
University of Michigan School of Public
Health

The University of Michigan Department of Biostatistics Working
Paper Series

Year  Paper 

A simulation study of diagnostics for bias in
non-probability samples

Philip S. Boonstra∗ Roderick JA Little† Brady T. West‡

Rebecca R. Andridge∗∗ Fernanda Alvarado-Leiton††

∗University Of Michigan, philb@umich.edu
†University of Michigan, rlittle@umich.edu
‡University of Michigan, bwest@umich.edu
∗∗The Ohio State University, andridge.1@osu.edu
††University of Michigan, mleiton@umich.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

https://biostats.bepress.com/umichbiostat/paper125

Copyright c©2019 by the authors.



A simulation study of diagnostics for bias in
non-probability samples

Philip S. Boonstra, Roderick JA Little, Brady T. West, Rebecca R. Andridge, and
Fernanda Alvarado-Leiton

Abstract

A non-probability sampling mechanism is likely to bias estimates of parameters
with respect to a target population of interest. This bias poses a unique challenge
when selection is ‘non-ignorable’, i.e. dependent upon the unobserved outcome of
interest, since it is then undetectable and thus cannot be ameliorated. We extend a
simulation study by Nishimura et al. [International Statistical Review, 84, 43–62
(2016)], adding a recently published statistic, the so-called ’standardized measure
of unadjusted bias’, which explicitly quantifies the extent of bias under the as-
sumption that a specified amount of non-ignorable selection exists. Our findings
suggest that this new sensitivity diagnostic is considerably correlated with, and
more predictive of, the true, unknown extent of selection bias than other diagnos-
tics, even when the underlying assumed level of non-ignorability is incorrect.
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Summary

A non-probability sampling mechanism is likely to bias estimates of parameters with re-

spect to a target population of interest. This bias poses a unique challenge when selec-

tion is ‘non-ignorable’, i.e. dependent upon the unobserved outcome of interest, since

it is then undetectable and thus cannot be ameliorated. We extend a simulation study

by Nishimura et al. [International Statistical Review, 84, 43–62 (2016)], adding a re-

cently published statistic, the so-called ‘standardized measure of unadjusted bias’, which

explicitly quantifies the extent of bias under the assumption that a specified amount of

non-ignorable selection exists. Our findings suggest that this new sensitivity diagnostic is

considerably correlated with, and more predictive of, the true, unknown extent of selection

bias than other diagnostics, even when the underlying assumed level of non-ignorability

is incorrect.
∗1415 Washington Heights, Ann Arbor, Michigan, USA, 48109-2029; Tel: +1 734 615 1580;

philb@umich.edu

1
Hosted by The Berkeley Electronic Press



Key words: Non-Ignorable Selection Bias; Survey Non-Response; Multiple Imputation

2
https://biostats.bepress.com/umichbiostat/paper125



1 Introduction

Classical methods of scientific probability sampling and corresponding design-based

frameworks for making statistical inferences about populations have long been used to

advance scientific knowledge in various fields. The random selection of elements from a

population of interest into a probability sample, where all population elements have a

known non-zero probability of selection, ensures that elements included in the sample

mirror the population in expectation. That is, for all variables of interest, the mechanism

of selection of a subset of elements into the sample is ignorable, following the theoretical

framework for missing-data mechanisms originally introduced by Rubin (1976).

The modern survey research environment poses significant challenges to these

“tried and true” methodologies: it has become increasingly difficult to contact sampled

units, survey response rates continue to decline in all modes of administration

(face-to-face, telephone, etc.; Brick and Williams, 2013; Williams and Brick, 2018), and

the costs of collecting and maintaining scientific probability samples are steadily rising

(Presser and McCulloch, 2011). These problems raise the question of whether, and to

what extent, samples can be treated as probability samples when only a small fraction

has responded, such that the response mechanism may in fact not be ignorable?

Given the difficulties of collecting data from probability samples, researchers are

also turning to non-probability samples, which have the potential to yield large amounts

of data at low cost. These may also be prone to non-ignorable selection bias, as the

researchers no longer has control over the mechanism that ultimately yields the final

sample. Given this trend in research methodology, indicators of the potential

non-ignorable selection bias in non-probability samples and probability samples with low

response rates are required.

Nishimura et al. (2016) investigated the suitability of various statistics for use as
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diagnostics for selection bias due to non-probability sampling mechanisms, of both the

‘ignorable’ or ‘non-ignorable’ type (Rubin, 1976). They noted that none of the diagnostics

they considered were intended to directly quantify selection bias. Moreover, their

simulation study found that none of them were suitable as potential diagnostics, leaving

the door open for other candidates. A statistic recently proposed in Little et al. (2019)

explicitly estimates this bias based on an assumed level of non-ignorability and therefore

is potentially appropriate for use as a diagnostic. The primary contribution of this paper

is the inclusion of this statistic in this comparison of diagnostics. We also extend

Nishimura et al. (2016) by simulating two auxiliary variables that are differentially

associated with the survey variable and selection, which we argue is an important

additional factor when evaluating the diagnostics.

The remainder of this paper is organized as follows. Section 2 presents notation

and a brief description of the index of selection bias proposed in Little et al. (2019).

Section 3 describes the other diagnostics we consider here, which were also evaluated

in Nishimura et al. (2016). Sections 4 and 5 describe and present the results from the

simulation study, respectively. And Section 6 concludes with a discussion of all of the

diagnostics considered in light of our results.

