
Inferring a consensus problem list using penalized
multistage models for ordered data

Philip S. Boonstra∗

Department of Biostatistics, University of Michigan, USA
and

John C. Krauss
Division of Hematology Oncology, University of Michigan, USA

April 22, 2020

Abstract

A patient’s medical problem list describes his or her current health status and aids
in the coordination and transfer of care between providers. Because a problem list
is generated once and then subsequently modified or updated, what is not usually
observable is the provider-effect. That is, to what extent does a patient’s problem
in the electronic medical record actually reflect a consensus communication of that
patient’s current health status? To that end, we report on and analyze a unique
interview-based design in which multiple medical providers independently generate
problem lists for each of three patient case abstracts of varying clinical difficulty. Due
to the uniqueness of both our data and the scientific objectives of our analysis, we
apply and extend so-called multistage models for ordered lists and equip the models
with variable selection penalties to induce sparsity. Each problem has a corresponding
non-negative parameter estimate, interpreted as a relative log-odds ratio, with larger
values suggesting greater importance and zero values suggesting unimportant problems.
We use these fitted penalized models to quantify and report the extent of consensus. We
conduct a simulation study to evaluate the performance of our methodology and then
analyze the motivating problem list data. For the three case abstracts, the proportions
of problems with model-estimated non-zero log-odds ratios were 10/28, 16/47, and
13/30. Physicians exhibited consensus on the highest ranked problems in the first and
last case abstracts but agreement quickly deteriorated; in contrast, physicians broadly
disagreed on the relevant problems for the middle – and most difficult – case abstract.
Keywords: conditional multinomial; L0 penalty; ranked lists; variable selection

∗1415 Washington Heights, Ann Arbor, Michigan, USA, 48109-2029; Tel: +1 734 615 1580;
philb@umich.edu

1

mailto:philb@umich.edu


1 Introduction

A patient’s medical problem list is defined as the minimal number of diagnoses that describe
that patient’s current health status and risks to future health (Krauss et al., 2016). It serves
as a “dynamic ‘table of contents’ ” (Weed, 1968) for the patient, which is useful for coordi-
nation of care between providers and care environments (Krauss et al., 2016). All providers
of care for a patient work from the same problem list and update it at each encounter, but
little is known about how much consensus there is between each provider’s individually gen-
erated problem list. There is clinical interest in having the problem list accurately reflect
the patient’s current health. In other words, to what extent does a patient’s problem list
in the electronic medical record reflect a consensus communication of that patient’s current
health status? The statistical methodology developed in this paper is directly motivated by
the idiosyncrasies of this ranked data context, as elucidated below.

The data upon which our methodology is based were collected via a series of interviews of
faculty physicians at the University of Michigan (Ann Arbor, MI) conducted by the second
author (JCK, the interviewer) between May 2013 and July 2014. All faculty members in the
Department of General Medicine and the Department of Family Medicine (approximately 150
in total) were electronically invited to participate, and thirty-eight consented. Each interview
consisted of the participating physician reviewing three real, previously reported patient
case abstracts (labeled A, B, and C) that have been specifically developed for physician
training in clinical reasoning (Meyer et al., 2013). For each case, the physician was asked
to write down what would be her problem list for that patient as if she were the provider
of care. The first six interviews were used as training for the interviewer to standardize the
process as well as to develop a written vocabulary of expected problems for that case. The
subsequent 32 interviews comprised the study data. For any novel problems encountered in
this second round of interviews that were, in the opinion of the interviewer, similar to an
existing problem already in the vocabulary, the interviewer noted this similarity and asked
whether the subject would consider these equivalent or not. If the subject said ‘no’, then the
novel problem was left as is. The cases were presented in the same order (alphabetical by
label) for all interviews, based on an assumption that the most complex clinical case would
be B and the simplest clinical case would be C. The interview results are summarized in
Figure 1. See Krauss et al. (2016) for more details on the study design and case abstracts.
The data obtained in this study – 32 de-novo problem lists generated for the same patient
at a single point in time – do not naturally occur in a medical chart. Therefore, this study
provides a unique opportunity to measure physician agreement and the degree to which a
newly generated problem list is consistently generated. In other words, to what extent can a
physician expect the accompanying problem list she receives with a patient to be the same
problem list she herself would generate for that patient?

Similar questions arise in other diverse ranked data contexts, including election polling
(Gormley and Murphy, 2008; Gormley et al., 2008), sorting genomic features (DeConde
et al., 2006; Boulesteix and Slawski, 2009; Lin and Ding, 2009; Lin, 2010; Li et al., 2017,
2018), identifying bovine feeding preferences (Nombekela et al., 1994), handicapping horse
races (Plackett, 1975; Benter et al., 2008), ranking basketball teams (Deng et al., 2014), or
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indexing search engine results (Webber et al., 2010). However, once the data are in hand,
the subsequent analysis typically converges on a common goal, namely that of measuring
agreement between the rankers.

So called ‘multistage models’, which are essentially a sequence of conditional multinomial
distributions, can be used for aggregating and modeling a set of ordered lists such as what
we analyze here (Plackett, 1975; Luce, 1959; Benter et al., 2008; Gormley and Murphy,
2008; Mollica and Tardella, 2017). However, multiple idiosyncracies, both with respect to
the underlying nature of the data and with respect to our scientific objectives, require novel
extensions to this multistage, model-based approach. There are three such proposed in this
manuscript. First, we adjust multistage models to handle so-called ragged lists, which can
have different lengths because the ranker chooses to stop ranking. The length of each list
becomes informative in this case, and we model the fatigue process of rankers. Second, we
equip the likelihood with a modified L0-type variable selection penalty to induce sparsity
among the maximum penalized likelihood estimates. Sparsity is particularly desirable here
because many aggregators will rank all items, requiring a post-hoc determination as to
whether and where to truncate the consensus list. Although such penalties have been widely
used, to our knowledge they have not yet been applied to models for ranked data, and thus
this work represents a novel amalgamation of classical statistical models for ordered data
with modern penalized regression techniques warranted by the motivating context. Third,
we provide a computational framework in the R statistical environment for fitting these
penalized models, including a coordinate ascent algorithm and tuning parameter selection
based upon information theoretic criterion to select the appropriate amount of penalization.
The remainder of this manuscript provides technical background (Section 2), describes in
detail each of our proposed extensions (Section 3), presents a simulation study evaluating
our methodology against eight possible comparators (Section 4), and then finally illustrates
their application to the problem list data of interest (Section 5) and the NBA team rankings
data from Deng et al. (2014) (Section 6). We conclude with a discussion in Section 7.

2 Technical background

Assume that each ranker is ordering items from a set of items, where each item is unambigu-
ously mapped to an integer label {1, . . . , v}. As noted in the introduction, a ‘ranker’ could
be anyone or anything from a person to a search engine to a cow to a case-control study;
however, in our motivating context and therefore our methodology, the ranker is sentient
and free to stop ranking at any point. Lists from multiple rankers are available, and we
model the process of constructing these lists. Such models usually require that the data be
formulated as either ranked or ordered lists (Marden, 1996). Both data types convey equiva-
lent information, and both take the set of all permutations of the v integers as their support.
However, whereas a ranked list gives the ranks of the v items, an ordered list permutes the
v items themselves based upon their ranking. Specifically, the sth entry of a ranked list is
the rank assigned to the item having integer label s (lower numbers indicate higher ranks),
and the sth entry of an ordered list is the integer label of the item that is ranked sth (items
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appearing early in the list are ranked higher). The data in this paper are formulated as
ordered lists, but we will refer to items that are ordered first as being ‘highly ranked’.

The orderings may be incomplete. For example, top-ranked lists of genes based upon phe-
notypic association do not include every single gene but are always truncated, e.g. to the
top 25 genes (DeConde et al., 2006). The New York Times Hardcover Nonfiction Best Seller
List (https://www.nytimes.com/books/best-sellers/hardcover-nonfiction, accessed
15-Mar-19) publishes a weekly list of the 15 best-selling hardcover non-fiction books, and
extant but unpublished are the number 16, 17, etc. best-sellers. When such lists are also
top-weighted, meaning that disagreement between two lists at higher ranks is more impor-
tant than at lower ranks, Webber et al. (2010) call them ‘indefinite’. Not considering the
top-weighted characteristic, such lists are called ‘top-k lists’ by Dwork et al. (2001) when
they have been uniformly truncated to the first k items and ‘partial lists’ by Deng et al.
(2014) when the point of truncation differs from list to list. Importantly, partial lists could
be longer but have been artificially truncated, beyond the purview of the ranker and external
to the ordering process. Distinct from these are what we call ragged lists, which we define
as an ordered list arising from a ranker who is free to stop ranking. Subtly, a ragged list
may be complete, if that ranker chooses to order all items. If there are unranked items, one
can infer that the un-ranked items are below the ranked items. The problem list data we
study here are ragged, since each physician was free to select as many or as few problems as
desired. Although some existing rank aggregation methodologies can analyze ragged lists, to
our knowledge there are none explicitly designed to model the stopping process nor induce
sparsity in the aggregated list.

Figure 1 plots the frequency with which each item (problem) was ranked by a physician for
each of the three patient abstracts. Focusing on case A, thirty physicians ranked diabetes
mellitus somewhere in their constructed problem list for this patient, whereas eight prob-
lems were ranked by just one physician (not necessarily the same person). 23/32 physicians
ranked osteoarthritis somewhere on their list, but only in one physician’s list was it in
the top 4. In contrast, 26/32 physicians ranked pneumonia first on their list. Less overall
agreement was observed on case B, with no problems being ranked first by more than eight
physicians, and 18 problems appearing on exactly one list.

We now introduce some notation. For i = 1, . . . , n, the ith ranker’s ordered list of `i items
is denoted by xi = {xi1, xi2, . . . , xi`i}, with xis ∈ {1, . . . , v} and s = 1, . . . , `i indexing each
stage. If the lists are complete, then `i ≡ v for all lists; if they are partial, then `i ≡ ` < v for
all i, where ` is artificially chosen and external to the modeling process; if they are ragged,
then `i ≤ v for each i, with potentially different values of `i for each i. We describe two
broad approaches for analyzing ordered lists.

