. After 

normalization and background correction, 568 miRNAs with complete zero expression level 

across all 240 blood samples were removed, leaving 166 valid miRNAs together with the 10 

potential confounders in the final dataset.  

3.2 Identification of Lung-function Related MiRNAs with GEE/LMM Site-by-site Testing 

GEE and LMM site-by-site testing with adjustment of 10 confounders were applied to each of the 

166 miRNAs. Two widely used p-value adjustment methods for multiple comparisons, Benjamini 

and Hochberg False Discovery Rate (BH-FDR) (Benjamini and Hochberg, 1995) and FDR q-

value (Storey, 2002), were calculated to account for multiple testing. Only one miRNA from 
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LMM site-by-site testing was significant using the conventional significant threshold level of 5% 

FDR (Supplementary Material Table S1).

3.3 Identification of Lung-function Related MiRNAs Selection with PGS

Before running PGS, all 166 miRNAs were standardized

deviation of one. The ranking of miRNA significance was from a univariate pre

adjusted for confounders using either GEE or LMM. Starting from the top 10 miRNAs, we 

increased the number of top Pm 

miRNAs for PGS (Pm = 10, 30, …, 150) and one additional set of whole miRNAs (P

Penalty parameter λ varied from 0.06 to 0.24 by an increment of 0.02. To evaluate the reliability 

of the results, we repeated the above procedure for eight times. We found LMM

more stable, as six out of eight repeats yielded the same 10 selected influential miRNAs related to 

lung function with Pm = 110 and 

consistency across the eight repeats (Supplementary Material Table S2). The prediction error grid 

of LMM-based PGS was represented by a heat map shown in Fig. 1.

 

 

Fig. 1. Heat map of the 20-fold prediction errors from LMM

represents a PGEE prediction error under the corresponding parameter pair (P

Best selection results were achieved when incorporating top 110 miRNAs (P

LMM prescreening model with PGEE penalty paramete

3.4 Model Comparison between PGS and GEE/LMM Site

site testing was significant using the conventional significant threshold level of 5% 

FDR (Supplementary Material Table S1). 

function Related MiRNAs Selection with PGS 

Before running PGS, all 166 miRNAs were standardized with mean of zero and standard 

deviation of one. The ranking of miRNA significance was from a univariate pre-screening model 

adjusted for confounders using either GEE or LMM. Starting from the top 10 miRNAs, we 

 miRNAs by an increment of 20, resulting in eight subsets of input 

= 10, 30, …, 150) and one additional set of whole miRNAs (P
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more stable, as six out of eight repeats yielded the same 10 selected influential miRNAs related to 

= 110 and λ = 0.14, while GEE-based PGS selection results showed less 

consistency across the eight repeats (Supplementary Material Table S2). The prediction error grid 
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more stable, as six out of eight repeats yielded the same 10 selected influential miRNAs related to 
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consistency across the eight repeats (Supplementary Material Table S2). The prediction error grid 
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3.4.1 Lung function prediction performance  For the purpose of model comparison, we 

selected a sequential number of the top ranking (top 5, 10, 15, and 20) miRNAs based on p-values 

as the identified miRNAs using site-by-site testing. Comparing with the lowest prediction errors 

of site-by-site testing which were achieved using the top 10 miRNAs (mean error = 5.4 for GEE 

and 6.1 for LMM), paired t-tests showed that PGS yielded a significantly lower prediction error 

(mean error = 5.3) (Table 1). 

Table 1. Comparison of phenotype prediction performance between GEE/LMM site-by-site 

testing and PGS.  

Mean prediction errors were computed 

by 10-fold cross validation errors from 

50 repeats. The 10 influential miRNAs 

selected by LMM-based PGS were used 

to calculate the prediction errors. P-

values were calculated by paired t-tests 

between the lowest prediction errors 

from GEE/LMM using top 10 miRNAs 

and the prediction errors from PGS 

using the selected 10 influential 

miRNAs. 

 

 

3.4.2 Enrichment of lung-function related biological pathways  We further evaluated 

enrichment of phenotype-related biological pathways of both PGS and site-by-site testing. Seven 

lab-proven KEGG signaling pathways related to lung function were identified (Zander, et al., 

2007). The 10 influential miRNAs selected by LMM-based PGS were used to represent the PGS 

approach. We also chose the top 10 miRNAs from GEE and LMM site-by-site testing, 

respectively, so that the three approaches yielded comparable amount of target genes. MiRNAs 

identified by all three approaches were significantly enriched in mTOR, PI3K-Akt, ErbB, Wnt, 

and MAPK signaling pathways. In general, enrichment of the genes targeted by miRNAs from 

Method 

Mean Prediction Errors
 

GEE LMM 

Site-by-site testing   

     Top 5 miRNAs 5.5 5.6 

     Top 10 miRNAs 5.4 6.1 

     Top 15 miRNAs 5.7 6.2 

     Top 20 miRNAs 5.9 6.1 

PGS (LMM based)
 5.3 

P-value <0.001 <0.001 
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PGS was higher than GEE site

testing (Fig. 2), indicating miRNAs selected by PGS were more biologically plausible.