2 An index of selection bias

For a target population of size N , with i = 1, . . . , N , let Si ∈ {0, 1} indicate the selection

of the ith subject into the sample, Yi be the continuous outcome of interest, and Zi be an

observed auxiliary variable that is relevant due to its association with Yi. The vectors

S = {S1, . . . , SN} and Z = {Z1, . . . , ZN} are fully observed, and the vector

Y = {Y1, . . . , YN} is separated into selected (observed) and unselected (missing)

sub-vectors, respectively Ysel = {Yi : Si = 1} and Yunsel = {Yi : Si = 0}. When needed, we
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will also use this same convention to separate Z into selected and unselected

subvectors, Zsel and Zunsel, although in contrast to Y both subvectors of Z are always

assumed to be fully observed. The primary estimand of interest is the average outcome

in the target population: E[Yi] = µy.

Two forms of models for the joint distribution of {Y, Z, S} are often considered.

Selection models (Little and Rubin, 2002) factorize the joint distribution as

[Y, Z, S|α, β] = [Y, Z|α] Pr(S|Y, Z, β) (1)

with parameters {α, β}, where α and/or β may themselves be vectors. A model for

Pr(S|Y, Z, β) describes the missingness mechanism for Yunsel, since Yi is not observed

when Si = 0. Thus, the strongest possible assumption to make regarding Pr(S|Y, Z, β) is

that S and {Y, Z} are jointly independent or, adapting the terminology of Little and Rubin

(2002), ‘selection completely at random’ (SCAR). In this case β corresponds to the

average selection rate. A weaker assumption is ‘selection at random’ (SAR), which

assumes that S and Y are conditionally independent given Z. The weakest assumption

is ‘selection not at random’ (SNAR), and elements of both α and β are not identified in

this case.

The second decomposition is the class of ‘pattern-mixture models’ (Andridge and

Little, 2011; Little, 1994), which describe outcome models that are specific to the

selected and unselected populations:

[Y, Z, S|θunsel, θsel, π] = [Y, Z|S, θunsel, θsel] Pr(S|π)

= [Yunsel, Zunsel|θunsel][Ysel, Zsel|θsel] Pr(S|π), (2)

with parameters {θunsel, θsel, π}, where θunsel and θsel may be vectors and π is a scalar

equal to the probability of selection. Both the selection and pattern-mixture
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decompositions are statistically valid, and in the special case of a SCAR mechanism, the

models coincide, meaning that θunsel = θsel ≡ θ and {θ, π} and {α, β} share a 1-1

correspondence (Little, 1994). Further, all parameters become identified in this special

case. However, models (1) and (2) will not generally coincide under SAR for any

distributional choices. Although the decomposition in (1) is more intuitive by directly

capturing the data-generating mechanism, the usefulness in focusing on (2) is that the

non-identified parameters are isolated to a single submodel: [Yunsel, Zunsel|θunsel]. In the

pattern-mixture framework, the estimand of interest, µy, is equal to

πE[Ysel|θsel] + (1− π)E[Yunsel|θunsel]. The latter mean, E[Yunsel|θunsel], is not identified

without making further assumptions.

Specifically, for the factorization in (2), assume that [Zsel, Ysel|θsel] and

[Zunsel, Yunsel|θunsel] are both bivariate normal, with θsel and θunsel each denoting five

parameters (two means, two variances, and a covariance). Additionally, assume that the

marginal distribution Pr(S|π) is coherent with some true conditional distribution of S

given Z and Y that takes the form

Pr(S = 1|Y, Z, φ) = g (φY + (1− φ)Z) , (3)

for some invertible function g(t) having range in the interval (0, 1) but otherwise

unspecified, and for some scalar parameter φ ∈ [0, 1]. The population mean µy becomes

identified under these assumptions (Andridge and Little, 2011; Little, 1994), and a

maximum likelihood estimate (MLE) of µy as a function of φ is given by

µ̂y(φ) = ȳsel +
φ+ (1− φ)rsel

φrsel + (1− φ)

√
σ̂2
ysel

σ̂2
zsel

(z̄sel − z̄). (4)

Here, ȳsel, z̄sel, and z̄ are the sample means of Ysel, Zsel, and Z, respectively; rsel is the

sample Pearson correlation between Ysel and Zsel; and σ̂2
ysel

and σ̂2
zsel

are the sample
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variances of Ysel and Zsel, respectively. See Andridge and Little (2011) for the derivation

of this estimator.

Remark: Little et al. (2019) show that the estimator (4) remains unbiased for its

estimand under a more general class of functions than that given in (3), namely

Pr(S = 1|Y, Z,W, φ) = g (φY + (1− φ)Z,W ) , (5)

where W is uncorrelated with Z. This generalization will be important for explaining a

key result in our simulation study.

This estimate of µy in (4) is a function of the parameter φ, which in turn controls the

extent to which sampling depends upon the outcome Y , with larger values indicating

greater dependence. When φ = 0, the selection mechanism is SAR, and the resulting

diagnostic is closely related to the measure H1 in Särndal and Lundström (2010). When

φ > 0, the sampling mechanism is ‘non-ignorable’ (Rubin, 1976), meaning that the

sampled population cannot yield unbiased estimates of the target population parameter

without knowledge of the true value of φ (Little et al., 2019). However, in any

non-probability sample, φ is, by definition, not estimable, Little, et al. propose varying this

parameter in a sensitivity analysis. Subtracting ȳsel from both sides, we obtain a direct

estimate of the bias that would arise in using ȳsel to estimate µy for a particular true value

of φ. The resulting expression is the recently proposed Standardized Measure of

Unadjusted Bias (SMUB, Little et al., 2019):

SMUB(φ) =
φ+ (1− φ)rsel

φrsel + (1− φ)

√
σ̂2
ysel

σ̂2
zsel

(z̄sel − z̄). (6)

This measure quantifies the sensitivity of estimates based upon the selected sample due

to increasing levels of non-ignorability, represented by the value of φ. The simulation

study in Nishimura et al. (2016), prior to the proposal of the estimator in (6), found that
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“none of the indicators [evaluated] fully depict the impact of non-response in survey

estimates.” (p.43) We consider here whether the SMUB index addresses this deficiency.

