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Douglas Lehmann, Yun Li, Rajiv Saran, and Yi Li

Abstract

Instrumental variable (IV) methods are widely used to deal with the issue of un-
measured confounding and are becoming popular in health and medical research.
IV models are able to obtain consistent estimates in the presence of unmeasured
confounding, but rely on assumptions that are hard to verify and often criticized.
An instrument is a variable that influences or encourages individuals toward a par-
ticular treatment without directly affecting the outcome. Estimates obtained using
instruments with a weak influence over the treatment are known to have larger
small-sample bias and to be less robust to the critical IV assumption that the in-
strument is randomly assigned. In this work, we propose a weighting procedure
for strengthening the instrument while matching. Through simulations, weight-
ing is shown to strengthen the instrument and improve robustness of resulting
estimates. Unlike existing methods, weighting is shown to increase instrument
strength without compromising match quality. We illustrate the method in a study
comparing mortality between kidney dialysis patients receiving hemodialysis or
peritoneal dialysis as treatment for end stage renal disease.
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Abstract

Instrumental variable (IV) methods are widely used to deal with the issue of un-

measured confounding and are becoming popular in health and medical research. IV

models are able to obtain consistent estimates in the presence of unmeasured confound-

ing, but rely on assumptions that are hard to verify and often criticized. An instrument

is a variable that influences or encourages individuals toward a particular treatment

without directly affecting the outcome. Estimates obtained using instruments with a

weak influence over the treatment are known to have larger small-sample bias and to

be less robust to the critical IV assumption that the instrument is randomly assigned.

In this work, we propose a weighting procedure for strengthening the instrument while

matching. Through simulations, weighting is shown to strengthen the instrument and

improve robustness of resulting estimates. Unlike existing methods, weighting is shown

to increase instrument strength without compromising match quality. We illustrate

the method in a study comparing mortality between kidney dialysis patients receiving

hemodialysis or peritoneal dialysis as treatment for end stage renal disease.

1

Hosted by The Berkeley Electronic Press



1 Introduction

The randomized controlled trial (RCT) has long been considered the gold standard for ob-

taining treatment effects. When the treatment has been randomized to subjects it is reason-

able to assume that measured and unmeasured risk factors will balance between groups, and

treatment effects can be obtained through direct comparisons. While this is a major benefit

of RCTs, they can be costly, and in some cases it is impossible or unethical to randomize the

treatment. Observational data are a popular alternative to RCTs but come at the cost of

removing control over treatment assignment from the hands of the researcher, giving rise to

the possibility that treatment groups will differ in unmeasured ways that confound the rela-

tionship between treatment and outcome. Statistical methods that ignore this unmeasured

confounding may give biased and misleading results (VanderWeele and Arah, 2011; Baiocchi

et al., 2014). This is a primary concern in any observational study, and much research has

gone into this problem.

Instrumental variable (IV) methods are widely used to deal with this issue of unmea-

sured confounding. These methods rely on an additional variable, termed the instrument,

that influences or encourages individuals toward the treatment and only affects the outcome

indirectly through its effect on treatment. In this sense, the instrument mimics random-

ization by randomly “assigning” individuals to different likelihoods of receiving treatment.

Instruments with little influence over treatment assignment are termed weak instruments,

and there are a number of problems associated with using them. Results obtained when using

weak instruments suffer from greater small sample bias, and are less robust to violations of

the key assumption that the instrument is randomly assigned or independent of unmeasured

confounders Bound et al. (1995); Small and Rosenbaum (2008). This assumption cannot

be verified and is often criticized, thus using a strong instrument is important for obtaining

credible results.
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The literature relating to weak instrumental variables has primarily focused on detailing

the problems and limitations associated with using them. See, for example, Bound et al.

(1995), Staiger and Stock (1994), Angrist et al. (1996), Small and Rosenbaum (2008), or

Baiocchi et al. (2014). Variable selection methods to select a strong subset among a pool

of weak instruments have been proposed (Belloni et al., 2010; Caner and Fan, 2010; Belloni

et al., 2012). For working with a single weak instrument, (Baiocchi et al., 2010) proposed

near-far matching, a novel method to extract a smaller study with a stronger instrument

from a larger study (see also Baiocchi et al. (2012); Zubizarreta et al. (2013)). This matching-

based IV methodology aims to construct pairs that are “near” on covariates but “far” in

the instrument. In other words, pairs consist of subjects with similar characteristics who

have received substantially different amounts of encouragement toward the treatment, with

a greater difference indicating a stronger instrument. This difference is increased in near-far

matching using penalties to discourage pairs with similar instrument values, while allowing

a certain number of individuals to be removed from the analysis entirely. This results in a

stronger instrument across a smaller number of pairs. One limitation of near-far matching

is that it may strengthen the instrument at the cost of match quality.

We propose weighted IV-matching, an alternative for strengthening the instrument within

this IV-matching framework. Rather than using penalties to discourage pairs who received

similar encouragement, we suggest strengthening the instrument after matches have been

formed through weighting, with a pair’s weight being a function of the instrument within

that pair. A fundamental difference between these two techniques is the stage at which

the instrument is strengthened. Weighted IV-matching strengthens the instrument after

matches have been formed, allowing the matching algorithm to focus only on creating good

matches with similar covariate values. Near-far matching, on the other hand, strengthens

the instrument and matches on covariates simultaneously, requiring the algorithm to share

priority between the two goals. This generally leads to better quality matches for weighted
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IV-matching, a major benefit since failing to properly match on observed confounders may

lead to bias in estimation.

