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Abstract

This paper outlines a new class of shrinkage priors for Bayesian isotonic regression mod-
eling a binary outcome against a predictor, where the probability of the outcome is assumed
to be monotonically non-decreasing with the predictor. The predictor is categorized into a
large number of groups, and the set of differences between outcome probabilities in con-
secutive categories is equipped with a multivariate prior having support over the set of sim-
plexes. The Dirichlet distribution, which can be derived from a normalized cumulative sum
of gamma-distributed random variables, is a natural choice of prior, but using mathematical
and simulation-based arguments, we show that the resulting posterior can be numerically un-
stable, even under simple data configurations. We propose an alternative prior motivated by
horseshoe-type shrinkage that is numerically more stable. We show that this horseshoe-based
prior is not subject to the numerical instability seen in the Dirichlet/gamma-based prior and
that the posterior can estimate the underlying true curve more efficiently than the Dirichlet
distribution. We demonstrate the use of this prior in a model predicting the occurrence of
radiation-induced lung toxicity in lung cancer patients as a function of dose delivered to nor-
mal lung tissue.
keywords: Dirichlet; gamma distribution; horseshoe; monotone

1 Introduction
Isotonic regression is a type of constrained modeling that imposes a monotonic, i.e. non-decreasing
or non-increasing, assumption on the fitted functional relationship between a predictor and the
expected outcome without making assumptions about the specific form of that relationship (Barlow
et al., 1972). Except for the ordering constraint, isotonic regression is otherwise less presumptive
than standard generalized linear models (GLMs). This is especially true in the case of modeling a
binary outcome, where GLMs fit to a continuous predictor yield predicted probabilities of 0 and 1
for extreme enough values of the predictor, regardless of the observed data configuration.

Isotonic assumptions are common when modeling dose-response or dose-toxicity curves. For
example, when planning radiation treatment for lung cancer, it is of interest to maximize radiation
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delivered to the tumor while limiting the amount of radiation delivered to the surrounding normal
lung tissue. Typical radiation treatment plans generally assume all normal lung tissue is function-
ally equal, but in most patients, some parts of the lung will be lower functioning, e.g. due to em-
physema or tumor burden. Based on the hypothesis that accounting for the functionality of normal
lung tissue in treatment planning could potentially allow for a higher dose of radiation delivered
to the tumor without increasing the risk of toxicity, Owen et al. (2020) conducted a retrospective
analysis that assessed the correlation between ventilation/perfusion single photon emission com-
puted tomography (”SPECT V/Q ”) lung function metrics and the incidence of radiation-induced
lung toxicity (RILT). The treatment plan actually used in these patients was not based upon lung
function; however, as part of an IRB-approved clinical trial, patients received a SPECT V/Q scan
prior to starting radiation treatment, which Owen et al. (2020) used to quantify lung function and
subsequently the dose of radiation delivered to low-, moderate-, and high-functioning lung. Fitting
a logistic regression, they found that the percent of a patient’s low-functioning lung tissue receiv-
ing more than 20 Gray (Gy) of radiation (LF20), predicted grade 2+ RILT. See Owen et al. (2018)
and Owen et al. (2020) for complete details. Although it can be reasonably assumed that the risk
of RILT increases with LF20, given the novelty of this dosimetric, the exact nature of this dose-
toxicity curve, e.g. where it begins to meaningfully increase and how it is shaped, is not known.
An isotonic approach to this problem is therefore well-suited.

There are a number of Bayesian variants of isotonic regression, including piecewise linear func-
tions with autoregressive mixture priors (Neelon & Dunson, 2004), restricted splines (Shively et al.,
2009), and Gaussian process projections (Lin & Dunson, 2014). Moreover, several approaches
have been developed specifically in the context of dose-response studies, including Bayesian model
averaging (Ohlssen & Racine, 2015), a Bayesian isotonic regression dose-response model (BIRD)
approach tailored to estimate important clinical parameters from the dose-response curve (Li &
Fu, 2017), discrete mixture of parametric distribution functions (Bornkamp & Ickstadt, 2009),
and isotonic regression for dose-schedule finding, in which both the dosage and the frequency of
administration are being explored Li et al. (2008).