2.1 Pairwise similarities

One approach for quantifying agreement is to measure a distance or similarity between
any pair of lists xi1 and xi2 . For complete ordered lists, Kendall’s τ (Kendall, 1948) or
Spearman’s ρ (Spearman, 1904) could be used. Lin and Ding (2009) proposed the Cross
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(PROBLEMS LISTED ONCE)
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ANEMIA
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Count

2 6 10 14 18 22 26 30

●
● ● ● ● ●

● ● ● ● ● ● ● ● ●
●

●
● ●
● ●

● ● ●

●
● ●

● ● ● ● ●

●

Rank
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Figure 1: Counts of the frequency that each problem was listed on any of the n = 32
generated lists for each of three case abstracts, with shading and shape used to indicate the
rank of that problem. For brevity, only those problems listed by at least two physicians are
shown.
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Entropy Monte Carlo (CEMC) algorithms that approximate an aggregated list that is, on
average, closest to all observed lists with respect to one of these correlations. As we discuss
below, these pairwise similarities may not always be appropriate for ordered lists. The rank-
biased overlap (RBO, Webber et al., 2010) is a more recent example specifically designed for
ordered lists. Given a user-specified parameter ψ ∈ (0, 1), the RBO between two lists xi1
and xi2 is

RBOψ(xi1 ,xi2) =
1− ψ
ψ

∞∑
d=1

ψd|xi1,1:d ∩ xi2,1:d|/d,

where the expression |xi1,1:d ∩ xi2,1:d|/d denotes the size of the intersection of the first d
elements divided by d. This proportion of the first d elements of each list that are shared is
the so-called agreement at depth d. Agreements across all possible depths are then infinitely
averaged using a convergent series of weights {ψd}d=1. Values of this similarity measure
fall in the interval [0, 1], where 1 indicates perfect overlap at all depths, and 0 indicates no
overlap anywhere. The RBO assumes that each list is long enough so as to be effectively
infinite. The exact value can only be calculated by examining an infinite value of depths.
However, by truncating the calculation to some finite depth and determining the smallest
and largest possible added value beyond this depth, a window within which the true RBO
must lie can be created, the width of which decreases as the depth of truncation increases,
due to the infinite series being convergent.

Krauss et al. (2016) proposed a length-dependent version of the RBO (LDRBO), specifically
for measuring the similarity between two finite ragged lists:

LDRBOψ(xi1 ,xi2) =

∑max{`i1 ,`i2}
d=1 ψd|xi1,1:d ∩ xi2,1:d|/d∑max{`i1 ,`i2}

d=1 ψd
.

LDRBO measures average agreement, like RBO. It differs in that the maximum depth eval-
uated is always the longer of the two lists. Also contrasting with RBO, ψ can be set to 1
for LDRBO, in which case LDRBO simplifies to the average agreement across all depths.
LDRBO and RBO will become similar as min{`i1 , `i2} increases. It is also noteworthy that
rank-based similarity measures such as (LD)RBO yield qualitatively different interpretations
than standard correlation measures like Spearman’s ρ, even for very simple cases. For exam-
ple, xi1 = {1, 2, 3, 4} and xi2 = {4, 3, 2, 1} have perfect negative correlation (ρ = −1); in con-
trast, with ψ = 1, LDRBO evaluates to a middling value of (0/1+0/2+2/3+4/4)/4 ≈ 0.42.
LDRBO can only be zero between lists having no intersection, such as xi1 = {1, 2, 3, 4} and
xi3 = {5, 6, 7, 8}, which, coincidentally, have a perfect positive correlation (ρ = 1). Thus, in
the context of ordered lists, (LD)RBO better reflects the intuition that the exemplar pair
{xi1 ,xi2} share more in common than {xi1 ,xi3}.

Using the motivating problem list data and setting ψ = 1, Krauss et al. (2016) used numeri-
cal methods to identify a theoretical ‘consensus problem list’ having the largest median value
of LDRBO across all 32 physicians’ constructed lists. For Case A in Figure 1, the estimated
consensus problem list was {pneumonia, diabetes mellitus, anemia, splenomegaly,
depression with anxiety, osteoarthritis, renal failure, hypoxia}, having a me-
dian LDRBO of 0.683.
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The findings of Krauss et al. (2016) not withstanding, insofar as the objective is to measure
consensus and calculate an aggregated consensus list, similarity-based approaches such as
the LDRBO may fall short. For example, the above methods can be used to calculate a
consensus problem list for any group of lists, no matter how disparate the data are. Further,
there is no obvious mathematical rationale to suggest that maximizing the median pairwise
LDRBO – as opposed to the mean, minimum, or maximum LDRBO – results in the ‘right’
consensus list, nor that ψ = 1 is the right choice. Finally, even with these relatively small
datasets, there are practical computational challenges to this approach: with 28 unique
problems in Figure 1, there are 28! ≈ 1029.5 permutations of length 28 to search across as
possible consensus lists, plus all candidate lists less than length 28. Krauss et al. (2016)
used an approximate ‘branch and bound’ algorithm to substantially limit the scope of the
search.

3 Model-based approaches

These reasons provide compelling rationale to consider instead model-based approaches for
the analysis of our problem list data and ordered lists in general.

One model-based approach assumes that the ranking process is a Markov process. Treating
the set of v items as the state space of a Markov chain, one can calculate the stationary
distribution of the corresponding transition matrix, where larger probabilities correspond to
higher ranked items (Lin, 2010; Dwork et al., 2001; DeConde et al., 2006). Depending on
how the transition matrix is determined, there are several such approaches, which Lin (2010)
label MC1, MC2, and MC3. Readers are referred to these references for more details. These
approaches are amenable to the analysis of ragged lists, but, without further pruning, the
resulting consensus list is always an ordering of all items listed by at least one ranker.

A second approach, called Mallows model, posits that each ranked list differs from some
unknown, consensus ranking, i.e. a parameter vector to be estimated, according to a prob-
abilistic model based upon a distance, i.e. Spearman’s ρ or Kendall’s τ , between the two
list (Mallows, 1957). Besides the consensus ranking, the other parameter to be estimated in
a Mallows-type model is the dispersion φ ∈ [0, 1], where φ = 0 means that all rankers are
exactly recapitulating the consensus ranking, and φ = 1 means that rankers are choosing
items uniformly at random, without regard to the consensus ranking. Fligner and Verducci
(1988) and Li et al. (2019) have both extended the Mallows model, allowing φ to depend
upon the stage s, such that φ(s) can be small when s at earlier stages, where agreement
is more important, and φ(s) can be large at later stages, where agreement is usually less
important.

A third approach, and that which we extend in this paper, is the multistage model, which
explicitly formulates the list-generating process (Plackett, 1975; Luce, 1959). The ith ranker
generates an ordered list of length v from among a pre-specified, fixed-length set of items,
starting with his/her/its most-preferred item. Define Ois to be the set of items yet to be
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ranked just before the sth stage:

Ois =

{
{1, . . . , v}, s = 1

{k : k 6∈ {xis′}s′<s}, s > 1

}
, (1)

and let 1[X] be 1 when the statement X is true and 0 otherwise. The Plackett-Luce (PL) prob-
ability that item k ∈ {1, . . . , v}, is ordered sth is Pr(xis = k|Ois) = 1[k∈Ois] exp(θk)/

∑
j∈Ois exp(θj),

i.e. proportional to exp(θk) until it gets ordered, and zero afterwards. There are v parame-
ters, Θ = {θ1, θ2, . . . , θv}. Of these, v − 1 are identified, and without loss of generality, we
may assume that minj{θj} ≡ 0. See Section 5.6, Marden (1996) for an overview of classical
multistage models. In contrast to the Mallows model, there is no explicit consensus list
in this model; however, the set of the numeric weights θks gives, both in an absolute and
relative sense, the order of preference across all items.

Analogous to the extended Mallows model proposed by Li et al. (2019), Benter added a
dampening effect to PL models to allow for the relative preference between items to depend
on the stage (Benter et al., 2008; Gormley and Murphy, 2008). Let a dampening function
δ(s) map the set of integers s ∈ {1, . . . , v − 1} to the interval (0, 1], with δ(1) ≡ 1 for
identifiability. When δ(s) is small, the distinction between items decreases, and so, assuming
that preferences are always strongest at early stages, it is reasonable to constrain δ(s) to
be non-increasing with s. At the final stage, δ(v) may take any value, since there is no
choice remaining. When δ(·) is limited to the set of non-increasing functions, this dampening
function serves analogously to the ψ parameter in the (LD)RBO measures and the φ-function
in the extended Mallows models, namely to reflect that agreement at higher ranks is relatively
more important than at lower ranks.

Thus, the Benter-Plackett-Luce (BPL) model for the probability of selecting item k at the
sth stage conditional on the choices from the previous s − 1 stages is Pr(xis = k|Ois) =
1[k∈Ois] exp(θkδ(s))/

∑
j∈Ois exp(θjδ(s)), for k = 1, . . . , v and s = 1, . . . , `i. To be estimated

are the v−1 identified parameters in Θ plus the number of parameters in the chosen functional
form of δ(·), which we discuss in Section 3.1 below. At stage s, the log-odds of ordering item
k1 over k2, conditional on neither having been yet ordered, are δ(s)[θk1 − θk2 ]. We now
propose two novel extensions based upon the BPL model – one to the model itself and one
to its estimation – tailored to the objectives of the problem list analysis.

3.1 Ranker Fatigue

In some contexts, a ranker’s list is a purposefully incomplete ordering of a subset of all pos-
sible items. In our case study, physicians stopped listing problems upon having decided that
the already-listed problems adequately described the case abstracts. It is sensible therefore
to model not just the ordering process but also the terminating process. This contrasts with
standard PL/BPL models, which assume that `i ≡ v. Notationally, this can be indicated by
artificially extending the length of each ragged list xi by one and filling in this additional
item with 0, i.e. xi`i ≡ 0; this is not an actual item but rather indicates the list’s termination.
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Now the probability of selecting item k = 0, . . . , v in the sth stage, s = 1, . . . , `i, conditional
on the previous s− 1 stages is written as

Pr(xis = k|Ois) =
1[k∈Ois] exp(δ(s)θk) + 1[k=0∩s>1] exp(θ0)∑

j∈Ois exp(δ(s)θj) + 1[s>1] exp(θ0)
. (2)

Like the standard BPL model, this assumes that there are a finite number of v items to
be ranked; however, it is not assumed that all rankers will rank all items. Rather, a new
parameter θ0 measures the ‘fatigue’ of ranker i beyond the first stage, and Θ = {θ0, θ1, . . . , θv}
is length v + 1. The number of identified elements, not counting the dampening function
δ(s), is one less than the length of Θ, and we set minj:j>0{θj} ≡ 0 to identify the model. At
stage s > 1, ranker i will stop ordering items with probability exp(θ0)/(

∑
j∈Ois exp(δ(s)θj)+

exp(θ0)). The probability of stopping increases with s as well as with the total weight of
the items previously ordered. Let β = {Θ, δ(·)} denote all parameters in the model. The
log-likelihood of list xi is the logarithm of its joint density:

log fi(β) =

`i∑
s=1

log Pr(xis|Ois)

= θ0 +

`i−1∑
s=1

δ(s)θxis −
`i∑
s=1

log
( ∑
j∈Ois

exp(δ(s)θj) + 1[s>1] exp(θ0)
)
, (3)

where Ois is as defined in Equation (1). This is the model we will use in our simulations
study and analysis of the problem list data. We discuss the choice of dampening function
δ(·) in Section 3.2 and consider strategies for inducing sparsity in the fitted model in Section
3.3.