We illustrate these methods with a comparison of hemodialysis (HD) and peritoneal

dialysis (PD) on six-month mortality among patients with end stage renal disease (ESRD)

using data from the United States Renal Data System (USRDS). PD has several benefits

over HD, including cost benefits, an improved quality of life, and the preservation of residual

renal function (Marrón et al., 2008; Tam, 2009; Goodlad and Brown, 2013). Despite this,

PD remains underutilized in the United States (Jiwakanon et al., 2010). One explanation

for this may be a lack of consensus regarding the effect of PD on patient survival. An RCT

to investigate this question was stopped early due to insufficient enrollment (Korevaar et al.,

2003). Many observational studies suggest that PD is associated with decreased mortality

though results are often conflicting (Heaf et al., 2002; Vonesh et al., 2006; Weinhandl et al.,

2010; Mehrotra et al., 2011; Kim et al., 2014; Kumar et al., 2014). Complicating the issue is a

strong selection bias, with PD patients tending to be younger and healthier than HD patients.

Studies have dealt with this issue by measuring and controlling for important confounders,

but to our knowledge none have addressed the possibility of unmeasured confounding that

likely remains. We define PD as the treatment and consider a binary outcome for six-month

survival. The focus on six-month survival is to study the influence of initial dialysis modality

on early mortality, which tends to be high for dialysis patients. Studying early mortality

can provide guidance for selecting the initial dialysis modality in order to reduce this early

mortality. See, for example, Noordzij and Jager (2012), Sinnakirouchenan and Holley (2011),

Heaf et al. (2002).

A possible instrument in the data is the mean PD usage at the facility level. Instruments

based on mean treatment usage in a geographic region, facility, or other group are often called

preference-based instruments (Brookhart and Schneeweiss, 2007; Li et al., 2015), because

it is believed that these groups may have preferences that at least partially override both
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measured and unmeasured patient characteristics when making treatment decisions. In other

words, facilities with high PD usage are more likely to “encourage” their patients towards

PD than those with low usage. Preference-based instruments are among the most commonly

used instruments in practice (Garabedian et al., 2014), and methods to improve upon them

may have broad applications.

The remainder of this article is organized as follows. In section 2 we outline the proposed

weighted IV-matching procedure and briefly compare it to near-far matching. Inference and

sensitivity are discussed in section 3. The finite sample performance of these methods are

compared in section 4 through simulation, and they are illustrated with a data analysis in

section 5. We conclude with a discussion in section 6.

2 Weighted IV-Matching

We begin with an outline of the IV-matching framework (Baiocchi et al., 2010, 2012) and then

propose weighted IV-matching for strengthening the instrument within this framework. We

briefly compare weighted IV-matching with near-far matching and highlight key differences.

With a preference-based instrument, two rounds of matching are implemented (Baiocchi

et al., 2012). In the context of our motivating data example, an optimal non-bipartite

matching algorithm first pairs facilities (Derigs, 1988; Lu et al., 2011). After facilities have

been paired, the instrument is dichotomized into encouraging and unencouraging. This is

done by comparing instrument values within each facility pair and considering the facility

with the higher value to be an encouraging facility and the other to be an unencouraging

facility. An optimal bipartite matching algorithm then pairs patients at the PD encouraging

facility with patients in the other. This results in I pairs of two subjects with similar

patient and facility characteristics that received different levels of encouragement toward

PD. Instrument strength can be assessed by the average difference, or separation, of this

5
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encouragement across pairs. For example, the instrument is considered stronger in a study

in which the average encouraged and unencouraged subjects were treated at facilities with

85% and 30% treatment usage compared to one with average treatment usage of 60% and

45%.

Creating a stronger instrument in this framework is thus equivalent to increasing this

separation. We propose increasing this separation by assigning more weight to pairs more

likely to be influenced by the instrument. Specifically, we propose weighting by the prob-

ability that the encouraged subject receives the treatment while the unencouraged subject

receives the control. This can be thought of as the probability that a pair “complies” with

encouragement, and giving more weight to pairs more likely to comply creates a stronger

instrument across all pairs. Without loss of generality, assume subject j in pair i was treated

at the encouraging facility and subject j′ at the unencouraging facility, with Zij = 1 indi-

cating encouragement and Zij′ = 0 indicating unencouragement. Let Dij indicate treatment

received. The weight for pair i is then calculated as

wi = P (Dij = 1|Zij = 1)P (Dij′ = 0|Zij′ = 0). (1)

Similar to separation of the instrument, this probability is a measure of instrument strength,

though rather than an average across all pairs it is a measure of the influence the instrument

within pair i. A stronger instrument is created when more weight is given to pairs in which

the instrument has more influence over treatment. This has the effect of redistributing the

data in a way to highlight “good” pairs that are more influenced by the instrument and

increases separation of the instrument in the process.