Note that (6) is based on a normal pattern-mixture model, and as such is less well suited

to non-normal outcomes. Modifications of (6) for a categorical outcomes are discussed

in Andridge and Little (2009) but are not considered in this article.

3 Other Diagnostics Evaluated

Nishimura et al. (2016) grouped the diagnostics they compared based upon whether

{S,Z} or {S, Ysel, Z} are required to calculate them.

The simplest diagnostic is s̄, i.e. the sample mean of the selection indicator, or the

selection rate. Small values of s̄ increase the upper bound for potential bias due to

non-ignorable sampling since a larger fraction of the data are missing (Nishimura et al.,

2016) but do not necessarily indicate greater selection bias, e.g. Bootsma-van der Wiel

et al. (2002). Since our focus is on how well measures reflect bias characteristics beyond

the selection rate, we choose to include the selection rate as a design factor in our

simulation study, rather than as a diagnostic for bias.

3.1 Diagnostics using {S,Z}

This category characterizes the associations between the fully observed auxiliary

variable Z and the selection indicator S. The underlying rationale for doing so is that a

selection rate dependent upon Z, which is itself a surrogate for Y , is suggestive of a

selection rate dependent upon Y , i.e. selection bias. Nishimura et al. (2016) consider

three measures of this type, which are described below.

Consider first the selection model conditioning on Z alone:
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Pr(S = 1|Z, γ0, γz) = logit−1(γ0 + γzZ). This is fit to the data {S,Z} from both the

selected and unselected populations. Let the fitted probability, or propensity, of selection

for the ith observation be given by

ηi ≡ logit−1(γ̂0 + γ̂zZi). (7)

The R-Indicator (Schouten et al., 2009), where R stands for ‘response’, which is

‘selection’ in our notation, is the following linear transformation of the sample standard

deviation of ηi across both the selected and un-selected samples:

R̂ = 1− 2

√√√√ 1

N − 1

N∑
i=1

(
ηi −

N∑
j=1

ηj/N

)2

.

It theoretically ranges from 0 to 1, where smaller values correspond to greater variability

in the selection propensities and, consequently, more potential for selection bias.

However, the smallest possible value R̂ = 0, i.e. when the sample standard deviation of

the ηi’s is 0.5, occurs only under two strong conditions. First, the average fitted selection

propensity,
∑N

j=1 ηj/N , must be 0.5. Second, each individual propensity must either be

ηi = 1 or ηi = 0, i.e. S can be completely separated by Z, in the sense of Albert and

Anderson (1984). In practice, R̂ = 1 generally ranges between 0.5 and 1.

The coefficient of variation of the selection propensities is the ratio of the same

standard deviation used in the R-indicator and the mean selection propensity:

CVS =

√
1

N−1

∑N
i=1

(
ηi −

∑N
j=1 ηj/N

)2

∑N
j=1 ηj/N

.

The theoretical range of CVS is the set of non-negative numbers. The rationale for using

the coefficient of variation is that both variability in selection probabilities (the numerator)

and smaller selection rates (the denominator) contribute to the potential for selection
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bias. As with the other indices, however, the challenge is that this relationship does not

always hold, nor is the converse true: selection bias may exist even in the presence of a

“small” CVS.

The variability in non-selection weights focuses on the inverse of the estimated

selection probabilities, 1/ηi. Nishimura et al. (2016) consider the sample variance of 1/ηi

evaluated in the selected sample:

Var(η−1) =
1

(Ns̄)− 1

∑
i:Si=1

1/ηi −

 ∑
j:Sj=1

1/ηj

 /[Ns̄]
2

.

Two other approaches limited to these same data assess the overall performance

of the selection model Pr(S = 1|Z, γ0, γz) = logit−1(γ0 + γzZ) in distinguishing between

selected and non-selected observations. One is the common ‘Area Under the

receiver-operating characteristic Curve’ (AUC), an assessment of discriminatory ability.

The corresponding estimate counts the proportion of all possible selected-unselected

pairs, the selection propensities of which are correctly ordered:

ˆAUC =

∑∑
i,j:si=1,sj=0 1[ηi>ηj ]∑∑

i,j:si=1,sj=0

.

The pseudo-R2 seeks to generalize the linear model’s R2 metric, or proportion of

variation explained, to a logistic framework (Nagelkerke et al., 1991). It is given by

psR2 =

1−

(
s̄(Ns̄) [1− s̄](N [1−s̄])∑N
i=1 η

Si
i [1− ηi]1−Si

)2/N

1−
(
s̄(Ns̄) [1− s̄](N [1−s̄])

)2/N
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3.2 Diagnostics using {S, Ysel, Z}

The two diagnostics in this section make use of all available data and are therefore

potentially more sensitive to detecting selection bias. The first is the Pearson correlation

between the outcome Y and the inverse of the selection propensity η:

Cor(Ysel, η
−1) =

∑
i:Si=1

(
1/ηi −

[∑
j:Sj=1 1/ηj

]
/[Ns̄]

)(
Yi −

[∑
j:Sj=1 Yi

]
/[Ns̄]

)
√∑

i:Si=1

(
1/ηi −

[∑
j:Sj=1 1/ηj

]
/[Ns̄]

)2∑
i:Si=1

(
Yi −

[∑
j:Sj=1 Yi

]
/[Ns̄]

)2
.