Our proposed approach is qualitatively different from these methods and is best described as
an extension and generalization of a more classical Bayesian isotonic regression first proposed in
Ramsey (1972) and later extended in e.g. Shaked & Singpurwalla (1990), Gelfand & Kuo (1991),
and Ramgopal et al. (1993). In these papers, given a binary outcome and a categorical predictor,
the set of differences between probabilities of the outcome in contiguous categories, also called
the set of increments, is modeled using as a prior the Dirichlet distribution, equipped with a vector
of concentration hyperparameters.

The Dirichlet distribution is likely the most well-known distribution having support over the
unit simplex, making it a natural choice of prior in this context. However, to allow for potentially
very small jumps in the fitted isotonic regression curve, the concentration hyperparameters must
be correspondingly very small. In such a setting, the fitted model may be susceptible to numerical
challenges – specifically, underflow. The cause of this shortcoming is illustrated by noting that
the Dirichlet distribution can be equivalently characterized as a set of normalized gamma random
variables, with the Dirichlet concentration hyperparameters becoming gamma shape parameters.
When the shape parameter is close to zero, it becomes extremely difficult to sample gamma random
variables accurately (e.g., Liu et al., 2013). In this paper, we propose a new isotonic prior for the
binary outcome setting that is computationally robust and statistically efficient.

With this background, the objectives of this manuscript are (i) to mathematically elucidate the
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above claim; (ii) to propose a novel alternative prior also having support over the unit simplex;
and (iii) to show, both mathematically and through simulation, that our alternative prior is compu-
tationally robust to this issue of numerical underflow. As we will show, the key difference is that
the Dirichlet/gamma prior results in a posterior distribution with mass increasingly concentrating
in a neighborhood around zero as the shape parameter becomes smaller. Our novel prior, which
avoids this undesirable behavior, is called the ‘isotonic horseshoe prior’ because it derives from
the horseshoe distribution, which has been used as a continuous shrinkage prior in many regres-
sion contexts (Carvalho et al., 2009, 2010; Piironen & Vehtari, 2015, 2017a,b). Bayesian estimates
using a horseshoe prior satisfy the three desiderata of a shrinkage estimator outlined in Fan & Li
(2001), namely, near-unbiasedness, sparsity, and continuity (this last characteristic meaning that
the estimates are not sensitive to small changes in the data). To our knowledge, it has not yet been
applied to the isotonic regression context.

The remainder of this paper is organized as follows. In Section 2, we present the classical
Bayesian isotonic regression for binary outcomes considered in Shaked & Singpurwalla (1990).
We then present our alternative prior that extends the horseshoe prior and give our main re-
sults, which are (i) that the horseshoe density always diverges to infinity as its hyperparameter
approaches zero at a slower rate than the gamma density and (ii) that the posterior distribution
based on our horseshoe prior does not concentrate around zero, whereas for the gamma prior it
does. This difference impacts both the statistical efficiency of these isotonic regressions as well as
the computational efficiency, which we demonstrate both through a simulation study (Section 3)
and the re-analysis of our motivating lung cancer data (Section 4). We conclude with a discussion
in Section 5.

2 Methods
We begin with notations in the article. Let Bernoulli(π) represent a Bernouli distribution with
probability π. Let Gamma(a, b) represent a gamma distribution with shape a and rate b. Let
Dirichlet(s) be a Dirichlet distribution with concentration parameter vector s. Let Beta(a, b) rep-
resent a beta distribution with shapes a and b. Denote by I(A) an event indicator where I(A) = 1
if event A occurs and I(A) = 0, otherwise. Denote by Pr(·), E(·) and Var(·) the probability
measure, the expectation operator and the variance operator, respectively. For any two contin-
uous functions f(x) and g(x) with limx↓0 f(x) = limx↓0 g(x) = ∞, write f(x) = o{g(x)} if
limx↓0{f(x)/g(x)} = 0 and f(x) = O(g(x)) if there exists M > 0 such that limx↓0 |f(x)/g(x)| =
M . For a smooth function f(x), let f ′(x) and f ′′(x) represent the first and second derivatives of f ,
respectively.