In practice, the probabilities in equation (1) are unlikely to be known but will need to

be estimated. Using facility level mean PD usage as the instrument, P (Dij = 1|Zij = 1) is

estimated by the mean PD usage at the encouraging facility, while P (Dij′ = 0|Zij′ = 0) is
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estimated with one minus the mean PD usage at the unencouraging facility. Weights can be

standardized to maintain the effective sample size and statistical power.

The near-far matching procedure of Baiocchi et al. (2010, 2012) forces separation of the

instrument in the matching process. This is done in the first round by adding a penalty to the

distance measure between facilities whose instrument values are within a certain threshold,

and allowing a certain number to be removed. This requires the matching algorithm to pair

facilities with similar covariates and enforce separation of encouragement simultaneously,

and generates an implicit tradeoff. A large penalty will dominate the distance used to

reflect similarity on covariates, thereby increasing instrument separation but at the expense

of match quality, whereas a small penalty may get overshadowed by the covariate distance,

leading to better matches, but with less separation. Removing a number of facilities serves

to alleviate some of the damage to match quality, though it may not be entirely preserved

since the algorithm is still sharing priority between creating good matches and enforcing

instrument separation.

A fundamental difference between weighted IV-matching and near-far matching is the

stage in which the instrument is strengthened. Weighted IV-matching strengthens the in-

strument after matches have been formed, allowing the matching algorithm to focus only

on creating good matches with similar covariate values. Near-far matching, on the other

hand, strengthens the instrument in the matching process, forcing the algorithm to balance

creating good matches and enforcing separation of the instrument. This difference high-

lights a theme that we will see when comparing the performance of these two techniques; in

a tradeoff between match quality and instrument strength, weighted IV-matching tends to

favor match quality while near-far matching tends to favor instrument strength. Strength in

either of these areas has implications on the resulting analysis.

7
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3 Inference and Sensitivity

3.1 Notation

We define causal effects of interest using the potential outcomes framework (Neyman, 1923;

Rubin, 1974; Angrist et al., 1996). Let Zij = 1 if subject j in pair i is encouraged toward

treatment, Zij = 0 otherwise. Let Dij(Zij) indicate treatment received for subject j in pair i

given their encouragement, and let Yij(Zij, Dij) indicate mortality. Dij(Zij) and Yij(Zij, Dij)

are referred to as a subjects “potential outcomes.” For encouraged subjects, with Zij = 1,

we observe treatment Dij(1) and response Yij(1, Dij). Similarly for unencouraged subjects,

we observe Dij(0) and response Yij(0, Dij). Our interest lies in estimating the parameter

λ =

∑
i

∑
j (Yij(1, Dij)− Yij(0, Dij))∑
i

∑
j (Dij(1)−Dij(0))

. (2)

This parameter is often referred to as the local average treatment effect (Imbens and Angrist,

1994; Angrist et al., 1996). In contrast to an average treatment effect, which is applicable

to the entire population, the local effect is interpreted as an average treatment effect among

a subgroup of the population known as “compliers.” Depicted in Table 1, compliers are

individuals that will take the treatment that they are encouraged to take. Unfortunately,

Table 1: Population subgroups defined by the effect of encouragement on treatment. D(1)
denotes the treatment a subject will receive if they are encouraged toward treatment, while
D(0) denotes the treatment they will receive if they are not.

D(1)
0 1

D(0)
0 Never-takers Compliers
1 Defiers Always-takers

since we never observe subjects under both states of encouragement, we never observe both

Yij(1, Dij) and Yij(0, Dij) or both Dij(1) and Dij(0), and we must estimate λ from the
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data. We impose the following five assumptions to aid us in estimation (Angrist et al., 1996;

Baiocchi et al., 2014).

A1. Stable Unit Treatment Value Assumption (SUTVA). Often known as no interference,

SUTVA requires that individuals’ outcomes be unaffected by the treatment assignment of

others, and will be violated if spillover effects exist between treatment and control groups.

SUTVA allows us to consider a subjects potential outcomes as a function of only their

treatment and encouragement, rather than treatment and encouragement assignments across

the entire population.

A2. Random assignment of the instrument. The instrument is assumed to be randomly

assigned, and this implies that it is independent of any unobserved confounders. It is often

stated conditional on measured confounders. This assumption cannot be verified to hold,

and weak instruments are especially sensitive to violations (Baiocchi et al., 2014; Bound

et al., 1995; Small and Rosenbaum, 2008; Staiger and Stock, 1994).

A3. Exclusion Restriction. The instrument can only affect the outcome through its effect

on treatment. This requires that Yij(1, Dij = d) = Yij(0, Dij = d) for all i, j and for d = 0, 1,

which cannot be verified since both potential outcomes are never observed for any individual.

A4. Nonzero association between instrument and treatment. A nonzero association be-

tween the instrument and outcome implies that E[Dij(1)−Dij(0)] 6= 0.

A5. Monotonicity. The monotonicity assumption states that there are no defiers, or

subjects that always do the opposite of what they are encouraged to do, and implies that

Dij(1) ≥ Dij(0) for all i, j.