The second diagnostic is called the ‘Fraction of Missing Information’ (FMI), a

statistic borrowed from the literature on multiple imputation (Rubin, 2004). Given a

posited model for the conditional distribution of the outcome Y given the auxiliary

variable Z fit to the observed data {Ysel, Zsel}, M sets of unselected outcomes, denoted

by Y (m)
unsel are imputed. Each of the M completed datasets, {Ysel, Y

(m)
unsel} are used to

construct estimates of µy, say, µ̂(m)
y , m = 1, . . . ,M . After some simplification, the FMI

statistic can be written as

FMI(µy) =

(
M + 1

M − 1

)
∑M

m=1

(
µ̂

(m)
y − 1

M

∑M
m′=1 µ̂

(m′)
y

)2

∑M
m=1 Var

(
µ̂

(m)
y

)
+
∑M

m=1

(
µ̂

(m)
y − 1

M

∑M
m′=1 µ̂

(m′)
y

)2

 .

There are three contributing elements to this expression. The first element,∑M
m=1

(
µ̂

(m)
y − 1

M

∑M
m′=1 µ̂

(m′)
y

)2

, appears in both the numerator and denominator and is

the sum of the squared deviations between each imputation-specific estimate and the

overall mean. It is proportional to the so-called “between-imputation variance”, capturing

uncertainty in the estimate across replications of the imputation procedure. The second

element,
∑M

m=1 Var
(
µ̂

(m)
y

)
, is only in the denominator and is the sum of each

imputation-specific variance estimate of µ̂(m)
y . This is proportional to the so-called

“within-imputation variance”, and the sum of the between- and within-imputation
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Table 1: Description of generating models used in the simulation study in Section 4. Five
parameters fully specify the generating distribution of the data: κ, ρ, β0, βx, and βy.

Variable Generating Model

Auxiliary [X1, X2] = N2

((
0
0

)
,

(
1 κ
κ 1

))
Outcome [Yi|X1] = N(ρX1,

√
1− ρ2)

Selection Pr(S = 1|Y,X2) = logit−1(β0 + βyY + βxX2)

variances is thus the total variance. The third element, (M + 1)/(M − 1) > 1,

multiplicatively inflates the between-over-total fraction and captures the loss of

information due to taking a finite number of imputations. It approaches 1 from above as

M is increased.

4 Simulation Study: Description

The purpose of this simulation study is to characterize the association between the true

bias in a sampled dataset (only observable in a simulation framework) and each of the

aforementioned candidate diagnostics, including the new SMUB diagnostic from Little

et al. (2019). The data were generated according to the ‘selection model’ decomposition

described in equation (1). However, recognizing that, in practice, there may be more than

one auxiliary variable having different associations with selection and the survey variable,

we extended the simulations in Nishimura et al. (2016) by generating two auxiliary

variables, X1 and X2, in place of Z. In truth, S and X1 are conditionally independent

given X2 and Y , and, similarly, Y and X2 are conditionally independent given X1.

In more detail, at each iteration, a super-population of size N = 104 was simulated,

wherein each observation consisted of the random vector {Y,X1, X2, S} drawn from the

true models in the second column in Table 1. X1 and X2 are bivariate normal with mean

0, variance 1, and correlation κ. When X1 and X2 are not identically equal, i.e. κ < 1,

both X1 and X2 are conditioned on in fitting the outcome and selection models, to
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emulate what would be done in practice. The scalar parameter ρ is the Pearson

correlation between Y and X1, i.e. [Y |X1] = N(ρX1,
√

1− ρ2); Y and X2 are conditionally

independent given X1. Finally, the selection probability is controlled by parameters β0,

βx, and βy in a logistic framework, with Pr(S = 1|Y,X2) = logit−1(β0 + βyY + βxX2). In

total, there are five parameters governing this distribution: κ, ρ, β0, βx, and βy.

We considered κ ∈ {0, 0.5, 1}, with the last scenario corresponding to X1 ≡ X2 ≡ Z,

in which case we are in the ‘single auxiliary variable’ scenario, and one would not

condition on both X1 and X2. The correlation between the outcome Y and its best

predictor X1 was ρ ∈ {0.25, 0.75}. Values of βx and βy, the log-odds ratios for selection,

were taken from one of the scenarios listed in Table 2. The first row, for which

βx = βy = 0, corresponds to a SCAR mechanism. The second row, for which

βx ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and βy = 0, corresponds to five different SAR mechanisms.

The remaining rows in the table, for which βy 6= 0 and

|βx|+ |βy| ≡ c ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, all correspond to different SNAR mechanisms. In

total, Table 2 gives 36 unique sets of βx and βy.

Under this generating model, the assumption in (5) holds for any κ ∈ [0, 1]. To see

this, express X2 as X2 = κX1 +
√

1− κ2ε, where ε ∼ N(0, 1) is independent of X1 and Y .

Substituting this result into the selection model, we rewrite the selection probability

as

Pr(S = 1|Y,X2) = Pr(S = 1|Y,X1, ε) = logit−1(β0 + βyY + βx[κX1 +
√

1− κ2ε])

= logit−1(β0 + βyY + κβxX1 + βx
√

1− κ2ε).