Remark 1 With the added fatigue parameter, the assumed minimum list length for any
ranker is `i = 2, corresponding to exactly one actual item ranked (xi1 ∈ {1, . . . , v}) followed
by a decision to stop (xi2 = 0). This is the rationale for having 1[k=0∩s>1] (as opposed to
1[k=0]) in the numerator of Equation (2), which gives that Pr(xi1 = 0|Oi1) ≡ 0 for any
β.

Remark 2 A reviewer observed that to be able to call equation (3) a regular likelihood,
we must make an implicit conditional independence assumption, namely that at each stage,
a ranker’s probability is conditionally independent of all previous probabilities given Ois.
We do so here, similar to previous uses of the BPL model, e.g. Gormley and Murphy
(2008).

3.2 Parameterization of δ(·)

In their choice of δ(·) for the analysis of Irish presidential poll data, Gormley and Murphy
(2008) placed no restrictions on δ(·) apart from requiring 0 ≤ δ(s) ≤ 1 for all s, resulting in
v− 2 parameters to be estimated. The context of our analysis suggests that, at a minimum,
δ(·) should be non-increasing in its argument to reflect that strength of preference is non-
increasing with stage, i.e. rank. For this reason, and also being cognizant of the statistical
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cost of estimating many additional parameters, we constructed a two-parameter dampening
function: δ(s) = δ2δ

s−1
1 + (1 − δ2)

2s−1, with scalar parameters δ1, δ2 ∈ [0, 1]. This family
contains dampening functions ranging from constant strength of preference (δ1 = δ2 = 1),
strength of preference decreasing to a non-zero asymptote (δ1 = 1; δ2 < 1), or strength of
preference decreasing to total lack of preference at lower ranks (δ1 < 1).

3.3 Estimating a Consensus Ordering

A standard maximum likelihood estimate (MLE) approach for estimating β = {Θ, δ1, δ2}
would calculate β̂MLE = arg maxβ

∑n
i=1 log fi(β) subject to the constraint that minj:j>0{θ̂j} ≡

0, so as to identify the model. However, even with this constraint, some of the parameters
will still only be weakly identified, e.g. those corresponding to items appearing on only one
observation’s list, and their estimates will be close to zero. An ideal model estimation pro-
cess would adaptively recognize these weakly identified parameters and set them all exactly
equal to zero. Note that this is a different type of variable selection problem than is typical:
setting θ̂k equal to zero in a BPL-type model does not remove the item from the fitted model
but rather minimizes its relative weight. No item that has been ranked at least once can ever
be removed entirely from the fitted model, i.e. by forcing θ̂k = −∞ or exp(θ̂k) = 0, without
resulting in a zero-valued likelihood function. Rather, this variable selection problem is one
of identifying the set of items whose corresponding parameter estimates should be smallest
and co-equal. Keeping in mind the scientific objective of constructing a consensus ordered
list, a natural definition is then the set of non-zero θ̂k’s, sorted in decreasing order. If the
data are disparate enough to suggest that rankers are effectively ordering items at random,
then the consensus list may be small or even the empty set, i.e. no consensus.

A common technique for dimension reduction in a maximum likelihood framework is to
subtract from the log-likelihood function a penalty function on the item weights, g(Θ, λ).
For a given value of λ, we would then calculate the penalized MLE (PMLE), defined as
β̂(λ) = arg maxβ {

∑n
i=1 log fi(β)− g(β, λ)}. Assuming the model is not to be penalized

for estimating θ0, the simplest possible BPL model would be θk ≡ 0 and δ1 = δ2 = 1,
and a LASSO-type penalty (Tibshirani, 1996) applied to a BPL model would take the form
g(β, λ) = λ (

∑
k θk + | log δ1|+ | log δ2|) (note that if every θk wasn’t non-negative by design,

we would need |θk| instead of θk). Relative to standard maximum likelihood estimation, this
penalty would shrink each θk down towards zero and δ1 and δ2 up towards 1, more so for
larger values of λ; some elements may be shrunk entirely. This latter characteristic makes the
LASSO a variable selection penalty. As noted in the first paragraph of this section, variable
selection is a crucial feature in our context, but it is less evident that shrinkage of the item
weights is required or even desirable. Because each θk is relatively defined, if a parameter
estimate θ̂k gets set to zero, any larger parameter estimates will also need to be decreased in
order to maintain the same implied probabilities. For example, consider a BPL model with
three items, where the current parameter estimates are {θ̂1, θ̂2, θ̂3} = {0, log(2.9), log(1.1)}.
The estimated probability of selecting item 2 at stage 1 is 2.9/(1+2.9+1.1) = 0.58. If θ̂3 is to
be set to zero to reflect that items 1 and 3 are equally least important, then the corresponding
estimate of θ̂2 must also be changed to approximately log(2.76) in order to maintain this
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Figure 2: Seamless L0 penalty under the default choice of τ = 0.001 and different values of
the penalty parameter (and asymptote) λ

probability: 2.76/(1+2.76+1) ≈ 0.58. That is, in order to change θ̂3 from log(1.1) to 0 while
maintaining the relative importance of θ̂2, the latter must also be decreased. A LASSO-type
penalty would induce additional shrinkage, beyond what was just described, and therefore
may result in underfitting the model, i.e. not describing enough variability.

Variable selection without this additional shrinkage can be achieved with the L0 penalty:
g(β, λ) = λ

(∑v
k=1 1[θk 6=0] + 1[δ1 6=1] + 1[δ2 6=1]

)
. This penalizes the log-likelihood for each addi-

tional parameter estimate that takes on a “non-simple” value by an amount λ, but the actual
estimate does not further affect the penalty, i.e. there is no shrinkage. A computationally
driven modification is called for here because λ

(∑v
k=1 1[θk 6=0] + 1[δ1 6=1] + 1[δ2 6=1]

)
is a multi-

variate discontinuous function and therefore numerically difficult to use within a penalized
likelihood framework. Dicker et al. (2013) created a continuous version, called the seamless
L0 penalty. Applied to our scenario, it is given by

g(β, λ, τ) = λ

v∑
k=1

log2

(
θk

θk + τ
+ 1

)
+ λ log2

(
| log δ1|
| log δ1|+ τ

+ 1

)
+ λ log2

(
| log δ2|
| log δ2|+ τ

+ 1

)
,

(4)

where τ > 0 is an additional fixed constant parameter. In contrast to the discrete-valued L0

penalty that is always equal either to 0 (for each θk = 0 and δ1, δ2 = 1) or λ (for each θk > 0
and δ1, δ2 < 1), the seamless L0 penalty continuously transitions from 0 to λ, as illustrated
in Figure 2. It becomes increasingly similar to the discontinuous L0 penalty as τ is closer to
0.
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3.4 Computational Implementation

We describe here our computational approach for fitting penalized BPL models using seam-
less L0 penalties. All code was written in the R statistical environment (R Core Team, 2018;
Wickham, 2017; Neuwirth, 2014; Li et al., 2018; Schimek et al., 2015) and is freely avail-
able via github (https://github.com/psboonstra/RankModeling). When g is an L0-type
penalty, maximizing

∑n
i=1 log fi(β) − g(β, λ) is a non-convex optimization problem that is

both computationally difficult and which admits the possibility of identifying local optima.
These are the main challenges our algorithm must overcome.

As is typical in penalized estimation, we calculate the solution path for β under a grid of
candidate values for λ. We apply a numerical coordinate ascent algorithm that iteratively
cycles through all elements of β on a univariate basis, changing a given parameter estimate
from its current value if doing so increases the penalized log-likelihood. After satisfying a
specified convergence criterion to an estimate of β given the smallest value of λ, we use these
values as a warm start for the next largest value of λ in the grid and so forth. The algorithm
returns the entire solution path for β as a function of λ.

In more detail, suppose the current estimated value of β = {Θ, δ1, δ2} at iteration m of the

algorithm is denoted by Θ̂(m) = {θ̂(m)
0 , θ̂

(m)
1 , . . . , θ̂

(m)
v }, δ̂(m)

1 , and δ̂
(m)
2 . Given these values and

λ, we calculate the penalized log-likelihood values when incrementing one parameter estimate
by each value in a proposal sequence Γ = {γ−t, γ−t+1, . . . , γ−1, γ0 ≡ 0, γ1, . . . , γt−1, γt}, where
γ−j = −γj for all j = 1, . . . , t. The inclusion of γ0 ≡ 0 means that one proposal is to not
change any values. If the parameter to be updated corresponds to an item, i.e. θ1, . . . , θv,
then γ0̃ = −θ̂(m)

j is also added to Γ, so that every iteration includes proposing to set each
item’s parameter estimate to zero. Any proposals that would violate identifiability or model
constraints, i.e. θk < 0 or δ1, δ2 /∈ [0, 1], are truncated at the boundary of the constraint.

This step results in up to 2t+ 2 penalized log-likelihood calculations, and we identify tmax ∈
{−t,−t+ 1, . . . , 1, 0, 0̃, 1, . . . , t− 1, t}, which is the index of Γ yielding the largest penalized

log-likelihood (note that 0̃ does not exist when updating θ0, δ1, or δ2). We then set θ̂
(m+1)
k ←

θ̂
(m)
k +γtmax (or δ̂

(m+1)
j ← δ̂

(m)
j +γtmax) and repeat the step for another parameter. Each cycle

consists of proceeding through a random permutation of all elements of Θ̂(m), δ̂
(m)
1 , and δ̂

(m)
2 ,

and the process restarts until a certain minimum number of consecutive cycles change all
parameter estimates by less than some convergence criterion ε. We discuss the choice of Γ
and all other required inputs at the end of this section.

The relative relationship between the parameters warrants also considering multivariate pro-
posals to speed convergence and discourage the algorithm from getting stuck in local optima.
We incorporated such proposals in our implementation. One proposal adds a single nega-
tive constant randomly taken from {γ−t, γ−t+1, . . . , γ−1} to all θ̂k’s, shifting them towards,
but never less than, zero. A second multivariable proposal adds a single positive constant
value randomly taken from {γ1, γ2, . . . , γt} to all non-zero θ̂k’s as well as one randomly
selected zero-valued θ̂k, if there is more than one such zero-valued θ̂k. A third proposal
considers the current estimated item weights Θ̂(m) in increasing order and, with probability
1/16 = 0.0625, exchanges the index of each pair of neighboring parameter estimates. Note
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the proposal swaps parameter estimates based on their values, not their labels. For exam-
ple, if {θ̂(m)

1 , θ̂
(m)
2 , θ̂

(m)
3 } = {0, log(2.9), log(1.1)}, the proposal would swap θ̂

(m)
1 and θ̂

(m)
3 , i.e.