Assumptions A1 and A2 allow for unbiased estimation of the instruments effect on the

outcome and treatment, or the numerator and denominator in (2). By exclusion restriction,

never-takers and always-takers do not contribute to estimation since their treatment and

response values do not vary with encouragement. Monotonicity ensures that the group of

defiers is empty, while a nonzero association between the instrument and treatment ensures

9
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that the group of compliers is not empty. Thus, with the addition of A3-A5, λ is interpreted

as the average causal effect of the treatment among the compliers. Further discussion of

these assumptions can be found in Imbens and Angrist (1994), Angrist et al. (1996), or

Baiocchi et al. (2014), among many others.

3.2 Estimation and Inference

Let Yij = ZijY (1, Dij)+(1−Zij)Y (0, Dij) denote the observed response andDij = ZijDij(1)+

(1− Zij)Dij(0) the observed treatment for subject j in pair i. Estimate λ as

λ̂ =

∑I
i=1 ŵi

∑2
j=1 [ZijYij − (1− Zij)Yij]∑I

i=1 ŵi
∑2

j=1 [ZijDij − (1− Zij)Dij]
. (3)

For inferences regarding λ, Baiocchi et al. (2010) develop an asymptotically valid test for

the null hypothesis H
(λ)
0 . H

(λ)
0 is true under many population distributions, and thus is a

composite null hypothesis. The size of a test for a composite null is the supremum over all

null hypotheses in the composite null, and a test is considered valid if it has size less than

or equal to its nominal level. Using statistics

T (λ0) =
1

I

I∑
i=1

ŵi

[
2∑
j=1

Zij(Yij − λ0Dij)−
2∑
j=1

(1− Zij)(Yij − λ0Dij)

]

=
1

I

I∑
i=1

Vi(λ0)

and

S2(λ0) =
1

I(I − 1)

I∑
i=1

[Vi(λ0)− T (λ0)]2

we can test H
(λ)
0 by comparing T (λ0)/S(λ0) to a standard normal cumulative distribution

for large I. Inverting this test and solving for T (λ0)/S(λ0) = 0 and ± 1.96 provides an

estimate and 95% confidence interval for λ. We refer interested readers to Baiocchi et al.
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(2010) for a detailed discussion of this test statistic, its distribution and related issues.

This inference procedure does not, however, provide a standard error estimate. A sand-

wich type variance estimate can be obtained following a procedure similar to that discussed

in Lunceford and Davidian (2004) and Li and Greene (2013). Define the following estimating

equations with respect to θ = (µY1 , µY0 , µD1 , µD0 ,β
′),

0 =
I∑
i=1

2∑
j=1

φij(θ) =
I∑
i=1

2∑
j=1



wiZij(Yij − µY1)

wi(1− Zij)(Yij − µY0)

wiZij(Dij − µD1)

wi(1− Zij)(Dij − µD0)

Sβ(β)


(4)

where µY1 = E(wiZijYij)/E(wiZij), µY0 = E(wi(1 − Zij)Yij)/E(wi(1 − Zij)) and simi-

lar for µD1 and µD0 . Sβ(β) correspond to the score equations for estimating parameters

β, often from a logistic regression, for the probabilities used in equation (1) for deter-

mining the weight. This procedure allows for simultaneous estimation of wi and λ. We

estimate var(θ̂) with (2I)−1Â−1B̂Â−T , where Â =
∑I

i=1

∑2
j=1 ∂φij(θ)/∂θ|θ=θ̂ and B̂ =∑I

i=1

∑2
j=1 φij(θ)φ

T
ij(θ)|θ=θ̂. Applying the multivariate delta method with g(θ) = (µrT −

µrC )/(µdT − µdC ), an estimate of var(λ̂) is obtained as ∇g(θ)T ˆvar(θ̂)∇g(θ). This approach

does not take into account the matching process and can be expected to overestimate the

variance, though it was found to perform well in simulations. In sections 4 and 5, intervals

and coverage results will be based on the permutation inference procedure.

3.3 Sensitivity

An important benefit of working with stronger instruments is the increased robustness of

resulting estimates to violations of the assumption that the instrument is randomly assigned
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or independent of unmeasured confounders. In this section we describe a sensitivity analysis

outlined in Rosenbaum (2002) and applied to IV-matching in Baiocchi et al. (2010, 2012).

The goal of this sensitivity analysis is to determine how far an instrument can deviate from

being randomly assigned before the qualitative results of the study are altered, with more

robust results remaining consistent under larger deviations. In other words, how large would

an unmeasured instrument-outcome confounder have to be to explain what appears to be a

significant treatment effect?

Following Rosenbaum (2002), deviation from random assignment is quantified by assum-

ing that within pair i matched on covariates X, subjects j and j
′

differ in their odds of

receiving encouragement by at most a factor of Γ ≥ 1, where

1

Γ
≤ πij(1− πij′)
πij′(1− πij)

≤ Γ for all i, j, j′ with Xij = Xij′ (5)

and πij = P (Zij = 1|Xij). Under the random assignment assumption, πij = πij′ and Γ = 1.

As the assumption becomes increasingly violated, these probabilities diverge and Γ increases.