Now, letting (i) g(t1, t2) = logit−1(β0 + [κβx + βy]t1 + t2), (ii) φ = βy/(κβx + βy), (iii) Z = X1,

and (iv) W = βx
√

1− κ2ε/(κβx + βy), the relaxed assumption (5) is satisfied for any

κ ∈ [0, 1]. In contrast, the more restrictive assumption (3) is only satisfied for κ = 1, i.e.

W ≡ 0. Under κ = 1, the third column in Table 2 give the implied true value of φ, which is
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Table 2: Values for the pair of log-odds ratios in the true selection mechanism of the
simulation study grouped by the relative relationship of βx to βy, where, except for the
first row, |βx| + |βy| ≡ c ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The selection mechanism is ‘selected
completely at random’ (SCAR) in the first row, ‘selected at random’ (SAR) in the second
row, and ‘selected not at random’ in the remaining rows. The implied true value of the
non-ignorability parameter φ is calculated by the expression φtrue = βy/(κβx + βy).

φtrue

Label {βx, βy} κ = 1 κ = 0.5 κ = 0
SCAR {0, 0} 0∗ 0∗ 0∗

SAR {c, 0} 0 0 0
3X2 + Y {3c/4, c/4} 0.25 0.4 1
X2 + Y {c/2, c/2} 0.5 0.66 1
X2 + 3Y {c/4, 3c/4} 0.75 0.86 1
Y {0, c} 1 1 1
X2 − Y {c/2,−c/2} −† −† 1
−X2 + Y {−c/2, c/2} −† −† 1

∗Mathematically, φtrue is undefined when βx = βy = 0, but we use 0 here to indicate that this is an
ignorable sampling mechanism. †There is no value of φtrue ∈ [0, 1] satisfying the assumptions required for
the SMUB indices when βx or βy are negative and κ > 0.

common to all {βx, βy} pairs in each row and which we denote as φtrue to distinguish it

from the closely related tuning parameter φ used by SMUB. The last two columns give

the value of φtrue for κ = 0.5 and κ = 0, respectively. In the final two rows of Table 2, for

which βx > 0 and βy < 0 (or vice versa), there is no value of φtrue ∈ [0, 1] satisfying (5)

except for the case that κ = 0, and this is noted as such in the table.

Finally, with regard to the intercept β0, we did not directly set its value but rather

fixed a desired overall selection probability Pr(S = 1) = 0.05 (marginally over all other

random variables), which, when set equal to EY,X2

[
logit−1(β0 + βxX2 + βyY )

]
, can then

be numerically solved for β0. Our choice of a 5% selection rate is a fairly large selection

rate for a non-probability samples.

Two of the diagnostics have input values that the user must select. For SMUB, we

inspected three choices of the non-ignorability tuning parameter in (6): φ ∈ {0, 0.5, 1.0}.

When φ is close to the unknown φtrue, the SMUB estimate will closely match the actual

observed bias. And for FMI, we imputed M = 30 vectors of the unselected outcomes
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Yunsel to estimate µy.

We simulated 2000 independent datasets for each of the 2× 3× 36 = 216

combinations of ρ, κ, and {βx, βy} pair taken from Table 2. The available data were

always {S,X1, X2, Ysel}, although not all diagnostics make use of all data, as noted in the

previous sections. To assess performance, we calculated for each dataset the

‘standardized estimated bias’ (SEB) in using ȳsel to estimate µy, which is given by

SEB =
ȳsel − µy

σy
. (8)

In words, this is the difference between the empiric mean of the outcome in the selected

observations and the target population mean, divided by the true standard deviation of

the outcome. We plot the median value of SEB against the median value of each

diagnostic to visualize the systematic relationship between these two quantities. A

diagnostic that is sensitive to selection bias should be associated with SEB, and both the

qualitative and quantitative nature of this association should be similar for all types of

selection mechanisms, i.e. values of φtrue. Also important is the pairwise relationship due

to sampling variability, or “chance bias”. To that end, we also calculate the Spearman

correlation between the value of SEB and each diagnostic across all 2000 datasets from

each scenario. All analyses were conducted in the R statistical environment (R Core

Team, 2018; van Buuren and Groothuis-Oudshoorn, 2011; Wickham, 2017). Code for

the simulation study is available here:

https://github.com/bradytwest/IndicesOfNISB.

5 Simulation Study: Results

Figures 1, 2, and 3 plot the relationship between the median value of SEB across 2000

simulated datasets from a given scenario against the median of each diagnostic,
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separately for κ = 1, 0.5, and 0, respectively. In addition, Figure S1 in the Supplement

gives the contents of Figures 1, 2, and 3 overlaid onto a single plot, using different levels

of transparency to distinguish between values of κ and therefore allowing for a more

direct assessment of the impact of changing κ.

Points in which the underlying selection mechanism share their row in Table 2 in

common are connected. Generally speaking, a diagnostic is good at detecting bias if its

value (on the x-axis) changes at a similar rate with the observed bias (on the y-axis)

across all of the different selection mechanisms, i.e. each plotted segment has a similar

sized slope. It is useful for estimating bias if its value changes at the same rate as the

observed bias across the selection mechanisms, i.e. each plotted segment is close to

the line y = x (which is given by a solid black line but is not visible in all panels). There is

no information in the data to determine the extent to which selection depends on Y , as

represented by the different lines in the figures. If, for a single value of a diagnostic on

the x-axis, there are many different values of SEB on the y-axis across different selection

mechanisms, this is evidence against it being a good diagnostic. The set of candidate

diagnostics are separated into two groups in each figure, with the set of five in the top

two rows (one row each for ρ = 0.75 and ρ = 0.25) roughly corresponding to the best

performing diagnostics, and the set in the bottom two rows corresponding to the worst

performing diagnostics.