{log(1.1), log(2.9), 0}. This probability of swapping is a tuning parameter, the specific value
of which was arbitrarily selected. We also considered a fourth multivariate proposal for the
dampening function when δ̂

(m)
2 < 1. The proposal is δ̃1 = δ̂

(m)
2 δ̂

(m)
1 + (1− δ̂(m)

2 )3 and δ̃2 = 0.
The rationale is that the proposed dampening function is identical to the current dampening
function at the first two (and most important) stages, but with a less complex formulation,
since δ̃2 = 0. Each of these proposals is ad-hoc and, except for the last, stochastically made,
but we emphasize that they are only ever accepted if doing so results in a larger penalized
log-likelihood.

3.5 Default values

Our algorithm for approximating the maximized penalized log-likelihood requires choosing
input values, most important being the grid of values of λ, the constant τ in equation (4), the
proposal sequence Γ, and the convergence criterion ε. In our analyses, we used the default
values described below, so that at a minimum a user need only provide the data, comprising
a set of ordered lists.

The default choice of convergence criterion is εdef = 0.001, which also means that the number
of significant digits retained by the algorithm, generally equal to dlog10 (1/ε)e, is by default 3.
For a default value of the proposal sequence Γ, used in both the univariate and multivariate
proposals, the algorithm calculates the evenly spaced sequence of t values between log(ε) and
0 and exponentiates it, setting the positive half, γ1,def , γ2,def , . . . , γt,def , equal to the result
(with the lower half being the symmetric values −γt,def , . . . ,−γ1,def). The default choice of t,
when not provided, is tdef = dlog10 (1/ε)e, yielding Γdef = {−1,−0.032,−0.001, 0, 0.001, 0.032, 1}.
The default choice of τ is τdef = ε. Finally, a default grid of λs is calculated with an initial
run of the algorithm that identifies the smallest λ that yields the most parsimonious possible
model, say, λmax, and then calculates the 200 evenly spaced values (on the log-scale) between
10−5λmax and λmax.

Our implementation also allows for the user to specify multiple sets of initial parameter
values, β(0), or to request multiple randomly generated sets of initial values. The algorithm
is independently run for each set of initial values, and the result of each separate run is
reported. This allows for a straightforward assessment of the impact of starting values on
the final converged parameter estimates. We used three sets of initial values in both our
simulation study and our data analyses.

3.6 Model Selection

We consider two information criteria to select λ > 0. The small-sample Akaike Information
Criterion (AIC, Akaike, 1973; Hurvich and Tsai, 1989) and the Bayesian Information Crite-
rion (BIC, Schwarz et al., 1978) both resemble a “model fit + model complexity” tradeoff.
Letting p̃λ = 1 +

∑v
k=1 1[θ̂k 6=0] + 1[δ̂1 6=1] + 1[δ̂2 6=1] denote the number of parameters in a fitted
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model under a given λ (the constant 1 is for θ0) and β̂λ denote all BPL parameter estimates
under a given λ, they are both given by −2

∑n
i=1 log fi(β̂λ)+2h(p̃λ), where h(p̃λ) = p̃λn

(n−p̃λ−1)+
for the small-sample AIC, where (·)+ is the positive-part function, and h(p̃λ) = log(n)p̃λ/2
for the BIC.

4 Simulation study

To evaluate the finite sample performance of the penalized BPL models, including our pro-
posed estimation procedure, we conducted a simulation study. Our two main objectives
were to (i) compare the ranking performance of our penalized BPL models against possi-
ble comparators and (ii) evaluate the ability of our penalized BPL models to estimate the
true, unknown item weights and distinguish between non-trivial and trivial items. These
are distinct objectives because some rank aggregation methods only result in a fully ranked
list of all items, whereas we are additionally interested in demonstrating that our penal-
ized BPL model results in better estimation of the underlying weights than the unpenalized
counterpart and that unimportant items can be identified as such.

We generated 1000 simulated datasets for each of 36 scenarios: 12 models described in Table
1 and three dataset sizes (30, 100, or 500 rankers). Collectively, these scenarios cover a range
of characteristics: number of items (v), number of rankers (n), degree of raggedness (θ0),
and the typical size and variation of item weights (θks). For each simulated dataset and
each scenario, we fit an unpenalized BPL model (λ = 0) and penalized BPL models using
AIC and BIC. For comparison, we evaluated our previous pairwise-LDRBO maximization
(Krauss et al., 2016); the sample arithmetic mean (‘AMean’), geometric mean (‘GMean’),
and median of the corresponding ranked lists; MC1, MC2, and MC3 (Lin, 2010; Schimek
et al., 2015); the CEMC algorithms that identify the aggregated list that is, on average,
closest to all observed lists (Lin and Ding, 2009; Schimek et al., 2015) using Spearman’s ρ
(labeled CEMCρ) or Kendall’s τ (CEMCτ ); and both the standard Mallows model (MM)
and extended Mallows model (EMM) as implemented in Li et al. (2019). For calculating
the sample means and medians, we assumed that each unranked item had rank equal to the
average of the unused ranks. So, for example, when a list ranks seven items out of a possible
v = 15, then the eight unranked items each get assigned a rank of 11.5. This filling-in of
missing ranks was only used for calculation of the sample mean and median ranks.

A challenge in comparing multiple different ranking approaches is that each returns a qual-
itatively different entity. That is, the BPL models estimate a set of item weights, the MC
models estimate a stationary probability distribution taking on values in the unit simplex,
the means and median summarize the ranks, and the remaining methods – LDRBO CEMCρ,
CEMCτ , MM, and EMM – give an integer-valued ordering from most to least preferred. To
compare these disparate results, we calculated a metric that we called the ‘ordered root-
mean-squared error (RMSE)’. Let θ(k), k = 1, . . . , v, denote the true value of the kth largest
item weight, and let θ(k̂) denote the true value of the item weight the method ranks kth.

Then, the ordered RMSE is defined by
√∑v

k=1(θ(k) − θ(k̂))2/v. The true values of each item
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weight are always used but are out of order, and methods underperform according to the
extent they mis-rank items with substantially different true weights. The advantage of this
metric is that it is applicable across all ranking approaches. The disadvantage is that it
is not equipped to handle tied ranks, which can occur in the penalized BPL results and
the sample means or medians of the ranks. For the penalized BPL models, we break ties
based upon the ordering of items in the solution path at λ = 0. For the sample means and
medians, we break ties based upon the frequency that an item was ranked first; remaining
ties were randomly resolved. The smallest possible ordered RMSE is 0, when all items have
been ordered according to their true item weight.

As a subsequent finite-sample assessment focusing exclusively on the BPL models, we calcu-
lated additional quantitative measures of the ability of these fitted models to estimate the un-
known item weights, which none of the comparator methods do. Specifically, let θ̂k be the es-
timate of the kth unknown item weight θk (note that these are no longer the order statistics).

Then, we calculated the standard RMSE, defined as
√∑v

k=1(θ̂k − θk)2/v. This differs from

the ordered RMSE described in the previous paragraph in that the ordered RMSE does not
require a method to estimate the item weight itself, whereas the standard RMSE does. We

also calculated the true positive rate (TPR), defined as
(∑v

k=1 1[θ̂k>0] × 1[θk>0]

)
/
∑v

k=1 1[θk>0],

and the true negative rate (TNR), defined as
(∑v

k=1 1[θ̂k=0] × 1[θk=0]

)
/
∑v

k=1 1[θk=0]. Finally,

we calculated Youden’s index, defined as TPR + TNR - 1, and the running time for each
method.

4.1 Results

Table 2 gives the average values of the ordered RMSE multiplied by 1000 and then rounded
to the nearest integer for readability. All values within 5% of each rowwise minimum are in
bold. The penalized BPL models, labeled ‘λaic’ and ‘λbic’, are not optimal in all scenarios but
generally compare favorably to the remaining methods. The best overall method, AMean,
was bold in all rows, followed closely by MC3. The worst method was MC1, which was bold
in just two rows.

The ordered RMSE metric does not directly characterize how well the item weights were
estimated. To that end, the results in Table 3 make a direct comparison of the unpenalized
and penalized BPL models in their ability to estimate the item weights. In contrast to
Table 2, one or both penalized versions are nearly always preferred with regard to the
standard RMSE metric. The penalized BPL models typically have a better TNR, whereas
the unpenalized BPL model has a better TPR. On balance, the discriminatory ability of the
penalized BPL models are better, as evidenced by higher values of Youden’s index. Finally,
the penalized BPL models require about twice as much running time.
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Table 1: Description of twelve true BPL models for generating ragged, ordered lists used in
the simulation study. The last column gives the first, second, and third quartiles from the
distribution of actual list length under these models.
Label θ0 {θk : θk > 0, k > 0} #{θk : θk = 0, k > 0} #{θk : k > 0} `i : {Q1, Q2, Q3}

1 -1.0 {0.09− 0.01(k − 1)}5k=1 5 10 {6,9,9}
2 0.5 {0.09− 0.01(k − 1)}5k=1 5 10 {2,4,6}
3 -1.0 {1.5− 0.1(k − 1)}9k=1 1 10 {8,9,9}
4 0.5 {1.5− 0.1(k − 1)}9k=1 1 10 {3,6,8}
5 -1.0 {1.5}5k=1 5 10 {7,9,9}
6 0.5 {1.5}5k=1 5 10 {3,5,8}
7 -1.0 {0.09− 0.01(k − 1)}9k=1 11 20 {11,17,19}
8 0.5 {0.09− 0.01(k − 1)}9k=1 11 20 {4,7,12}
9 -1.0 {1.5− 0.1(k − 1)}15k=1 5 20 {13,18,19}
10 0.5 {1.5− 0.1(k − 1)}15k=1 5 20 {5,10,14}
11 -1.0 {1.5}8k=1 12 20 {13,18,19}
12 0.5 {1.5}8k=1 12 20 {5,9,14}

Table 2: Mean values of the ordered RMSE (multiplied by 1000 and then rounded to
the nearest integer) for the unpenalized and penalized versions of the proposed BPL model
against eleven comparators across 36 scenarios (12 generating models from Table 1 × three
sample size configurations). All values within 5% of each rowwise minimum are in bold.
For λaic and λbic, the tied zero-valued estimated items weights are resolved based upon the
λ = 0 value in the solution path.