The sensitivity analysis is conducted by using Γ in inference procedures to obtain bounds

on the p-value associated with testing H0 : λ = 0. For matched pairs, this involves compar-

ing the sum of events in the encouraged group among discordant pairs with two binomial

distributions, one with probability p− = 1
1+Γ

and another with probability p+ = Γ
1+Γ

. This is

done for increasing values of Γ until a previously rejected H0 becomes accepted, e.g. a signif-

icant effect is no longer significant. The maximum deviation that can be sustained is given

by the largest Γ value in which the upper bound on the p-value remains less than 0.05, with

larger maximum deviations indicating more robust results. When pairs are weighted, normal

approximations to the binomials can be used for obtaining p-values using the weighted sum

of events in the encouraged group among discordant pairs.

Rosenbaum and Silber (2009) discuss how the univariate parameter Γ can be mapped to
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two components as Γ = (∆Λ + 1)/(∆ + Λ), where Λ represents the effect of an unmeasured

confounder on the instrument and ∆ the effect of an unmeasured confounder on the outcome.

For example, an unmeasured confounder that triples the odds of receiving encouragement

(Λ = 3) while doubling the odds of experiencing the event (∆ = 2) is equivalent to a deviation

from random assignment of size Γ = 1.4. This mapping of Γ allows the sensitivity analysis

to remain simple while providing a useful interpretation of its magnitude.

4 Simulation

In this section we compare the finite sample performance of three IV-matching techniques

through simulation. The standard IV-match (IVM) uses the full data and makes no attempt

to strengthen the instrument, while weighted IV-matching (WIVM) and near-far matching

(NFM) will create stronger instruments as described in section 2. For the NFM procedure,

we add a penalty to the distance between facilities if their instruments are within a distance

equal to the interquartile range of instrument values. As in Baiocchi et al. (2010), we specify

a penalty function that begins at 0 and increases exponentially a pairs instrument values

become closer, and allow 50% of facilities to be removed during the matching process.

4.1 Setup

One thousand datasets are generated containing i = 1, ..., 200 facilities with j = 1, ..., 40

subjects at each. Binary treatment D and binary outcome Y are randomly assigned with

P (Dij = 1) = logit−1(γi + αX1,i + δX2,ij + νij), (6)

P (Yij = 1) = logit−1(βDij + αX1,i + δX2,ij + εij). (7)

13
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γi ∼ N(0, 1) represents a facility effect. Standard normal covariates X1,i and X2,ij represent

observed confounders and are used for matching. X1,i is a facility level confounder and X2,ij

is a patient level confounder. Coefficients α, δ, and β represent the effects of X1, X2, and D,

respectively. Unobserved confounding is created by generating (νij, εij) as bivariate normal

with correlation ρ = .75. The proportion of treated individuals at each facilities serves as

the instrument.

To obtain the “true” local average treatment effect that we wish to estimate, or λ in

(2), we need counterfactual treatments and responses for every individual. These are not

easily obtained under the current setup, since γ, not encouragement, is in equation (6).

Furthermore, we do not know which counterfactual state an individual will be considered

to have been observed in until after matching, since subjects are determined to have been

observed in an encouraging or unencouraging facility by comparing instrument values within

pairs. Despite this caveat, suitable counterfactuals can be obtained in the following way.

Consider patients treated at facilities with γi > 0 to be observed in the encouragement

state, while those at facilities with γi ≤ 0 to be observed in the unencouragement state. For

individuals in the encouragement state, we have Dij = Dij(1) and Yij = Yij(1, Dij) from

equations (6) and (7). For counterfactuals, sample a γ from the unencouragement group

and denote it γ∗. Dij(0) is then obtained using equation (6) with P (Dij = 1) = P (Dij(0) =

1) = logit−1(γ∗i + αX1,i + δX2,ij + νij) and Yij(0, Dij) is obtained using equation (7) with

P (Yij = 1) = P (Yij(0, Dij)) = logit−1(βDij(0) + αX1,i + δX2,ij + εij). Counterfactuals for

patients observed in the unencouragement state can be obtained similarly. After obtaining

Dij(1), Dij(0), Yij(1, Dij), and Yij(0, Dij), these are plugged into equation (2) for the true

effect, λ.
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4.2 Simulation Results

4.2.1 Instrument Strength

The present work is motivated by the desire to create a stronger instrument by increasing the

separation of encouragement within pairs. Table 2 shows that both WIVM and NFM were

able to do so, increasing the standardized difference in encouragement approximately 25%

and 65%, respectively. All things being equal, the stronger instrument is preferred. Looking

at match quality in the next section, however, we will see that all things are not equal.

Table 2: Separation of encouragement within pairs based on 1,000 simulations. Re-
ported is the mean treatment usage at unencouraging facilities (Z̄U), encouraging fa-
cilities (Z̄E), and the standardized difference between them, calculated as St Diff =

100(Z̄E − Z̄U)/
√
.5(s2

ZE
+ s2

ZU
) where s2

ZE
and s2

ZU
are sample variances of the instrument in

each group.

(Z̄U , Z̄E) St Diff

IVM (37%, 62%) 141
WIVM (35%, 65%) 175
NFM (30%, 70%) 232

4.2.2 Match Quality

Table 3 reports balance of covariates X1 and X2 as indicated by the standardized difference

within pairs. The WIVM procedure produced consistently better covariate balance than

the NFM procedure. The particularly poor balance of facility level X1 under the NFM

procedure shows that introducing penalties to the match negatively affected the ability to

properly match on X1 in the first round.