Considering first the diagnostics in the bottom rows of Figure 1, Cor(Ysel, η
−1) and

FMI(µy) are not notably sensitive to changes in SEB, as indicated by the steep vertical

segments. The Var(η−1) diagnostic changes with SEB, but the range of its x-axis is very

wide, potentially limiting interpretability as to what constitutes an extreme value. The R̂

and psR2 diagnostics are also sensitive to SEB and, unlike Var(η−1), have a narrow

range of the x-axis. Considering the better-performing diagnostics in the top pair of rows

in Figure 1, they are all visually similar to one another. Interestingly, the behavior of
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CV(η) very closely resembles SMUB(0.5) and relatively closely aligns with the value of

SEB, as exhibited by the segments’ close proximity to the y = x line. The SMUB indices,

which are in the right-most three columns, generally increase with SEB in the ρ = 0.75

scenarios and, furthermore, are often nearly in 1-1 correspondence with SEB. The

extent to which this last statement is true depends upon the proximity between φ and

φtrue, as the development of these estimators would suggest. For the second and fourth

rows of Figure 1, the auxiliary variable is a relative poor predictor of the survey outcome

(ρ = 0.25). In this setting, all the diagnostics show a wide scatter of SEB values across

the different selection mechanisms, suggesting that none of them are of much use in

predicting the bias. This finding supports the statement in Little et al. (2019) that having

an auxiliary variable that is a good predictor of the survey outcome is a key requirement

for detecting bias.

Figure 2 and 3 illustrate how these diagnostics change when κ < 1, that is, when

the auxiliary variable for the outcome and the auxiliary variable for selection differ. As

expected, diagnostics that are based solely on the propensity, that is, CV(η), ˆAUC, R̂,

Var(η−1), and psR2, tend to falsely “detect” bias in these scenarios. False detection here

means that segments are flat, varying in the x-value without any accompanying variation

in the y-value. As noted in Table 2, smaller values of κ will increase the value of φtrue

towards 1 as long as βy 6= 0, causing SMUB(0) to underestimate SEB more so relative to

the corresponding results in Figure 1 and causing SMUB(1) to be a relatively better

estimator of SEB than in 1. In the extreme case of κ = 0, which is given in Figure 3, the

SMUB indices are all nearly collinear. SMUB(1) looks most reasonable in this scenario

because all selection mechanisms either have φtrue = 1 (when βy 6= 0) or φtrue = 0 (when

βy = 0). In this latter case, all results fall on the origin, and there is no bias to detect.

Figure S1 (in the Supplement) gives results for all values of κ overlaid on a single panel

to illustrate the change in behavior as κ goes from 1 to 0.5 to 0.
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Figure 1: Standardized estimated bias (SEB, y-axes) against value of diagnostic (x-axes)
for ten candidate diagnostics (columns), two values of ρ ≡ Cor(X1, Y ) (rows) using the
median of 2000 simulated datasets. κ ≡ Cor(X1, X2) is fixed at 1 (Figures 2 and 3 give
the same results for κ = 0.5 and κ = 0, respectively) For reference, the y = x line is
plotted in black. Shape and color indicate different true selection mechanisms from Table
2, and connected segments represent different values of {βx, βy} corresponding to the
same selection mechanism.
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Figure 2: Standardized estimated bias (SEB, y-axes) against value of diagnostic (x-axes)
for ten candidate diagnostics (columns), two values of ρ ≡ Cor(X1, Y ) (rows) using the
median of 2000 simulated datasets. κ ≡ Cor(X1, X2) is fixed at 0.5 (Figures 1 and 3 give
the same results for κ = 1 and κ = 0, respectively). For reference, the y = x line is
plotted in black. Shape and color indicate different true selection mechanisms from Table
2, and connected segments represent different values of {βx, βy} corresponding to the
same selection mechanism.
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Figure 3: Standardized estimated bias (SEB, y-axes) against value of diagnostic (x-axes)
for ten candidate diagnostics (columns), two values of ρ ≡ Cor(X1, Y ) (rows) using the
median of 2000 simulated datasets. κ ≡ Cor(X1, X2) is fixed at 0 (Figures 1 and 2 give
the same results for κ = 1 and κ = 0.5, respectively). For reference, the y = x line is
plotted in black. Shape and color indicate different true selection mechanisms from Table
2, and connected segments represent different values of {βx, βy} corresponding to the
same selection mechanism.
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Figures 1–3 characterize the systematic relationship between SEB and each

diagnostic, but there is also sampling variability that occurs within each dataset. That is,

does the realized value of a diagnostic in a given dataset correspondingly change when

the realized value of SEB is higher or lower than its mean? Table 3 reports the Spearman

correlation (multiplied by 100) between each candidate diagnostic and the SEB value

under eight selected sets of {βx, βy} taken from Table 2 and three values of κ under

ρ = 0.75. Those correlations that are within 5% of the largest magnitude correlation are

in boldface. Table S1 in the Supplement gives the analogous results under ρ = 0.25.

From Table 3, all of the metrics except Cor(Ysel, η
−1) and FMI(µy) exhibit strong positive

or negative correlation with SEB, i.e. less than -0.6 or greater than 0.6, when κ = 1.