Fig. 2. Enrichment of PGS vs GEE/LMM selected miRNA

signaling pathways related to lung function. PGS selection results were from LMM

 

True effects SBS # of 

selections 

SBS mean 

estimates 

GEE SBS and GEE-based PGS

0.1 1 0.73 

-0.2 12 -0.42 

0.3 27 0.48 

-0.4 57 -0.46 

0.5 76 0.55 

-0.6 95 -0.62 

0.7 99 0.70 

-0.8 99 -0.82 

0.9 100 0.89 

-1.0 100 -1.00 

Sensitivity 0.67  

Specificity 0.95  

RMSE  0.22 

Table 2. Performances of PGS and site

miRNAs, samples size of 120, and 10 non

 

PGS was higher than GEE site-by-site testing, and considerably higher than LMM site

testing (Fig. 2), indicating miRNAs selected by PGS were more biologically plausible.

Enrichment of PGS vs GEE/LMM selected miRNA among seven lab-proven KEGG 

signaling pathways related to lung function. PGS selection results were from LMM-

PGS # of 

selections 

PGS mean 

estimates 

SBS # of 

selections 

SBS mean 

estimates 

based PGS LMM SBS and LMM

4 0.10 3 0.37 

53 -0.18 5 -0.47 

93 0.27 29 0.46 

98 -0.38 51 -0.50 

100 0.50 81 0.52 

100 -0.59 95 -0.59 

100 0.69 100 0.71 

100 -0.8 100 -0.81 

100 0.89 100 0.91 

100 -0.99 100 -0.98 

0.85  0.66  

0.95  0.96  

 0.01  0.14 

Performances of PGS and site-by-site testing (SBS) in simulation study with 200 

miRNAs, samples size of 120, and 10 non-zero true effects (Scenario I). 

siderably higher than LMM site-by-site 

testing (Fig. 2), indicating miRNAs selected by PGS were more biologically plausible. 

proven KEGG 

-based PGS. 

PGS # of 

selections 

PGS mean 

estimates 

LMM SBS and LMM-based PGS 

7 0.16 

70 -0.15 

94 0.27 

100 -0.39 

100 0.49 

100 -0.60 

100 0.69 

100 -0.80 

100 0.89 

100 -0.98 

0.87  

0.95  

 0.03 

site testing (SBS) in simulation study with 200 
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Mean estimates were calculated from the 100 simulation runs, respectively. Number of selections 

were the number of times each true effect selected by models out of the 100 runs. Sensitivity and 

specificity for each method were the average for all 100 runs. RMSE is root mean square error 

between mean estimates and true effects, which describes mean accuracy of the model estimates.  

3.5 Simulation Study 

A simulation study was conducted to compare the performance of PGS and site-by-site testing. 

Scenario I was comparable to the BTDAS miRNA dataset we studied with sample size n=120 

subjects and number of miRNAs p=200. Scenario II had a higher number of miRNAs p=800 but 

smaller sample size n=60. We assumed that there were five percent of miRNAs with true non-

zero effects (i.e. 10 for scenario I and 40 for scenario II). Corresponding 10 times 10 tuning 

parameter grids were set, Pms = (20, 40, ..., 200) and λs = (0.01,0.025,...,0.145) in scenario I and 

Pms = (10, 20, ..., 100) and λs = (0.01, 0.025, ..., 0.145) in scenario II. Pm > 100 in scenario II will 

not yield reliable selection results due to the relatively small sample size.  

Performance of GEE/LMM site-by-site testing as well as GEE-based and LMM-based PGS under 

scenario I was shown in Table 2. Scatterplot of receiver operating characteristic (ROC) can be 

found in Supplementary Material Figure S1. PGS had over 90% chance to identify effect with 

size as small as 0.3 while site-by-site testing was good till effect size is about 0.6. Moreover, PGS 

provided more accurate estimates even for small effects. On average PGS estimates only had 0.01 

and 0.03 deviation from the true effects in GEE-based and LMM-based PGS, respectively. PGS 

gave a much higher sensitivity (> 0.80) than site-by-site testing with comparable specificity (> 

0.95). For scenario II, due to the difficulties in detecting 40 non-zero miRNA with sample size of 

80, both site-by-site testing and PGS methods did not perform ideally. However, there was still 

significant gain from PGS over site-by-site testing (Supplementary Material Table S3 and Figure 

S1-c, S1-d).   

4 DISCUSSION 

In this study, we proposed and applied PGS method to handle high-dimensional microRNA 

expression data with repeated measures. We compared performances of the PGS and the 

traditional site-by-site testing. PGS performed consistently better than GEE/LMM site-by-site 

testing in terms of higher phenotype prediction performance and higher enrichment of phenotype-

related biological pathway. One of the regularity conditions for PGEE algorithm is that p=O(n), 

which requires the number of predictors (p) in model, should be comparable to the sample size 
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(n). To ensure the tuning penalty parameter (λ) yields an overall effect size estimation that best 

fits the data and avoid exceeded number of input biomarkers (Pm) for PGEE algorithm, we 

incorporated the grid search method. A 20-fold cross validation was implemented to determine 

the best PGEE selection results in terms of the smallest prediction error among the parameter 

searching grid (Pm, λ). PGS is a data-driven and self-training analytical framework that can 

achieve maximum data utilization while constraining model complexity simultaneously.  