The pattern seen in Tables 2 and 3 shows a tradeoff of instrument strength and match

quality between WIVM and NFM. WIVM allows the matching algorithm to focus entirely

on matching on covariates, and strengthens the instrument through weighting after the

matches have been formed. NFM, on the other hand, incorporates penalties into the match
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Hosted by The Berkeley Electronic Press



Table 3: Standardized differences in covariates X1 and X2 within pairs. Results based on
1,000 simulations.

(α, δ) IVM WIVM NFM

X1 (0, 0) 0.01 0.01 0.34
(0.25, 0.25) 0.15 0.14 18.01
(0.50, 0.50) 0.14 0.16 36.10

X2 (0, 0) 0.01 0.02 0.10
(0.25, 0.25) 0.58 0.68 1.02
(0.50, 0.50) 1.35 1.57 2.10

to enforce separation of the instrument, requiring the matching algorithm to share priority

between matching on covariates and strengthening the instrument. A large penalty might

dominate the distance used for matching and diminish the ability to properly match on

covariates. In the tradeoff between instrument strength and match quality, WIVM is willing

to trade less instrument strength for higher quality matches, while NFM is willing to trade

lower quality matches for a stronger instrument. In results that follow, we will see that

strength or weakness in either area has important implications on inferences and sensitivity.

4.2.3 Estimation and Coverage

Table 4 presents simulation results relating to estimation and coverage of λ under increasing

magnitudes of observed confounding. When α and δ are zero and matching on X1 and X2 is

trivial, each method is nearly unbiased and maintains nominal coverage. WIVM and NFM

achieved lower mean squared error than IVM, which is one benefit associated with stronger

instruments (Wooldridge, 2001). As α and δ increase and matching on X1 and X2 becomes

more important, the performance of IVM and WIVM remain mostly unchanged. NFM, on

the other hand, results in increased bias and mean squared errors and low coverage rates,

which can be attributed to the inability of the NFM procedure to properly match on X1.
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Table 4: Bias, mean squared error (MSE), and 95% coverage probabilities (CP) for esti-
mation of λ based on 1,000 simulations. Bias and MSE are multiplied by 1,000. Coverage
probabilities are based on confidence intervals obtained using the permutation inference
procedure discussed in section 3.

IVM WIVM NFM
(α, δ) β λ Bias MSE CP Bias MSE CP Bias MSE CP

(0, 0) 0.0 0.0 4.6 2.3 94.3 4.5 1.6 93.9 2.5 1.7 94.2
0.6 0.14 1.4 2.0 94.3 1.3 1.4 95.1 0.3 1.4 95.6
1.0 0.23 4.6 1.9 94.6 3.7 1.4 95.2 2.5 1.4 95.0

(0.25, 0.25) 0.0 0.0 3.0 2.1 94.8 4.9 1.5 94.6 29.2 2.5 84.9
0.6 0.14 4.9 1.9 95.2 4.9 1.5 95.2 25.8 2.3 87.6
1.0 0.23 4.4 1.8 95.0 4.7 1.3 96.0 26.4 2.2 86.5

(0.50, 0.50) 0.0 0.0 8.7 2.4 93.6 9.7 1.7 94.2 93.9 10.5 28.3
0.6 0.14 8.7 2.3 94.3 7.9 1.7 93.6 88.6 9.7 30.9
1.0 0.23 4.0 2.0 93.7 3.7 1.5 93.8 78.6 7.8 38.3

4.2.4 Sensitivity

In this section we report simulation results for studying violations of random assignment of

the instrument. Figure 1 presents how large a deviation from random assignment estimates

are robust to, as defined by Γ. Larger values of Γ correspond with more robust results. These

curves are naturally upward sloping since larger effects are more robust, all else being equal.

Results in Figure 1 show that more robust results were obtained after creating stronger

instruments. An interesting finding can be seen when comparing results from the left panel

in Figure 1 to the right panel. As α and δ increase from 0 in the left panel to 0.5 in the

right panel, results for IVM and WIVM are unchanged but those for NFM seem to improve

greatly. This apparent improvement arises from the biased estimates obtained after failing

to properly match on X1. These biased estimates appear more robust than their unbiased

counterparts, and cause the curve to shift left by about the size of this bias. This serves as

a warning that this sensitivity analysis assumes measured confounders have been properly

adjusted and we are able to obtain unbiased estimates. Γ can therefore be misleading if

match quality is poor.
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Figure 1: Sensitivity results based on 1,000 simulations. Lines represent the size of an
unobserved bias, as quantified by Γ, that would be required to explain a significant finding.
Larger values of Γ correspond with more robust estimates. Left: (α, δ) = (0, 0), Right:
(α, δ) = (0.5, 0.5)

5 Data Analysis

In this section we illustrate IV-matching (IVM), weighted IV-matching (WIVM), and near-

far matching (NFM) with a study comparing mortality in the first six months between

patients receiving hemodialysis (HD) or peritoneal dialysis (PD) as treatment for end stage

renal disease. Complete information on 164,195 adults initiating dialysis for the first time

between January 1, 2010 and December 31, 2013 was obtained from the United States Renal

Data System. The analysis was restricted to patients being treated at dialysis facilities with

at least ten patients that used both HD and PD during the study period. The analysis was

conducted as intention-to-treat, with treatment defined as the modality prescribed at the

onset of dialysis.