However, as κ decreases, the Spearman correlations decrease or even change signs

when the signs of βx and βy are in opposite directions. This even holds for CV(η), which

Figures 1–3 showed to be most sensitive to SEB on a systematic basis from among the

existing diagnostics. For example, in the bottom-most three rows of Table S1, CV(η) has

a Spearman correlation with SEB of about -0.72 when κ = 1, but this increases to 0.44

when κ = 0. Insofar as one does not know the true value of κ and thus whether to expect

a positive or negative correlation with bias, this is problematic. The realized values of the

SMUB measures do not exhibit this undesirable behavior but rather exhibit a consistently

high Spearman correlation with the realized values of the SEB.
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Table 3: Spearman correlations (two significant digits; ×100) between each candidate diagnostic and the standardized
estimated bias (SEB) for eight exemplar sets of {βx, βy} taken from Table 2 and three values of κ ≡ Cor(X1, X2) with
ρ ≡ Cor(X1, Y ) set to 0.75 (Table S1 in the Supplement gives the same results with ρ set to 0.25). Those values in bold are
within 5% of each row-wise maximum (in magnitude).

{βx, βy} κ R̂ Var(η−1) CV(η) ˆAUC psR2 Cor(Ysel, η
−1) FMI(µy) SMUB(0) SMUB(0.5) SMUB(1.0)

SCAR
{0, 0} 1.0 4 -4 -4 -3 -4 -52 0 72 72 72
{0, 0} 0.5 1 -1 -1 -1 -1 -67 1 73 73 73
{0, 0} 0.0 -1 1 1 0 1 -66 2 74 74 74

SAR
{0.5, 0} 1.0 -66 58 72 70 71 26 11 69 68 63
{0.5, 0} 0.5 -33 29 35 34 35 -53 8 70 70 68
{0.5, 0} 0.0 -1 1 2 2 2 -59 -0 65 65 65

3X2 + Y
{0.375, 0.125} 1.0 -65 61 71 68 71 25 7 68 68 63
{0.375, 0.125} 0.5 -46 40 49 48 49 -45 5 70 70 68
{0.375, 0.125} 0.0 -19 17 19 19 20 -62 -0 70 70 70

X2 + Y
{0.25, 0.25} 1.0 -67 64 73 70 72 26 6 70 69 65
{0.25, 0.25} 0.5 -55 53 59 58 59 -31 7 71 71 68
{0.25, 0.25} 0.0 -41 41 44 42 43 -52 4 71 71 70

X2 + 3Y
{0.125, 0.375} 1.0 -67 64 72 70 72 22 7 71 70 66
{0.125, 0.375} 0.5 -66 61 69 67 69 -7 8 71 70 67
{0.125, 0.375} 0.0 -64 62 67 65 67 -21 3 71 71 69

Y
{0, 0.5} 1.0 -72 69 76 74 76 20 9 74 74 70
{0, 0.5} 0.5 -69 65 73 71 73 11 4 72 71 68
{0, 0.5} 0.0 -71 67 74 72 74 16 3 73 72 69

X2 − Y
{0.25,−0.25} 1.0 -71 71 71 68 71 -15 4 73 73 73
{0.25,−0.25} 0.5 24 -25 -25 -25 -25 -64 -3 70 70 70
{0.25,−0.25} 0.0 42 -40 -43 -42 -43 -53 -5 72 72 71

Y −X2

{−0.25, 0.25} 1.0 71 -71 -72 -70 -72 -16 1 74 74 74
{−0.25, 0.25} 0.5 -15 15 16 15 16 -68 -0 72 72 72
{−0.25, 0.25} 0.0 -42 41 44 43 44 -53 8 73 73 72
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6 Discussion

Nishimura et al. (2016) found that none of their candidate diagnostics for detecting

selection bias due to non-ignorable selection mechanisms were suitable for use. Our

simulation study showed that the SMUB measure proposed by Little et al. (2019)

outperformed other diagnostics, both in terms of detecting the presence of bias as well

as directly estimating its value, and both systematically (Figure 1–3) as well as on the

basis of sampling variability (Table 3). The extent of non-ignorable selection is by

definition inestimable, but the SMUB family is indexed by a tuning parameter φ, which

allows the analyst to directly estimate the amount of selection bias by assuming that a

specific degree of non-ignorable sampling had occurred. Our simulation study showed

that the middle value of φ = 0.5, which minimizes the maximum possible distance from

φtrue and which Little et al. (2019) heuristically suggested for default use, resulted in a

diagnostic that most consistently estimated the true amount of selection bias.

A number of additional qualities recommend the SMUB family of statistics for the

task of diagnosing and estimating selection bias. First, it correlates moderately well with

the true measure of selection bias, given by the value of SEB, even when the underlying

assumptions about the structural form of non-ignorability were violated, i.e. the last two

rows of Table 2. Second, our simulation study demonstrates that the difference between

the median values of the SMUB statistic and SEB was zero when the tuning parameter φ

matched the unknown value φtrue. This result is consistent with the theoretical derivation

of the SMUB. Third and finally, SMUB is specific to an estimand of interest, meaning that

it will enable an analyst to order estimates computed from a non-probability sample in

terms of their potential selection bias. Among those statistics considered in Nishimura

et al. (2016), only the FMI statistic has this characteristic. In contrast, the values of all

other potential diagnostics considered do not actually vary with the estimand. This fact

alone arguably precludes from consideration any of the aforementioned diagnostics,
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insofar as it is impossible to expect a single statistic to serve as a universal diagnostic for

bias with respect to an arbitrary estimand. Moreover, the FMI statistic focuses on

variance rather than bias, and the simulation study clearly points to its deficiency as a

diagnostic for bias.