One key merit of PGS is its capacity to handle a multitude of biomarkers at the same time and 

select the influential ones. Using site-by-site testing, we only found few “significant” results after 

having corrected for a high number of multiple testing. While using PGS, we identified a set of 

influential and meaningful miRNAs without encountering multiple testing issues, which offers a 

novel perspective in analyzing high-dimensional data with repeated measures. Another distinct 

advantage of PGS is that it considers all informative biomarkers as a whole instead of treating 

them individually. Using the site-by-site testing, although some miRNAs successfully pass the 

multiple testing, it is possible that meaningful biological events might not even be detected due to 

the correlations and interactions among miRNAs. However, the effects of these biomarkers could 

be significant when modeled together. PGS is able to capture these complex features across all 

input biomarkers and detect influential ones that site-by-site testing would potentially ignore.  

It is worth noting that PGS does not provide exact p-values, since the estimates do not follow 

normal distribution under the null hypotheses. Therefore, the criterion for determining influential 

biomarker in PGS is not based on p-value, but on the threshold for coefficient (β) estimates of 

biomarkers. Influential biomarkers are selected when the estimates are greater than the threshold. 

As suggested in Wang’s paper (Wang, et al., 2012), the default threshold is 0.001, which is also 

proved to be a practical and robust threshold in our simulation study in terms of sensitivity and 

specificity. To ensure that the threshold of 0.001 works uniformly for any dataset, standardizing 

each of the biomarkers with mean of zero and standard deviation of one is required as a typical 

procedure before running penalize model.  

Robust selection of biomarkers by PGS relies on the setting of grid boundary and grid resolution. 

Too large λ would shrink all beta estimates to zero while too small λ would not shrink the 

estimates at all. Based on our experience in real world data analyses and simulation studies, λ 

varied from 0.01 to 0.30 is a sufficient boundary that can cover optimal λ for most of the cases. 

Also, within this boundary, an increment of 0.02 in λ provides a proper grid resolution to capture 

subtle effect changes of λ on biomarker selection results without bringing in too much 

computational burden. As for Pm, too large Pm is overwhelmed for PGS to handle while too small 

Pm will leads to insufficient exploitation of data. Thus, usually optimal Pm can be found around 
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the sample size. This is the case in our miRNA study example where the optimal Pm=110 and 

with the addition of 10 adjusting confounders, we have the same number as the sample size n = 

120. Besides, an increment of 10 or 20 in Pm also provides sufficient resolution for capturing the 

effects of increasing Pm on biomarker selection. For practical use, the initiation of λ vector can be 

varied from 0.01 to 0.30, and the initiation of Pm can be a vector with a few numbers varied 

around the sample size minus the number of confounders (in our case, it is 120 - 10 = 110). It is 

not necessary to initiate a full vector of Pm, as it adds redundant parameter pairs to the grid. 

Extension of λ boundary and/or Pm boundary will be considered only when optimal λ and/or Pm 

hit the initial boundaries. In this paper we used different elaborate λ boundaries (but all were 

within the 0.01 to 0.30 range) for better results representations, and higher grid resolution (i.e. 

smaller increment of λ) for more reliable method evaluations in simulation studies. 

Insensitive to mis-specification of the covariance structure is a feature that distinguishes GEE 

from LMM. Inheriting this feature from GEE, PGS is able to estimate the correlation matrix 

regardless of whether or not the structure is specified. Based on the estimation, one could either 

use LMM-based PGS with a solid guess of the covariance structure or use GEE-based PGS if 

there is no good choice of the structure.  

Pre-screening step prioritizes potentially influential biomarkers, which facilitates PGS to handle 

the situation in which the number of biomarkers is considerably larger than the sample size. GEE 

and LMM are two handy approaches for pre-screening. However, the potential limitation of pre-

screening is that miRNAs with small but true non-zero effects may be excluded during the pre-

screening step. Nevertheless, with a given sample size, the grid search method in PGS ensures 

that PGEE can include as many biomarkers as possible. Another drawbacks of PGS is the 

selection results may subject to unreproducible selection results especially when sample size are 

small. This problem can be eased by using larger k-fold cross validation and higher grid 

resolution. 

5 CONCLUSION 

The performances of PGS is comparable to the approaches being benchmarked, i.e., site-by-site 

GEE/LMM. However, PGS is more suitable for high-dimensional microRNA expression data 

with repeated measures in that, by exploiting underlying dependent structures, it relies on variable 

selection in the context of a multiple regression model, which circumvents multiple testing issues. 

PGS is also applicable to other longitudinally collected high-dimensional quantitative data, such 

as, epigenomics, mRNA transcriptomics, proteomics, metabolomics, etc. The growing number of 
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studies conducting high-dimensional profiling dataset using different platforms requires a more 

comprehensive evaluation of PGS in various study settings. 
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