BPL LDRBO AMean GMean Median MC1 MC2 MC3 CEMCρ CEMCτ EMM MM
Label n λ = 0 λaic λbic Rank Rank Rank

1 30 48 48 48 48 48 48 48 51 48 48 48 48 48 48
1 100 45 45 46 47 45 45 46 51 46 45 46 45 46 45
1 500 39 40 40 43 39 40 43 51 49 39 40 40 39 40
2 30 49 49 49 48 48 48 49 51 49 48 49 48 48 48
2 100 45 46 47 47 46 46 47 51 51 46 47 46 46 46
2 500 40 42 43 43 40 40 43 51 51 40 43 40 41 41
3 30 242 247 247 347 232 244 256 571 247 233 287 249 267 246
3 100 130 131 133 267 130 137 155 571 147 130 179 145 149 141
3 500 56 55 55 145 55 58 86 571 74 56 75 65 60 64
4 30 268 274 272 333 250 265 278 569 305 252 359 268 291 265
4 100 147 148 154 282 145 150 169 572 209 145 247 154 167 155
4 500 62 62 63 166 63 65 89 571 132 63 107 70 68 69
5 30 15 19 18 275 13 18 34 1041 22 14 44 24 53 25
5 100 0 0 0 38 0 0 0 1043 0 0 0 0 0 0
5 500 1 0 0 0 0 0 0 1044 0 0 0 0 0 0
6 30 38 31 32 324 25 40 60 1037 78 30 135 50 87 44
6 100 4 0 0 58 0 0 0 1043 0 0 3 0 0 0
6 500 4 0 0 0 0 0 0 1044 0 0 0 0 0 0
7 30 41 42 42 41 41 41 41 43 41 41 41 41 41 41
7 100 40 40 40 40 40 40 40 43 40 40 40 40 40 40
7 500 37 37 38 38 36 37 38 43 42 36 37 37 37 37
8 30 41 41 41 41 41 41 41 43 42 41 41 41 41 41
8 100 41 41 41 41 40 40 41 43 43 40 41 40 40 40
8 500 38 39 39 38 37 37 38 43 43 37 38 37 37 37
9 30 333 338 335 423 320 325 352 716 327 320 366 333 345 330
9 100 192 193 193 306 192 196 218 716 201 192 234 207 213 201
9 500 84 84 85 182 86 87 107 716 107 85 116 98 102 94
10 30 357 368 366 420 337 338 367 714 392 337 425 347 376 356
10 100 237 210 220 325 204 207 232 716 337 204 290 216 234 220
10 500 149 95 100 199 93 94 120 716 330 92 154 104 113 101
11 30 114 117 112 426 105 110 185 1031 121 105 218 157 208 150
11 100 0 0 0 95 0 0 1 1032 0 0 1 3 4 0
11 500 0 0 0 0 0 0 0 1032 0 0 0 0 0 0
12 30 198 197 179 486 147 166 231 1024 249 148 376 197 277 203
12 100 43 0 1 177 0 1 3 1032 42 0 28 4 8 1
12 500 40 0 0 1 0 0 0 1031 4 0 0 0 0 0
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Table 3: Five operating characteristics comparing the unpenalized and penalized versions
of the BPL model across 36 scenarios (12 generating models from Table 1 × three sample
size configurations). RMSE , TPR, TNR, and Youden are all multiplied by 100 and rounded
to the nearest integer. Each value of an operating characteristic that is within 5% of the
better of the two is in bold.

RMSE×100 TPR×100 TNR×100 Youden×100 Run Time (sec.)
Label n λ = 0 λaic λbic λ = 0 λaic λbic λ = 0 λaic λbic λ = 0 λaic λbic λ = 0 λaic λbic

1 30 1267 246 205 91 13 9 14 89 92 5 2 1 4 20 20
1 100 459 137 91 87 20 10 20 88 94 7 8 4 5 26 26
1 500 156 76 58 86 29 8 27 89 97 13 18 5 10 72 72
2 30 1184 214 167 87 12 9 15 91 94 2 3 2 3 17 17
2 100 492 147 100 82 19 10 24 87 92 6 7 2 3 22 22
2 500 212 81 63 79 25 10 35 89 95 13 15 5 5 61 61
3 30 880 970 1000 98 36 32 82 100 100 80 36 31 5 20 20
3 100 358 390 594 100 93 69 99 100 100 99 93 69 7 26 26
3 500 157 139 138 100 100 100 100 100 100 100 100 100 24 75 75
4 30 907 941 972 96 30 26 75 100 100 71 30 26 4 18 18
4 100 349 412 673 99 89 57 98 100 100 97 89 57 6 25 25
4 500 155 143 144 100 100 100 100 100 100 100 100 100 18 60 60
5 30 725 375 392 100 99 99 23 97 96 23 96 94 4 21 21
5 100 356 198 189 100 100 100 22 92 98 22 92 98 7 31 31
5 500 156 99 88 100 100 100 22 89 100 22 89 100 20 89 89
6 30 823 431 442 100 96 96 25 96 95 25 92 91 4 19 19
6 100 412 225 220 100 100 100 25 91 98 25 91 98 5 27 27
6 500 185 103 89 100 100 100 26 90 99 26 90 99 13 75 75
7 30 4283 1137 1045 94 17 11 7 85 90 1 1 1 16 108 108
7 100 997 240 112 95 21 8 7 84 94 2 5 2 24 127 127
7 500 326 115 57 91 26 7 14 83 95 5 9 2 60 336 336
8 30 3094 433 300 91 14 7 11 88 93 2 2 1 13 96 96
8 100 948 214 116 91 17 7 11 86 93 2 2 1 12 74 74
8 500 550 85 72 85 12 7 20 91 94 5 3 2 17 183 183
9 30 1595 803 839 97 33 33 17 98 98 14 31 31 17 94 94
9 100 471 284 346 98 70 56 20 97 100 18 66 55 27 137 137
9 500 190 125 150 99 91 80 23 92 100 22 82 80 94 479 479
10 30 1597 761 720 96 32 29 20 97 98 16 29 27 14 82 82
10 100 719 442 464 96 77 61 30 79 91 26 56 52 11 76 76
10 500 520 290 270 96 95 87 41 61 81 36 55 68 19 217 217
11 30 1238 446 450 100 92 96 12 97 93 12 90 89 16 86 86
11 100 591 244 205 100 100 100 14 89 97 14 89 97 21 105 105
11 500 352 195 122 100 100 100 24 66 98 24 66 98 46 274 274
12 30 1356 616 599 100 87 91 17 96 92 17 82 82 12 72 72
12 100 827 380 322 100 100 100 26 80 91 26 80 91 9 73 73
12 500 688 324 248 100 100 100 33 57 86 33 57 86 15 195 195

5 Data analysis: Problem lists

We now analyze the motivating problem list data. Tables 4–6 give the parameter estimates
for all models for cases A–C, respectively. The BIC-based results are given for comparison,
and we focus on the AIC-based fitted models. Figures S1–S3 in the Supplement give the full
solution paths from our algorithm, with the AIC and BIC solutions noted. Tables 4–6 also
include the consensus problem list from Krauss et al. (2016) and the other comparator meth-
ods evaluated in the simulation study. To alternatively characterize the extent of physician
consensus, Figure 3 plots the probability of the most preferred item at each stage according
to the AIC-estimated BPL model fit, conditional on all prior stages having also selected the
most preferred item. Each such modal list continues until the item “0” is selected.

Of the 28 unique problems listed for case A, 10 were estimated to have non-zero weights
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according to the AIC-selected model; these 10 problems are the consensus problem list
according to the model. The BIC-selected model included 12 problems. Using AIC, the
estimate of δ1 was 1 and the estimate of δ2 was 0.62, suggesting that relative preferences
quickly decrease and level off at about 2/3 their starting values. For example, at stage 3,
the dampening function evaluates to δ(3) = 0.62 + 0.385 ≈ 0.63, and the relative weight
of, say, anemia at this stage (supposing it has not yet been ranked) decreases to 5.30 ×
0.63 = 3.3. The BPL models’ ranks agree with the length-8 consensus problem list reported
in Krauss et al. (2016) as well as with AMean and GMean on the three most important
problems, and they nearly agree with Median, MC2, MC3, CEMCρ, CECMτ , and MM.
Among the comparator methods, the BPL models agreed most closely with AMean. There
was disagreement with between some methods at lower ranks, however. The BPL models did
not put one problem from Krauss et al. – hypoxia – anywhere in their consensus list. The
fatigue parameter θ0 was estimated to be 2.57 in the AIC-selected model. This value does not
translate into an expected list length, which is a multidimensional function of all elements
of β. Thus, we simulated many lists from the fitted model to characterize the distribution
of list lengths. The first, second, and third quartiles of the length of these simulated lists
was (4, 6, 9), compared to values of (5, 8, 9) for the observed case A data. From Figure 3, the
most preferred item at stage 1 (pneumonia) is estimated to be selected with probability
about 0.57, decreasing to about 0.20 for subsequent stages. This seems to disagree with the
empiric proportion of physicians who ranked pneumonia first, which was 26/32 ≈ 0.82.
This model misspecification is likely due to the fact that two physicians ranked it 4th and
four others never ranked it. The probabilities sometimes increase with stage due to the effect
of the dampening function.
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Table 4: Parameter estimates from fitted penalized Benter-Plackett-Luce (BPL) models applied to case A data, ordered by
estimated values of θk from using λ = λaic. The final row, p̃λ, gives the number of non-zero parameters in the estimated model.
For comparison, the remaining columns give the ranked list of problems according to the listed alternative algorithm or model;
comparator entries in bold indicate ranks that were either (i) discrepant with λaic by not more than 1 position or (ii) ranks that
were larger than the total number of non-zero estimated weights according to λaic and which λaic estimated to be zero. The
parenthetical numbers in the AMean, GMean, and Median rank columns correspond to the summary rank of that problem, and
the parenthetical numbers in the MC columns correspond to the estimated transition probability for the stationary distribution
(×100).