Because the actual selection mechanism is unknown in practice, it is not sufficient

to have a candidate diagnostic that correlates well with SEB under each selection

mechanism. Rather, it must be correlated with SEB in the same way across many

different selection mechanisms, since by definition of a non-probability sample, one does

not know the true selection mechanism. Furthermore, high correlation between a

diagnostic for selection bias and true selection bias is only useful if there is knowledge

about the distribution of the diagnostic, or even just its support. For example, although

psR2 was consistently correlated with SEB, the values that we observed in the simulation

study were typically limited to a very small interval close to zero, such that it would be

difficult to know in practice whether one has encountered an extreme-enough value that

would be suggestive of selection bias. The Var(η−1) diagnostic is similarly limited: its

range is arguably so extreme as to make it impractical for general use.

With regard to the other candidate diagnostics, our results were largely consistent

with those reported in Nishimura et al. (2016). Because the only code from that paper

that we used here was the function for calculating FMI(µy), our work largely represents

an independent validation of their findings. Ironically, we found that the two statistics that

make use of the greatest amount of data, Cor(Ysel, η
−1) and FMI(µy), were actually

among the least effective at detecting selection bias. We found that CV(η), ˆAUC, and

psR2 had generally high correlation with the true amount of selection bias, even under

non-ignorable settings. Concerning, however, is the variation of these diagnostics due to

sampling variability, as demonstrated in Table 3.

Finally, a lack of a globally optimal value of the tuning parameter φ points to one
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possible and novel extension of the SMUB statistic. Although the φtrue is, by definition of

a non-probability sample, inestimable, the sampling probabilities could be learned about,

e.g. with the collection of a small, auxiliary probability sample or via non-response

follow-up with a small sample of non-selected cases, the non-ignorable bias could

potentially be estimated and accounted for. Or, one might propose a shrinkage-type

SMUB statistic that is an adaptive combination of estimates from the large,

non-probability sample (high bias/low variance) and the small, probability sample (low

bias/high variance), akin to the Empirical Bayes estimator of Mukherjee and Chatterjee

(2008).
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Table S1: Spearman correlations (two significant digits; ×100) between each candidate diagnostic and the standardized
estimated bias (SEB) for eight exemplar sets of {βx, βy} taken from Table 2 and three values of κ ≡ Cor(X1, X2) with
ρ ≡ Cor(X1, Y ) set to 0.25 (Table 3 in the manuscript gives the same results with ρ set to 0.75). Those values in bold are
within 5% of each row-wise maximum (in magnitude).

{βx, βy} κ R̂ Var(η−1) CV(η) ˆAUC psR2 Cor(Ysel, η
−1) FMI(µy) SMUB(0) SMUB(0.5) SMUB(1.0)

SCAR
{0, 0} 1.0 -1 2 1 2 1 -17 -2 25 26 26
{0, 0} 0.5 -1 1 1 3 1 -24 -1 26 27 27
{0, 0} 0.0 -2 2 2 2 2 -19 -2 22 22 22

SAR
{0.5, 0} 1.0 -23 20 24 24 24 -4 4 16 23 8
{0.5, 0} 0.5 -8 10 10 11 10 -6 2 10 9 7
{0.5, 0} 0.0 2 -1 -2 -1 -2 -10 3 12 12 11

3X2 + Y
{0.375, 0.125} 1.0 -23 23 26 25 25 3 4 12 25 14
{0.375, 0.125} 0.5 -11 10 11 11 11 -12 1 15 17 16
{0.375, 0.125} 0.0 3 -1 -3 -3 -3 -15 -0 15 15 15

X2 + Y
{0.25, 0.25} 1.0 -17 19 19 18 19 1 3 11 18 12
{0.25, 0.25} 0.5 -14 12 14 14 14 -10 6 14 17 16
{0.25, 0.25} 0.0 -5 6 6 5 6 -14 -3 14 14 13

X2 + 3Y
{0.125, 0.375} 1.0 -28 30 30 29 30 1 1 22 30 23
{0.125, 0.375} 0.5 -16 15 16 15 16 -14 2 22 23 20
{0.125, 0.375} 0.0 -14 14 14 14 14 -15 0 20 21 20

Y
{0, 0.5} 1.0 -23 24 24 23 23 -2 1 22 24 21
{0, 0.5} 0.5 -22 21 21 21 22 -8 3 21 22 20
{0, 0.5} 0.0 -22 22 23 22 23 -2 2 19 22 20

X2 − Y
{0.25,−0.25} 1.0 -24 24 25 24 25 2 2 19 25 21
{0.25,−0.25} 0.5 -5 4 5 4 5 -20 -0 21 22 21
{0.25,−0.25} 0.0 2 -2 -3 -3 -3 -18 1 18 18 18

Y −X2

{−0.25, 0.25} 1.0 24 -25 -25 -24 -25 0 0 20 24 20
{−0.25, 0.25} 0.5 11 -10 -10 -9 -10 -13 2 16 17 17
{−0.25, 0.25} 0.0 -5 6 6 5 6 -18 5 19 20 19
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Figure S1: Standardized estimated bias (SEB, y-axes) against value of diagnostic (x-
axes) for ten candidate diagnostics (columns), two values of ρ = Cor(X1, Y ) (rows) using
the median of 2000 simulated datasets. Here, κ ≡ Cor(X1, X2) is varying with the degree
of transparency, and Figures 1–3 in the manuscript give the same results separately for
each value of κ. For reference, the y = x line is plotted in black. Shape and color indicate
different true selection mechanisms from Table 2 in the manuscript, and connected seg-
ments represent different values of {βx, βy} corresponding to the same selection mecha-
nism.
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