Suppose the data consists of n observations. Let i(i = 1, . . . , n) be the index of the obser-
vations. Let Yi denote a binary outcome taking the value 0 or 1. Let Xi be the corresponding
predictor, which is an ordered categorical variable taking one of the values in {1, . . . , K}. Given
the predictors, the binary outcomes are independent and marginally follow a Bernoulli distribution,
i.e.

[Yi | Xi] ∼ Bernoulli

{
K∑
j=1

ξjI(Xi = j)

}
, (1)
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where ξj = Pr(Yi = 1 | Xi = j) ∈ [0, 1], for j = 1, . . . , K. Write ξ = (ξ1, . . . , ξK)T , which is
the parameter vector of interest. We impose the monotonic non-decreasing assumption on ξ, i.e.,
0 ≤ ξ1 ≤ ξ2 ≤ · · · ≤ ξK ≤ 1. This implies that the set of increments {ξj − ξj−1}K+1

j=1 , where
ξ0 ≡ 0 and ξK+1 ≡ 1, forms a simplex. We refer to ξ as the isotonic probability vector (IPV).
To specify the priors, we represent ξ as a function of K + 1 non-negative parameters using an
IPV transformation. Let PK = {(π1, . . . , πK) : 0 ≤ πj ≤ πk ≤ 1, for 1 ≤ j < k ≤ 1} be a
K-dimensional IPV space. Let R̄K+1

+ = {(a1, . . . , aK+1) : aj ≥ 0, for 1 ≤ j ≤ K + 1} be a
K + 1-dimensional non-negative Euclidean space.

Definition 1 The K-dimensional isotonic probability vector transformation is a function mapping
from the non-negative (K + 1)-dimensional Euclidean space onto the K-dimensional probability
vector space. In particular, we have F : R̄(K+1)

+ → PK , that is, for any a = (a1, . . . , aK+1)
T ∈

R̄(K+1)
+ and a 6= 0,

F (a) = {F1(a), . . . , FK(a)}T ∈ PK with Fj(a) =

∑j
k=1 ak∑K+1
k=1 ak

, for j = 1, . . . , K (2)

With this transformation, we represent the IPV in (1) as

ξ = F (α) =

(
K+1∑
j=1

αj

)−1(
α1, α1 + α2, . . . ,

K∑
j=1

αj

)T

, (3)

where α ∈ R̄K+1
+ \{0}K+1. We then can construct the prior for the isotonic probability vector

by placing priors on α with support restricted to R̄(K+1)
+ \{0}K+1, that is, the K + 1 dimensional

space of non-negative numbers excluding the origin. In this article, we mainly discuss two types
of priors: the gamma isotonic probability vector (GAIPV) distribution and the horseshoe isotonic
probability vector (HSIPV) distribution

2.1 Gamma isotonic probability vector distribution
Following Ramsey (1972), a member of this family arises from placing independent gamma priors
on α with a set of positive shape parameters and a common positive rate parameter. We define the
GAIPV distribution as follows:

Definition 2 Suppose αj ∼ Gamma(sj, 1) with sj > 0 for j = 1, . . . , K + 1 and α1, . . . , αK+1

are mutually independent, then F (α) follows a K-dimensional gamma isotonic probability vector
distribution. Denote F (α) ∼ GAIPV(s) where s = (s1, . . . , sK+1)

T .

The GAIPV is a well-defined distribution since the gamma distribution has support on the
positive numbers. Thus there is no probability mass on all αj being zero-valued. In addition, we
have the follow properties.