BPL LDRBO AMean GMean Median MC1 MC2 MC3 CEMCρ CEMCτ EMM MM
Problem / Parameter λ = 0 λaic λbic Rank Rank Rank
θ0 3.95 2.57 2.78
pneumonia 9.54 6.86 7.32 1 1(3.3) 1(1.6) 1(1.0) 1(5.6) 1(19.8) 1(15.2) 1 1 1 1
diabetes mellitus 7.94 5.31 5.74 2 2(5.5) 2(4.4) 3(5.0) 5(3.9) 3(10.5) 3(8.8) 3 3 4 3
anemia 7.93 5.30 5.74 3 3(6.5) 3(4.6) 2(4.0) 2(4.5) 2(14.1) 2(9.1) 2 2 2 2
depression with anxiety 7.15 4.55 4.98 5 4(8.2) 4(6.9) 4(7.0) 9(3.7) 4(7.8) 4(6.3) 7 4 5 5
osteoarthritis 6.64 4.07 4.49 6 5(10.1) 6(9.1) 5(8.0) 12(3.6) 5(5.8) 6(4.9) 8 6 6 8
splenomegaly 6.42 3.79 4.21 4 6(10.8) 5(8.0) 7(12.5) 3(4.1) 7(3.9) 5(5.5) 4 5 3 4
post menopausal on hrt 6.25 3.68 4.09 7(11.4) 9(9.8) 6(9.5) 15(3.5) 6(4.7) 9(4.4) 13 9 8 9
renal failure 5.90 3.29 3.70 7 8(12.3) 8(9.6) 8(16.8) 7(3.8) 8(2.0) 8(4.5) 5 7 9 7
systolic murmur 5.84 3.22 3.64 9(12.4) 7(9.3) 10(17.0) 4(3.9) 9(2.0) 7(4.5) 6 8 7 6
history of smoking 4.76 2.26 2.65 10(15.1) 11(13.9) 9(17.0) 16(3.4) 21(1.5) 11(2.7) 25 10 10 10
chest pain 4.17 0.00 2.00 11(15.7) 10(13.1) 12(18.0) 8(3.8) 14(1.6) 10(2.7) 15 12 12 11
lower extremity edema 4.10 0.00 2.00 12(15.8) 12(14.4) 11(17.8) 14(3.5) 20(1.5) 12(2.5) 9 11 11 12
iron deficiency 3.37 0.00 0.00 13(16.6) 15(15.7) 13(18.0) 22(3.3) 15(1.6) 14(2.1) 11 14 13 14
hypoxemia 3.04 0.00 0.00 14(16.7) 13(14.9) 17(18.2) 6(3.8) 17(1.6) 13(2.2) 24 13 20 13
hypophosphatemia 2.87 0.00 0.00 16(17.0) 19(16.4) 15(18.0) 23(3.3) 11(1.6) 17(1.9) 10 16 16 16
thrombocytopenia 2.83 0.00 0.00 15(17.0) 18(16.4) 14(18.0) 21(3.3) 24(1.5) 16(2.0) 16 15 15 15
short of breath 2.68 0.00 0.00 17(17.2) 14(15.5) 18(18.5) 10(3.6) 19(1.6) 15(2.0) 27 17 19 18
hypoxia 2.36 0.00 0.00 8 18(17.2) 16(15.8) 21(18.5) 19(3.4) 12(1.6) 19(1.9) 28 18 23 17
pancytopenia 2.30 0.00 0.00 19(17.3) 17(15.9) 23(18.5) 11(3.6) 13(1.6) 18(1.9) 19 20 24 19
hypoalbuminemia 2.14 0.00 0.00 20(17.4) 20(16.9) 16(18.2) 25(3.2) 28(1.5) 20(1.8) 20 19 14 20
fever 1.15 0.00 0.00 21(17.7) 21(16.9) 19(18.5) 13(3.5) 22(1.5) 21(1.7) 14 22 21 21
congestive heart failure 1.10 0.00 0.00 23(17.8) 22(17.0) 27(18.5) 18(3.4) 10(1.6) 23(1.7) 22 27 27 24
pulmonary edema 1.07 0.00 0.00 25(17.8) 23(17.0) 25(18.5) 17(3.4) 18(1.6) 24(1.6) 17 25 28 26
pulmonary embolism 0.95 0.00 0.00 22(17.7) 24(17.3) 24(18.5) 20(3.3) 16(1.6) 22(1.7) 23 21 25 22
tachycardia 0.90 0.00 0.00 24(17.8) 26(17.5) 28(18.5) 27(3.0) 23(1.5) 25(1.6) 12 28 22 23
depression 0.86 0.00 0.00 26(17.9) 25(17.5) 20(18.5) 24(3.2) 26(1.5) 26(1.6) 21 23 17 27
high haptoglobin 0.86 0.00 0.00 27(17.9) 28(17.7) 22(18.5) 28(2.7) 25(1.5) 28(1.6) 18 24 26 25
anxiety 0.00 0.00 0.00 28(17.9) 27(17.6) 26(18.5) 26(3.0) 27(1.5) 27(1.6) 26 26 18 28
δ1 0.99 1.00 1.00
δ2 0.61 0.62 0.61
λ 0 3.38 1.19
p̃λ 30 12 14

19



●

●
●

● ●

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7
StageH

ig
he

st
 P

ro
ba

bi
lit

y 
at

 S
ta

ge Case Name ● A B C

Figure 3: The probability of selectingn the most preferred item at each stage according
to the AIC-estimated BPL model fit in Tables 4–6, conditional on all prior stages having
also selected the most preferred item. Each such modal list continues until the item “0” is
selected.

Case B, given in Table S7, was the most challenging, consistent with the a priori expectation
in the protocol design. There were 47 unique problems appearing in at least one of the 32 lists,
and 14 unique problems were ranked highest on at least one list. diabetic ketoacidosis
had the largest log-odds ratio of 4.56 (AIC) or 4.84 (BIC), both approximately 0.9 larger
than the next highest ranked problem, renal failure. Beyond the first rank, the difference
in log-odds ratios between consecutive problems was even smaller, e.g. 0.16 between ranks 2
and 3, 0.13 between ranks 3 and 4, and 0.28 between ranks 4 and 5, reflecting uncertainty on
the part of the physicians regarding which items to rank where. The AIC-selected consensus
problem list, i.e. those items with strictly positive log-odds ratios, had length 16, similar to
the length of the LDRBO-based consensus list. However, there was significant reordering of
the problems: the top four problems of the AIC-based list were ranked 2nd, 5th, 4th, and
8th, respectively, on the LDRBO list. Further, three problems in the AIC-selected consensus
list were not in the LDRBO-based list. The AIC-based list agreed to a large extent with
AMean, GMean, MC3 and CECMτ . The fatigue parameter θ0 was estimated to be 2.79,
which together with the remaining parameter estimates, yields expected quartiles for the list
length of (5, 10, 14), compared to observed quartiles of (8, 10, 12.5). In agreement with these
findings, Figure 3 gives that the most preferred item at stage 1 (diabetic ketoacidosis)
is estimated to selected with probability about 0.26, compared to an observed proportion of
8/32 = 0.25.

Remark 3 The LDRBO-based consensus list for Case B, given in Table S7 differs from that
reported in Krauss et al. (2016): the 9th and 10th ranked items are swapped, and the 15th
ranked item is different. For this paper we wrote a new algorithm for optimizing consensus,
and it identified a list having a slightly larger (i.e. better) median pairwise LDRBO with
the 32 physician lists: 0.584 here versus 0.581 reported in Krauss, et al.
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Table 5: Parameter estimates from fitted penalized Benter-Plackett-Luce (BPL) models applied to case B data, ordered by
estimated values of θk from using λ = λaic. The final row, p̃λ, gives the number of non-zero parameters in the estimated model.
For comparison, the remaining columns give the ranked list of problems according to the listed alternative algorithm or model;
comparator entries in bold indicate ranks that were either (i) discrepant with λaic by not more than 1 position or (ii) ranks that
were larger than the total number of non-zero estimated weights according to λaic and which λaic estimated to be zero. The
parenthetical numbers in the AMean, GMean, and Median rank columns correspond to the summary rank of that problem, and
the parenthetical numbers in the MC columns correspond to the estimated transition probability for the stationary distribution
(×100).