The instrument, facility mean PD usage, was calculated on data from 2007-2009 to avoid

correlation with any patient level confounders. The instrument varied greatly across facilities,

ranging from 0 to 100% with a mean of 9.8%. The correlation coefficient between a facilities
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2007-2009 and 2010-2013 PD usage was 0.68.

Figure 2 and Table A1 of the appendix confirm that patients treated with PD are generally

healthier than those treated with HD. On average, they are six years younger, receive more

pre-ESRD care, suffer less comorbidities, and are more likely to be employed than HD

patients. Additionally, facilities with higher PD usage tend to be larger, as indicated by

the higher number of nurses, social workers, and hemodialysis stations. Since these factors

could be related to unmeasured confounders that affect patient outcomes, it is important to

control for these variables when matching.

5.1 Constructing Matches

We follow the two round matching procedure described in section 2 for constructing matches.

An optimal non-bipartite match first pairs facilities. Within each of these pairs, an optimal

bipartite match pairs patients from one facility with patients in the other.

For the first round facility level match, we defined the distance between facilities using a

Mahalanobis distance based on the facility covariates in Figure 2. For the NFM procedure,

a penalty was added to this distance if facilities instrument values were within 14% of each

other (the inter-quartile range), and half of facilities were dropped from the analysis. For the

second round patient level match, we matched on a prognostic score based on the patient

level covariates in Figure 2. For the WIVM procedure, a weight was assigned to each pair

based on equation (1), where probabilities were estimated using the instrument, facility mean

PD usage from 2007-2009.

5.2 Results

Of the 164,195 patients, 128,700 were paired using the IVM and WIVM procedure, while

67,904 were paired using the NFM procedure. The average unencouraged and encouraged

19

Hosted by The Berkeley Electronic Press



patient was treated at a facility with PD usage from 2007-2009 of 4.7% and 15.3% using the

IVM procedure, 6.3% and 27.8% using the WIVM procedure, and 3.8% and 25.3% using the

NFM procedure. For WIVM and NFM, the increased separation corresponds with roughly

a 100% increase in the standardized difference in encouragement, with neither procedure

performing notably better than the other in terms of instrument strength.

Covariate balance after matching is presented in Figure 2 as well as Table A2 of the

appendix. Each method is seen to improve covariate balance on average. IVM and WIVM,

however, generally resulted in better balance than NFM, particularly for facility level covari-

ates where NFM seems to struggle. These results are similar to those seen in the simulations

of section 4. Estimation results reported in table ?? indicate that PD has a protective effect

Figure 2: Covariate balance before and after matching as indicated by the standardized
differences within pairs. Dashed grey lines are at ±10. Standardized differences larger than
this have been suggested to represent an imbalance (Normand et al., 2001).

20

http://biostats.bepress.com/umichbiostat/paper119



on mortality in the first six months. For example, λ̂ = −0.09 suggests that for every 100 sub-

jects that are encouraged to switch from HD to PD, there are nine fewer deaths in the first

six months. Both WIVM and NFM decreased the width of the confidence interval associated

with λ compared to IVM, with NFM leading to the narrowest interval. While WIVM and

NFM created equally strong instruments, WIVM ultimately led to the more robust results

since NFM estimated a smaller effect. Though results appear similar for each of the three

methods in this particular analysis, they could differ quite substantially in other scenarios,

particularly when important group level covariates are present or difficult to adjust for.

Table 5: Estimate and 95% confidence interval for the local average treatment effect, λ, as
well as sensitivity parameter Γ.

λ̂ 95% CI Γ

IVM -0.09 (-0.14, 0.03) 1.03
WIVM -0.09 (-0.15, -0.06) 1.09
NFM -0.07 (-0.10, -0.04) 1.07

6 Discussion

Weak instrumental variables present many problems to an IV analysis. Of particular con-

cern is that results obtained using weak instruments are sensitive to small unmeasured con-

founders affecting instrument assignment. This problem cannot be alleviated with increasing

sample sizes. While we cannot verify the assumption that the instrument is independent of

unmeasured confounders, working with stronger instruments increases robustness to viola-

tions of it (Bound et al., 1995; Small and Rosenbaum, 2008; Baiocchi et al., 2010).

In this article, we proposed a weighting procedure for building a stronger instrument

in the IV-matching framework. The key idea is that we can redistribute the data through

weighting to highlight pairs in a way that increases the overall instrument strength. The

proposed weights were based on the probability that a pair complies with encouragement,

21

Hosted by The Berkeley Electronic Press



or that within that pair the encouraged subject received treatment while the unencouraged

subject received control. Other weights could be considered, the only requirement being that

more weight is assigned to pairs that are more influenced by the instrument. In future work

we are considering the possibility of an “optimal” weight, perhaps subject to a constraint on

covariate balance.