Proposition 1 Let s = (s1, . . . , sK+1)
T , ñ =

∑K+1
k=1 sk and p̃j =

∑j
k=1 sk/ñ, for j = 1, . . . , K +

1. We have the following results:

a. For any r > 0, if αj(r) ∼ Gamma(sj, r) and α1(r), . . . , αK+1(r) are mutually independent,
then F {α(r)} ∼ GAIPV(s).
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b. For any length-K probability vector π, then π ∼ GAIPV(s) if and only if {πj − πj−1}K+1
j=1 ∼

Dirichlet(s), where π0 is defined to be 0 and πK+1 is defined to be 1.

c. If ξ ∼ GAIPV(s), then the marginal distribution ξj ∼ Beta{p̃jñ, (1− p̃j)ñ} for j = 1, . . . , K.
This further implies that

E(ξj) = p̃j, and Var(ξj) =
p̃j(1− p̃j)
ñ+ 1

. (4)

When we assign the GAIPV prior to ξ, we ensure the isotonic ordering in ξ with prior probability
one. Although the posterior of ξj will, for K > 1, no longer be a beta distribution, the iso-
tonic ordering guarantees that any individual draw from the joint posterior distribution will satisfy
ξ1 < · · · < ξK . One approach for eliciting values of s would be to specify anticipated outcome
probabilities satisfying the monotonic relationship, 0 ≡ p̃0 < p̃1 < · · · < p̃K < p̃K+1 ≡ 1, and
an effective number of historical observations, ñ, and match quantities to the first two moments of
the underlying beta distribution: solving for the hyperparameters, this gives sj = ñ(p̃j − p̃j−1) for
j = 1, . . . , K + 1.

When there is little or no prior information on the probabilities in each category, an agnostic
prior elicitation approach would assume that each individual increment is likely to be equally sized,
i.e. sj ≡ s = ñ/(K + 1) and set ñ to be very small, reflecting a lack of actual prior information on
the probabilities themselves. The resulting posterior will tend to have very small increases between
consecutive categories but will be able to adapt to large increases where the data warrant.

The gamma distribution has the following properties:

Proposition 2 Suppose α ∼ Gamma(s, 1). Let g(x) be the density function of α.

a. If 0 < s < 1, then g(x) = O(xs−1) and |g′(x)| = O(xs−2) when x ↓ 0.

b. For any κ ∈ (0, 1), as s→ 0,

Pr{α ≤ exp
(
−s−κ

)
} → 1, (5)

This proposition implies when s gets close to zero, then with prior probability tending to one
αj takes very small values from the interval (0, exp{−s−κ}) of which length also goes to zero. For
example, taking κ = 0.95 and s = 0.001, then exp(−s−κ) < 3.5 × 10−308. Although this prior
shrinkage is a desirable statistical feature, Proposition 2 has negative numerical implications, as
it is very difficult to accurately sample from a gamma distribution with a small shape parameter
(e.g., Liu et al., 2013). To illustrate: mathematically, for a fixed ñ, at least one sj will be at most
ñ/K, which is 0.01 if, for example, ñ = 0.5 and K = 50. There is a 0.70 probability that a
randomly sampled gamma-distributed random variable with shape 0.01 and rate 1 will be less than
the machine precision of a 64-bit processor (namely ε ≈ 2.2× 10−16), and a 0.10 probability that
it will be less than 10−100. This characteristic tends to cause numerical underflow when sampling
from the prior, and it carries through to the posterior distribution of αj , as stated in Theorem 1
below. Let P n

θ0
be the actual distribution of data Y given the true parameter θ0.

Theorem 1 For any given κ ∈ (0, 1), for any j = 1, . . . , K, we have the following results:
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a. For any n ≥ 1, as s→ 0,

Pr
{
αj ≤ exp

(
−s−κ

)
| Y,X

}
→ 1 (6)

in P n
θ0

probability.

b. For any fixed M > 0, set s = (Mn)−1/κ. when n→∞,

Pr {αj ≤ exp(−Mn) | Y,X} → 1 (7)

in P∞θ0 probability.