BPL LDRBO Mean GMean Median MC1 MC2 MC3 CEMCρ CEMCτ EMM MM
Problem / Parameter λ = 0 λaic λbic Rank Rank Rank
θ0 3.50 2.79 3.07
diabetic ketoacidosis 5.27 4.56 4.84 2 1(4.7) 1(3.0) 1(3.0) 1(3.6) 1(12.7) 1(8.85) 1 1 1 1
renal failure 4.39 3.68 3.96 5 2(9.0) 2(6.5) 4(6.0) 3(2.6) 5(6.4) 2(5.98) 4 2 5 4
sponatenous bacterial peritonitis 4.23 3.52 3.80 4 4(11.5) 3(6.5) 2(5.0) 2(2.7) 2(8.5) 3(5.59) 2 3 3 2
cirrhosis due to alcolhol 4.10 3.39 3.67 8 3(9.9) 5(7.7) 5(8.0) 11(2.3) 6(5.1) 4(5.16) 7 5 7 7
maxillary sinus mass 3.83 3.11 3.39 1 5(13.3) 4(7.2) 3(5.5) 5(2.5) 3(8.5) 5(4.92) 3 4 4 3
schizophrenia 3.60 2.89 3.17 11 6(13.9) 8(11.4) 7(11.0) 9(2.3) 7(4.3) 8(3.84) 10 7 8 8
encephelopathy 3.50 2.79 3.07 3 8(16.7) 6(8.6) 10(26.5) 8(2.3) 10(1.9) 7(4.08) 6 6 2 5
multiple cranial nerve palsies 3.46 2.75 3.03 6 7(15.9) 7(10.0) 6(8.5) 4(2.5) 4(7.0) 6(4.12) 5 9 6 6
hypertension 3.14 2.43 2.71 12 9(18.2) 11(15.3) 9(15.5) 13(2.2) 8(3.2) 9(2.90) 12 10 13 13
history of iv drug use 3.14 2.42 2.71 14 10(18.5) 13(16.0) 8(14.0) 22(2.1) 9(3.1) 12(2.80) 14 14 14 14
hyponatremia 3.00 2.29 2.57 7 11(19.9) 12(15.5) 15(28.0) 12(2.3) 13(1.2) 11(2.81) 8 12 12 12
hyperkalemia 2.89 2.17 2.46 10 14(20.7) 14(16.4) 12(27.8) 10(2.3) 14(1.2) 14(2.59) 9 13 11 11
tobacco use 2.87 2.15 2.44 13(20.5) 15(18.0) 11(26.5) 15(2.2) 15(1.2) 15(2.43) 16 16 15 16
sinusitis 2.73 2.03 2.31 9 12(20.5) 9(13.6) 13(28.0) 6(2.4) 11(1.3) 10(2.88) 44 8 10 9
meningitis 2.74 2.03 2.31 15(21.0) 10(14.0) 14(28.0) 7(2.3) 12(1.2) 13(2.79) 13 11 9 10
systolic murmur 2.42 1.71 2.00 16(23.5) 16(21.1) 16(28.0) 21(2.1) 16(1.2) 16(1.94) 11 15 16 15
hx alcohol abuse 2.05 0.00 1.62 18(25.2) 20(23.4) 18(28.5) 26(2.1) 20(1.1) 18(1.62) 15 17 17 18
orbit fracture 1.93 0.00 1.50 13 17(25.0) 17(21.4) 36(29.0) 18(2.2) 18(1.1) 17(1.78) 17 19 19 17
hx gun shot wound 1.84 0.00 1.42 19(26.1) 22(24.8) 17(28.5) 29(2.1) 27(1.0) 19(1.46) 46 18 18 19
anemia 1.49 0.00 0.00 20(26.8) 24(25.2) 42(29.0) 30(2.1) 17(1.1) 22(1.37) 19 23 20 21
diabetes mellitus 1.14 0.00 0.00 22(27.1) 19(23.1) 22(29.0) 24(2.1) 41(1.0) 21(1.41) 45 20 35 24
fever 1.14 0.00 0.00 15 21(26.9) 18(22.0) 19(29.0) 19(2.2) 19(1.1) 20(1.45) 38 22 27 20
r orbital fracture 1.12 0.00 0.00 23(27.5) 25(26.2) 41(29.0) 28(2.1) 28(1.0) 25(1.25) 39 21 22 22
thrombocytopenia 0.77 0.00 0.00 28(28.2) 34(27.6) 37(29.0) 43(1.8) 25(1.0) 28(1.12) 30 24 21 27
mucormycosis 0.75 0.00 0.00 24(27.7) 21(24.6) 23(29.0) 14(2.2) 35(1.0) 23(1.27) 24 25 28 25
sepsis 0.75 0.00 0.00 25(27.7) 23(25.1) 24(29.0) 16(2.2) 40(1.0) 24(1.26) 37 28 40 23
palatal lesion 0.75 0.00 0.00 26(27.9) 27(26.5) 28(29.0) 31(2.0) 23(1.0) 26(1.19) 21 26 26 26
anemia and thrombocytopenia 0.73 0.00 0.00 27(28.1) 32(27.2) 30(29.0) 36(1.9) 22(1.0) 27(1.14) 35 27 23 29
tachycardia 0.05 0.00 0.00 42(28.8) 44(28.5) 44(29.0) 46(1.6) 26(1.0) 44(1.02) 18 45 24 32
hypersosmolar coma 0.04 0.00 0.00 29(28.5) 29(27.0) 38(29.0) 27(2.1) 21(1.0) 30(1.09) 36 41 41 28
plasma protein disorder 0.03 0.00 0.00 37(28.7) 40(28.2) 33(29.0) 40(1.8) 34(1.0) 40(1.05) 22 44 29 33
potential cva 0.02 0.00 0.00 30(28.6) 26(26.5) 20(29.0) 17(2.2) 36(1.0) 29(1.10) 43 36 42 30
hepto-renal syndrome 0.01 0.00 0.00 31(28.6) 33(27.4) 25(29.0) 32(2.0) 24(1.0) 34(1.07) 40 29 37 31
leukocytosis 0.01 0.00 0.00 33(28.7) 35(27.6) 47(29.0) 34(2.0) 29(1.0) 35(1.07) 33 32 38 34
cerebrovascular accident 0.01 0.00 0.00 38(28.8) 39(28.1) 27(29.0) 38(1.8) 47(1.0) 39(1.05) 20 37 32 37
dehydration 0.01 0.00 0.00 36(28.7) 36(27.7) 29(29.0) 33(2.0) 45(1.0) 36(1.06) 23 31 33 35
alcoholism 0.01 0.00 0.00 41(28.8) 41(28.2) 26(29.0) 39(1.8) 39(1.0) 41(1.04) 28 40 43 40
alcoholic cirrhosis with sbp 0.00 0.00 0.00 32(28.7) 30(27.1) 45(29.0) 20(2.1) 30(1.0) 33(1.08) 26 30 39 36
smoking 0.00 0.00 0.00 39(28.8) 38(28.0) 39(29.0) 37(1.9) 44(1.0) 38(1.05) 25 43 34 39
ascites 0.00 0.00 0.00 34(28.7) 31(27.1) 31(29.0) 25(2.1) 42(1.0) 31(1.09) 42 38 36 38
alcoholic cirrhosis with ascites 0.00 0.00 0.00 35(28.7) 28(26.6) 21(29.0) 23(2.1) 46(1.0) 32(1.09) 32 33 47 41
renal failure with hyperkalemia 0.00 0.00 0.00 40(28.8) 37(27.9) 43(29.0) 35(2.0) 32(1.0) 37(1.06) 27 34 45 42
polysubstance abuse 0.00 0.00 0.00 44(28.8) 43(28.3) 40(29.0) 41(1.8) 33(1.0) 42(1.04) 41 39 46 47
protein calorie malnutrition 0.00 0.00 0.00 43(28.8) 42(28.3) 34(29.0) 42(1.8) 43(1.0) 43(1.03) 29 46 31 44
malnutrition 0.00 0.00 0.00 45(28.9) 45(28.5) 35(29.0) 44(1.7) 31(1.0) 46(1.01) 34 35 25 43
hepatomegaly 0.00 0.00 0.00 46(28.9) 46(28.6) 46(29.0) 45(1.6) 38(1.0) 45(1.01) 31 42 44 46
hx medical noncompliance 0.00 0.00 0.00 47(29.0) 47(28.8) 32(29.0) 47(1.5) 37(1.0) 47(0.99) 47 47 30 45
δ1 1.00 1.00 1.00
δ2 1.00 1.00 1.00
λ 0 5.03 2.18
p̃λ 40 17 20
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Table 6: Parameter estimates from fitted penalized Benter-Plackett-Luce (BPL) models applied to case C data, ordered by
estimated values of θk from using λ = λaic. The final row, p̃λ, gives the number of non-zero parameters in the estimated
model. For comparison, the remaining columns give the ranked list of problems according to the listed alternative algorithm
or model; comparator entries in bold indicate ranks that either were (i) discrepant with λaic by not more than 1 position or
(ii) larger than the total number of non-zero estimated weights according to λaic and which λaic estimated to be zero. The
parenthetical numbers in the AMean, GMean, and Median rank columns correspond to the summary rank of that problem, and
the parenthetical numbers in the MC columns correspond to the estimated transition probability for the stationary distribution
(×100).

BPL LDRBO Mean GMean Median MC1 MC2 MC3 CEMCρ CEMCτ EMM MM
Problem / Parameter λ = 0 λaic λbic Rank Rank Rank
θ0 3.47 3.28 3.45
pericardial effusion 7.46 7.24 7.41 1 1(1.8) 1(1.3) 1(1.0) 1(7.7) 1(18.7) 1(16.8) 1 1 1 1
uti 5.38 5.17 5.34 2 2(5.8) 2(4.1) 2(4.0) 2(4.3) 2(13.6) 2(9.1) 2 2 2 2
anemia 4.99 4.78 4.95 3 3(6.5) 3(5.2) 3(5.0) 3(3.9) 3(10.3) 3(7.8) 3 3 3 3
elevated lft’s 4.57 4.36 4.53 4 5(8.4) 5(6.6) 4(5.0) 7(3.5) 4(8.1) 5(6.3) 4 4 4 4
hypertension 4.54 4.33 4.50 6 4(8.1) 4(6.2) 5(6.0) 6(3.6) 5(6.5) 4(6.5) 5 5 5 5
r eye blind 3.56 3.34 3.52 7 6(12.6) 7(10.6) 6(11.0) 10(3.3) 6(4.1) 7(3.9) 9 6 7 6
systolic murmur 3.32 3.10 3.28 7(13.3) 6(10.4) 7(17.5) 12(3.3) 10(1.7) 6(4.0) 6 7 6 7
history of smoking 3.00 2.79 2.97 5 8(14.8) 11(13.4) 8(18.0) 9(3.4) 12(1.7) 10(3.0) 13 8 8 10
fever and night sweats 2.74 2.52 2.70 9(15.2) 8(12.4) 14(18.5) 16(3.2) 8(1.7) 8(3.2) 10 11 12 12
pleural effusion 2.56 2.34 2.52 10(15.6) 12(13.5) 13(18.5) 15(3.2) 13(1.7) 12(2.9) 11 10 9 9
shortness of breath 2.52 2.30 2.48 11(15.7) 9(12.6) 9(18.5) 4(3.8) 14(1.7) 9(3.0) 7 9 10 8
chest pain 2.41 2.19 2.38 12(15.8) 10(13.2) 12(18.5) 5(3.6) 7(1.7) 11(3.0) 8 12 11 11
diastolic murmur 2.23 2.02 2.20 13(16.5) 13(15.0) 10(18.5) 17(3.2) 9(1.7) 13(2.4) 26 14 13 13
history of tah/bso 1.69 0.00 1.66 14(17.5) 14(16.8) 11(18.5) 21(3.0) 11(1.7) 14(2.0) 16 13 14 14
aortic dissection 0.19 0.00 0.00 15(18.5) 15(17.3) 15(18.8) 8(3.4) 16(1.6) 15(1.7) 30 15 19 16
myocardial infarction 0.07 0.00 0.00 18(18.5) 24(18.2) 16(18.8) 24(2.8) 21(1.6) 22(1.6) 12 22 16 15
cardiomyopathy 0.04 0.00 0.00 16(18.5) 16(17.7) 17(18.8) 13(3.2) 15(1.6) 16(1.7) 19 23 26 17
increased jvp 0.04 0.00 0.00 20(18.5) 22(18.1) 21(18.8) 22(3.0) 30(1.6) 23(1.6) 28 18 17 18
ekg changes, old mi 0.03 0.00 0.00 24(18.6) 25(18.2) 23(18.8) 25(2.8) 20(1.6) 25(1.6) 23 19 23 21
thrombocytosis 0.03 0.00 0.00 27(18.7) 28(18.5) 20(18.8) 30(2.5) 27(1.6) 29(1.6) 24 27 15 26
congestive heart failure 0.03 0.00 0.00 17(18.5) 17(17.7) 24(18.8) 18(3.1) 19(1.6) 17(1.7) 18 21 21 19
renal insufficiency 0.02 0.00 0.00 28(18.7) 29(18.5) 26(18.8) 29(2.5) 29(1.6) 28(1.6) 25 28 18 25
cardiomegaly 0.02 0.00 0.00 19(18.5) 18(17.7) 19(18.8) 11(3.3) 25(1.6) 18(1.7) 15 16 28 20
hypertensive heart disease 0.01 0.00 0.00 21(18.5) 19(17.7) 29(19.0) 19(3.1) 28(1.6) 20(1.6) 20 17 22 24
valvular heart disease 0.01 0.00 0.00 22(18.5) 20(17.7) 30(19.0) 14(3.2) 26(1.6) 19(1.6) 29 24 24 22
iron deficiency 0.01 0.00 0.00 23(18.6) 21(18.0) 22(18.8) 20(3.1) 17(1.6) 21(1.6) 17 20 29 23
ekg changes 0.00 0.00 0.00 25(18.6) 23(18.1) 28(19.0) 23(2.9) 22(1.6) 24(1.6) 21 26 27 27
pulmonary embolism 0.00 0.00 0.00 29(18.7) 27(18.4) 27(19.0) 26(2.7) 18(1.6) 27(1.6) 14 29 25 30
ascvd 0.00 0.00 0.00 26(18.7) 26(18.4) 18(18.8) 27(2.7) 24(1.6) 26(1.6) 22 30 30 28
r sided heart failure 0.00 0.00 0.00 30(18.7) 30(18.5) 25(18.8) 28(2.5) 23(1.6) 30(1.6) 27 25 20 29
δ1 1.00 1.00 1.00
δ2 0.86 0.86 0.86
λ 0 3.04 0.01
p̃λ 29 15 16
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Finally, the results for case C are given in Table 6. Thirty unique problems were listed
across all lists. The largest log-odds ratio was attributed to pericardial effusion (7.24,
7.41 respectively for AIC, BIC). There was a significant gap between the next ranked item,
urinary tract infection (uti), and the difference in log-odds ratios was 7.24 − 5.17 ≈ 2.07,
meaning that the model-estimated odds of ranking pericardial effusion over uti at
stage 1 are exp{7.24− 5.17} ≈ 8. In total, the consensus problem list was length 13 (AIC)
or 14 (BIC), compared to an LDRBO-based length of 7. There was perfect agreement with
the LDRBO-based list on the first four problems, with the only discrepancy occurring on
history of smoking, ranked 8th in the AIC-selected list and 5th in the LDRBO-based
list. There was widespread agreement with most other comparator methods. The estimate
for θ0 was 3.28, and the set of parameter estimates yielded a simulation-based estimate of
the expected quartiles for list length of (4, 6, 9), which are similar to the observed quartiles
of (6, 7, 9). From Figure 3, pericardial effusion had a model-estimated 0.71 probability
of selection at stage 1, with the most preferred items at subsequent stages being selected
with probability between 0.2 and 0.3.