Compared with existing methods, weighting is able to build a stronger instrument with-

out compromising match quality. This is because weights are applied to strengthen the

instrument after matches have been formed, as opposed to methods that strengthen the

instrument simultaneously with matching. This is a major strength of the proposed method

since failing to properly match on important covariates leads to biased effect estimates and

misleading sensitivity results.

Using data from the United States Renal Data System, the proposed method was illus-

trated in a study comparing mortality in the first six months between patients receiving

hemodialysis or peritoneal dialysis as treatment for end state renal disease. The proposed

weighting procedure was able to create a stronger instrument while maintaining the integrity

of matches. A protective effect of peritoneal dialysis was found, suggesting that there are

nine fewer deaths for every 100 patients that are encouraged to switch from hemodialysis to

peritoneal dialysis.

While the the current work focused on building a stronger instrument within an IV-

matching framework, the idea might not be limited to this setting. In future research, we

investigate the use of weighting to increase instrument strength in more common instrumental

variable procedures.

Appendix
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Table A1: Summary of covariates before matching. Patient level covariates are compared
across dialysis modality and facility level covariates are compared across first and fourth
quartile of the PD usage.

Patient Covariates HD PD St Diff
N 142,737 21,458 -
Outcome
Death w/in 6 months 14% 4% 35.7
Covariates
Age 64 58 37.7
Male 57% 55% 3.8
Bmi 29.6 29.5 1.9
6+ months pre-ESRD care 45% 69% -49.3
# of comorbidities 2.4 1.9 44.1
Hemoglobin 9.9 10.6 -4.2
Serum creatinine 6.6 6.4 1.0
No insurance 7% 8% -6.9
White 68% 71% -5.1
Black 26% 22% 8.7
Asian 4% 5% -7.4
Hispanic 13% 12% 2.2
Employed 9% 26% -45.2

Facility Covariates Q 1 Q 4 St Diff
Instrument
PD usage 3% 30% -208
Covariates
For profit 85% 86% -3.3
# of nurses 6.7 8.7 -43.3
# of technicians 8.2 8.1 2.0
# of social workers 0.8 1.1 -36.4
# of HD stations 20.3 21.9 -19.1
Median income $51,086 $50,850 1.2
Bachelors degree + 23.7% 23.4% 4.5

Table A2: Summary of covariates after matching, by matching algorithm. U and E cor-
respond to patients considered to have been treated at unencouraging or encouraging PD
facilities

IVM (64,350 pairs) WIVM (64,350 pairs) NFM (33,702 pairs)
U E St Diff U E St Diff U E St Diff

Instrument
Facility % PD 2007-09 4.7% 15.3% -96.3 6.3% 27.8% -194.8 3.8% 25.3% -195.2
Treatment
PD 10.0% 16.3% -18.7 11.5% 23.5% -35.7 9.0% 23.8% -44.1
Outcome
Died w/in 6 months 11.9% 11.3% 1.7 11.7% 10.7% 3.3 11.8% 10.8% 3.1
Patient Covariates
Age 62.8 62.7 0.5 62.6 62.1 3.5 63.0 62.2 5.0
Male 57.0% 56.9% 0.2 57.3% 56.7% 1.3 57.0% 56.7% 0.6
BMI 30.5 30.4 0.5 30.5 30.2 1.0 31.0 31.2 -0.7
6+ mos pre-ESRD care 47.8% 50.3% -5.1 50.2% 53.1% -5.7 50.4% 53.2% -5.6
# of comorbidities 2.5 2.4 1.8 2.5 2.4 2.1 2.6 2.4 10.1
Hemoglobin 9.9 10.0 -0.4 9.9 10.0 -0.5 10.0 9.9 1.0
Serum Creatinine 6.6 6.5 0.4 6.7 6.5 0.6 6.5 6.5 0.2
No insurance 7.1% 6.9% 0.9 6.8% 7.5% -2.7 6.1% 7.4% -4.9
White 68.6% 65.9% 5.7 68.9% 63.9% 10.6 68.8% 64.1% 10.1
Black 25.3% 28.1% -6.2 25.1% 29.2% -9.4 26.7% 29.4% -6.1
Asian 3.8% 3.8% 0.4 4.1% 3.8% 1.7 2.6% 4.2% -8.4
Hispanic 13.8% 12.6% 3.7 13.4% 12.4% 3.1 9.9% 12.2% -7.0
Employed 11.4% 12.4% -3.1 12.3% 13.7% -4.2 11.6% 13.6% -6.3
Facility Covariates
For profit 84.3 84.3 0.1 81.1 81.1 0.0 83.3 83.4 -0.3
# of nurses 9.1 9.2 -2.0 10.0 10.2 -3.8 9.2 10.7 -26.5
# of technicians 9.8 9.9 -0.5 9.7 9.8 1.2 9.0 9.7 -10.6
# of social workers 1.1 1.3 -13.9 1.1 1.4 -16.8 1.1 1.3 -10.4
# of HD stations 24.0 24.0 -0.5 24.2 24.4 -1.2 23.5 24.6 -10.9
Median income $50,874 $51,343 -2.32 $50,618 $50,496 0.6 $50,470 $51,368 -4.5
Bachelors degree + 23.4 25.0 -10.8 24.0 25.1 -8.2 23.5 25.7 -15.4
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