In words, Theorem 1 gives that, regardless of data configuration, all of the posterior mass of αj is
bounded above by a number that goes to zero as the shape parameter decreases towards zero. This
upper bound is expressed both as a function of the shape parameter itself (part a) or as function of
the sample size n when the shape parameter s = O(n−1/κ) (part b).

When model fitting using Hamiltonian Monte Carlo, the presence of numerical underflow is in-
dicated by divergences from the Hamiltonian, which can be detected and therefore used as a model
diagnostic (Section 14.5, Stan Reference Manual, Stan Development Team, 2019). Detection of
such ‘divergent transitions’ indicates that the posterior distribution is not being fully explored and
that the resulting inference may be biased (Betancourt, 2016). In the presence of divergences, the
algorithm will adaptively and potentially dramatically decrease the step size of the proposal such
that it appears to stop at an iteration, and thus another symptom can be long running times and/or
extreme variation in total running time between independent chains of the sampler. Because the
source of these divergences is readily identifiable in the present context, a simplistic workaround
to prevent this underflow is to truncate the lower support of the gamma prior at some very small,
positive number. In our simulation study below, we present results using three choices of this lower
truncation on αj , equal to and less than ε. As we will see, when this lower truncation is less than ε,
both the typical number of divergent transitions and the total running time of the posterior sampler
increase dramatically.

2.2 Horseshoe isotonic probability vector distribution
We consider an alternative and potentially better solution to the problem of underflow by modifying
the so-called ‘regularized horseshoe prior’ (Carvalho et al., 2009, 2010; Piironen & Vehtari, 2015,
2017a,b). For reasons presented below, this prior – even untruncated – does not encounter the same
numerical difficulties as the gamma-based prior. We first construct the half horseshoe distribution
forK+1 non-negative random variables. Let N+(0, σ2) be a half normal distribution with standard
deviation σ and its density function proportional to exp{−x/(2σ2)}I(x ≥ 0). Let C+(0, 1) be the
standard half-Cauchy distribution with the density function proportional to (1 + x2)−1.

Definition 3 Let c(c > 0) be a constant. For j = 1, . . . , K + 1,

[αj | τ, λj ] ∼ N+

(
0,

c2τ 2λ2j
1 + c2τ 2λ2j

)
, λj ∼ C+(0, 1), τ ∼ C+(0, 1). (8)

Then α = (α1, . . . , αK+1)
T follow a K + 1-dimensional half-horseshoe distribution with a pa-

rameter c. Denote α ∼ HS+(c). Furthermore, we say F (α) follows a K-dimensional horseshoe
isotonic probability vector distribution with parameter c. and denote F (α) ∼ HSIPV(c).
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The half horseshoe distribution serves as a hierarchical shrinkage prior in a Bayesian model, in
which the global shrinkage parameter τ controls overall shrinkage to zero, and the local shrinkage
parameters λj can be large to offset this overall shrinkage as warranted by the data. The value of c
in (8) is a user-supplied hyperparameter, the choice of which codifies an implicit assumption about
the anticipated number of non-zero elements in α, or, in our case, non-zero jumps in the proba-
bility curve, with larger values corresponding to anticipating more non-zero elements (Piironen &
Vehtari, 2017a).

Let θj ≡ (1 + 1/[c2τ 2λ2j ])
−1/2 denote the prior standard deviation of αj given τ and λj in (8).