6 Data analysis: NBA team rankings

We briefly present here a secondary analysis of a dataset first reported in Deng et al. (2014).
After the 2011 NBA preseason, six professional news agencies ranked all 30 teams in the
league (we do not analyze the 28 student surveys reported in that paper). These six lists
are complete rather than ragged, and the value of the fatigue parameter maximizing the
likelihood is thus θ0 =∞, meaning it can be dropped from the model. We applied the same
set of methods to these data, the results of which are reported in Table S1 of the Supplement.
There was widespread overall agreement between all methods. However, the AIC-selected
list was substantially more parsimonious, which is due to the small-sample correction: it will
not estimate more parameters, i.e. item weights, than there are observations, i.e. rankers,
of which there are just 6 in these data.

7 Discussion

A challenging, but not unique, feature of the problem list data is that each list may have
a different length, making difficult the implementation of multistage models that assume
a uniform list length. Moreover, it is useful to have an aggregated consensus list that has
excluded unimportant items. With these objectives in mind, we have extended classical,
multistage models and amalgamated them with modern penalized likelihood ideas. As seen
in our second data example, these penalized BPL models apply equally well to the analysis
of non-ragged data.

We have already mentioned some advantages a modeling approach has over the approach
taken by Krauss et al. (2016), which calculated a hypothetical problem list maximizing pair-
wise similarity with the observed problem lists. One additional, yet-unmentioned advantage
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over that approach and some of the others we’ve considered in this paper is that the penal-
ized BPL models do not only order the items but also give an explicit numerical assessment
of their relative importance by way of an estimated relative log-odds ratio. For example,
in case B, we can conclude that there are a substantial number of problems for which the
physicians were conflicted about: the difference in log-odds ratios between the 6th and 15th
ranked problems, schizophrenia and sinusitis, respectively, was just 2.89− 2.03 = 0.86,
and consequently any differences in log-odds ratios between these ranks was even smaller.
This may be why the penalized BPL consensus lists differed from the LDRBO-based list.
In each of our problem list analyses, the existing methods that our penalized BPL models
agreed with most often, i.e. MC3 and CEMCτ , were also the methods that performed well
in our simulation study.

Tables 4–6 and Figure 3 may seem inconsistent: the set of non-zero items in the tables is
somewhat longer than the length of the modal lists plotted in Figure 3. However, these
results describe different dimensions of consensus. The tables describe overall physician
agreement on the sets of relevant problems for each case abstract, whereas the figure char-
acterizes the model-estimated probability of the list that is most likely to be constructed
by an individual physician. Our results suggest that, for cases A and C, a physician should
not expect to construct a list that matches that of her colleague beyond the highest ranked
item; collectively, however, the physicians are in agreement on the first five or so items. In
contrast, for case B, there was generally no consensus.

One important design-based challenge to our analysis is with regard to the defining, naming,
and grouping of problems. As described in the introduction, physicians were free to describe
problems in their own words during the interview. If the physician named any clinically
similar problems that had already been listed, either by her or another physician, the inter-
viewer verbally observed this and offered that she could change her similar-sounding problem
to match the already existing one; however, she was not forced to do so. This is why case
B has history of alcohol abuse, alcoholism, alcoholic cirrhosis with ascites,
and alcoholic cirrhosis with sbp all listed as separate problems. We also implicitly
assumed that the number of possible items, v, for each case was exactly the number of
unique items listed by all physicians, but it is possible that, if more interviews were to be
conducted, additional unique problems would be introduced to the vocabulary. One must
therefore assume that our sample size was sufficiently large to include, at a minimum, those
problems that would fall in the consensus list.
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Table S7: Parameter estimates from fitted penalized Benter-Plackett-Luce (BPL) models
applied to the NBA data from Deng et al. (2014), ordered by estimated values of θk from
using λ = λaic. The final row, p̃λ, gives the number of non-zero parameters in the estimated
model. For comparison, the remaining columns give the ranked list of problems according
to the listed alternative algorithm or model; comparator entries in bold indicate ranks that
were either (i) discrepant with λaic by not more than 1 position or (ii) ranks that were
larger than the total number of non-zero estimated weights according to λaic and which λaic
estimated to be zero.

BPL LDRBO Mean GMean Median MC1 MC2 MC3 CEMCρ CEMCτ EMM MM
Team λ = 0 λaic λBIC Rank Rank Rank
heat 24.06 16.78 24.22 1 1(1.2) 1(1.1) 1(1.0) 1(16.13) 1(18.69) 1(17.91) 1 1 1 1
thunder 21.65 14.36 21.80 3 3(2.7) 3(2.6) 3(3.0) 3(10.92) 2(11.93) 3(11.59) 2 3 2 2
mavericks 21.31 14.03 21.46 2 2(2.7) 2(2.4) 2(2.5) 2(12.66) 3(11.93) 2(11.78) 3 2 3 3
bulls 20.33 13.05 20.49 4 4(3.5) 4(3.4) 4(4.0) 4(10.92) 4(8.08) 4(9.35) 4 4 4 4
lakers 13.23 0.00 13.24 6 6(6.7) 6(6.6) 6(6.5) 5(4.38) 6(5.41) 6(5.00) 6 6 6 6
clippers 13.03 0.00 13.03 5 5(6.7) 5(6.4) 5(6.0) 6(4.11) 5(5.93) 5(5.04) 5 5 5 5
spurs 12.33 0.00 12.34 7 7(8.0) 7(7.7) 7(7.5) 7(4.11) 8(3.89) 7(4.09) 7 8 8 7
celtics 12.20 0.00 12.21 8 8(8.2) 8(7.8) 9(9.0) 8(4.11) 9(3.77) 8(4.01) 9 10 10 9
knicks 11.87 0.00 11.88 9 9(8.7) 9(8.4) 8(8.5) 10(3.66) 7(3.89) 9(3.72) 8 7 7 8
grizzlies 11.83 0.00 11.84 10 10(9.0) 10(8.9) 10(9.0) 9(3.84) 10(3.18) 10(3.48) 10 9 9 10
magic 9.90 0.00 9.90 17 12(12.7) 12(12.5) 12(11.5) 13(2.08) 12(2.21) 12(2.14) 11 13 12 12
pacers 9.88 0.00 9.89 14 13(13.3) 13(13.3) 13(13.5) 12(2.18) 13(1.87) 13(1.97) 12 12 13 13
nuggets 9.74 0.00 9.75 11 11(10.8) 11(10.0) 11(9.5) 11(2.76) 11(2.71) 11(2.87) 26 11 11 11
trailblazers 9.53 0.00 9.53 13 14(14.0) 14(13.9) 14(14.0) 14(2.01) 14(1.68) 14(1.83) 13 14 14 14
76ers 9.12 0.00 9.13 15 15(14.8) 16(14.8) 15(15.0) 15(1.92) 16(1.52) 15(1.67) 14 15 15 15
hawks 8.19 0.00 8.19 12 16(15.0) 15(14.7) 16(15.0) 16(1.84) 15(1.55) 16(1.67) 15 18 18 16
rockets 8.11 0.00 8.11 16 17(17.0) 17(16.9) 17(16.5) 18(1.36) 17(1.39) 17(1.35) 17 16 16 17
bucks 7.49 0.00 7.50 18 18(17.7) 18(17.6) 18(17.0) 17(1.37) 18(1.27) 18(1.28) 16 17 17 18
suns 6.25 0.00 6.25 19 19(20.3) 19(20.3) 19(20.5) 19(1.02) 20(1.02) 19(1.01) 20 20 20 19
warriors 6.01 0.00 6.02 22 20(21.2) 21(21.1) 20(21.5) 22(0.90) 19(1.06) 21(0.94) 19 22 19 20
nets 5.60 0.00 5.60 21 21(21.2) 20(21.0) 21(21.5) 20(1.00) 21(0.98) 20(0.96) 18 19 21 21
timberwolves 5.40 0.00 5.40 23 22(22.3) 22(22.3) 22(22.5) 23(0.87) 22(0.87) 22(0.86) 21 21 22 22
pistons 4.37 0.00 4.37 25 25(24.3) 25(24.3) 26(25.0) 25(0.78) 24(0.73) 25(0.75) 22 24 23 25
hornets 3.96 0.00 3.96 20 23(23.2) 23(22.8) 23(24.0) 24(0.83) 23(0.75) 23(0.83) 25 25 25 23
jazz 3.75 0.00 3.75 26 24(23.5) 24(23.2) 24(24.5) 21(0.94) 25(0.73) 24(0.81) 24 23 24 24
kings 3.70 0.00 3.70 24 26(24.5) 26(24.3) 25(25.0) 26(0.77) 26(0.71) 26(0.74) 23 26 26 26
wizards 3.04 0.00 3.04 28 27(27.0) 27(27.0) 27(27.0) 27(0.66) 27(0.60) 27(0.62) 27 27 27 27
cavaliers 2.19 0.00 2.19 27 29(27.7) 29(27.6) 29(28.0) 28(0.66) 29(0.56) 29(0.60) 29 29 29 29
raptors 2.10 0.00 2.10 29 28(27.5) 28(27.4) 28(28.0) 29(0.64) 28(0.58) 28(0.60) 28 28 28 28
bobcats 0.00 0.00 0.00 30 30(29.8) 30(29.8) 30(30.0) 30(0.53) 30(0.51) 30(0.52) 30 30 30 30
δ1 1.00 1.00 1.00
δ2 1.00 1.00 1.00
λ 0 29.009 0.000
p̃λ 29 4 29
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Figure S2: Solution path for Case B, with the choice of λ minimizing the AIC and BIC
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