The constant value 1 that is added to 1/[c2τ 2λ2j ] in the expression for θj serves a two-fold purpose.
First, it dominates the expression when c2τ 2λ2j is very large, making θj ≈ 1 in such case and
thinning the heavy tails that would otherwise result if no constant were added (Piironen & Vehtari,
2017b). Second, adding a constant identifies the parameters c and τ . If a constant was not added,
θj would reduce to cτλj , and the expression cτ would cancel out in the numerator and denominator
of equation (2). Piironen & Vehtari (2017a) proposed a more general recipe by adding 1/d2 instead
of a constant 1, with d either a fixed constant or a hyperparameter with a hyperprior of its own.
However, in our unique extension of the horseshoe prior, d and c cannot both independently vary,
again, due to relative nature of each αk in equation (2). Thus, we set d = 1. Also different
from previous versions of the horseshoe prior, our formulation places a half normal prior on each
αj , with support only on the positive half of the real line, to match the context of the problem. To
summarize, these modifications are unique to our application of the horseshoe prior to this problem
and arise from the relative relationship of the scale parameters.

In the same way that gamma prior requires specifying one fixed value s, our implementation of
the horseshoe prior in equations (8) also has only one fixed value, namely c, that is user-supplied
or selected. Following Piironen & Vehtari (2017a), c can be derived by specifying an anticipated
number of non-zero αj’s, m̃eff, which here is interpreted as the anticipated number of jumps in the
probability curve. This can be written as an approximate expression of c and n vis a vis

m̃eff = E

{
K+1∑
j=1

(
1 + 4n−1θ−2j

)−1}
, (9)

where the expectation is with respect to the priors π(τ) and π(λj). Consequently one can numeri-
cally solve for the value of c that corresponds to an anticipated number of jumps in the probability
curve. In addition to the aforementioned horseshoe references, we have previously used a version
of this shrinkage prior in Boonstra & Barbaro (2018), and the reader may refer there for additional
details.

To better understand of the theoretical properties of the HSIPV distribution, we first study the
half-horseshoe distribution and obtain the following results

Proposition 3 Suppose α ∼ HS+(c). When 0 < c < 1/2, we have the following inequalities for
the marginal mean and variance of αj:

c√
2π
≤ E(αj) ≤ 2

√
c

π
(10)

Var(αj) ≤
√

2c− c2

2π
(11)
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Analogous to Proposition 2 applied to the GAIPV distribution is Proposition 4 applied to the
HSIPV distribution.

Proposition 4 Suppose α ∼ HS+(c) for a constant c > 0 and let h(x) be the marginal density of
αj , for j = 1, . . . , K + 1.

a. For any c > 0, h(x) ≤ O(x−1) and |h′(x)| = O{−x−1 log(x)} when x ↓ 0.

b. For any κ, υ ∈ (0, 1), as c→ 0,

Pr(c1/κ < αj ≤ cυ)→ 1. (12)

Thus the rate at which the horseshoe-based density approaches infinity is always slower than
the gamma-based density. More rigorously, let g(x) and h(x) be defined as in Propositions 2a and
4a, respectively. Then, from these propositions, we have that

lim
x↓0

|h′(x)|
|g′(x)|

= lim
x↓0

−x−1 log(x)

xs−2
= lim

x↓0

− log(x)

xs−1
= lim

x↓0

x−1

xs−2
= 0

In words, the rate at which the horseshoe density approaches infinity as x approaches zero from
above is less than the rate at which the gamma density does so, and this holds for any c > 0 and
0 < s < 1. As we will see in Section 3, the horseshoe density approaches infinity slowly enough
to effectively resolve the divergences encountered by the gamma-based prior. When x is small, the
values of s that make |g′(x)| “most similar” to |h′(x)|, namely s just less than 1, will, for all intents
and purposes, be no different than setting s equal to 1, at which point the gamma density is finite
at x = 0.

We also have an analog to Theorem 1:

Theorem 2 For any given κ, υ ∈ (0, 1), j = 1, . . . , K, then the following hold:

a. For any n ≥ 1, as c→ 0,

Pr(c1/κ < αj ≤ cυ | Y,X)→ 1 (13)

in P n
θ0

probability.

b. For any fixed M > 0, set c = (Mn)−1/υ when n→∞, then

Pr(Mn−1/(κυ) < αj ≤Mn−1 | Y,X)→ 1 (14)

in P∞θ0 probability.

Theorem 2 bounds the mass of the HSIPV-based posterior above and below, thus ensuring that
it does concentrate near zero, which stands in contrast to the GAIPV-based posterior in Theorem
1.
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2.3 HSIPV versus GAIPV
Both the HSIPV and GAIPV priors induce similar behavior in the posterior: there is substantial
prior mass close to zero accompanied by relatively heavy tails. This first characteristic allows for
the fitted model to force any given αj to be very close to zero, yielding small increments between
consecutive groups, and the heavy tails still admit large values of αj . Interestingly, however,
even though the un-truncated versions of both densities approach infinity as αj approaches zero,
the regularized horseshoe prior does not encounter the numerical underflow issues of its gamma
counterpart.

The parameter c in the horseshoe prior reflects an assumption about how many αj’s are non-
zero. In this way, its role is analogous to the parameter s in the gamma prior. However, c scales the
horseshoe density and does not impact the limiting behavior of the slope of the density as x ↓ 0,
whereas s shapes the gamma density and has a substantial impact on this limiting behavior, poten-
tially introducing numerical difficulties when actually fitting the model. Thus, it is not necessary
to truncate the horseshoe prior at some small positive constant.

3 Simulation-based comparison of HSIPV to GAIPV
Here we empirically assess the computational and statistical implications of the above results using
numerical studies. We divide this assessment into three subsections. The first subsection fixes a
single simple dataset and demonstrates the implications of Theorems 1 and 2. The second sub-
section is also a fixed-data evaluation, now using three more complex datasets, and compares the
priors with respect to diagnostics of the MCMC algorithm itself. Finally, in the third subsection,
we fix the data-generating mechanism and assess the priors with respect to statistical metrics of
predictive ability.

3.1 Fixed-data evaluation 1
Theorems 1 and 2 establish probabilistic bounds on the posterior distribution of each αj as the
hyperparameters (s for GAIPV or c for HSIPV) go to zero. The theorems hold in general for any
data configuration, including “well-behaved” datasets. Here we consider a dataset comprised of
n = 50 observations of a binary outcome Y , all from a single category, i.e. K = 1, with exactly
half of the observations having Y = 1 and half having Y = 0. With one category, this reduces
to an inference on a single proportion, namely ξ1 ≡ Pr(Y = 1), and a sensible inference should
give that ξ1 is close to 0.5. The IPV-based priors are placed on the length-two parameter α, where
ξ1 = α1/(α1 + α2). We consider the GAIPV and HSIPV priors with hyperparameters decreasing
from 1/2 to 1/128 by multiplicative scales of 1/4. The shape parameter of the GAIPV prior is not
interpreted equivalently to the scale parameter of the HSIPV prior; however, we are interested here
in the relative change in the posterior as each hyperparameter goes to zero.

For each prior, we estimate the posterior distribution using Hamiltonian Monte Carlo as imple-
mented in the STAN programming language (Stan Development Team, 2018, 2019). Each fitted
model contains two independent chains running the No-U-Turn Hamiltonian Monte Carlo sam-
pler for 5000 iterations each, with the first 2500 iterations discarded. The posterior medians of all
parameters are in Table 1, as is a 95% credible interval for ξ1.
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Table 1: Posterior medians of parameters for the GAIPV and HSIPV priors as the hyperparameters
decrease. The data are n observations of a binary outcome Y with Ȳ = 1/2.

Posterior median

n Prior Hyperparameter α1 α2 ξ1 (95% CI)

50 GAIPV s = 1/2 0.35 0.36 0.50(0.37,0.64)
50 GAIPV s = 1/8 0.029 0.029 0.50(0.36,0.63)
50 GAIPV s = 1/32 2.7e-06 2.5e-06 0.50(0.36,0.64)
50 GAIPV s = 1/128 1.7e-20 1.8e-20 0.50(0.37,0.64)

50 HSIPV c = 1/2 0.35 0.35 0.50(0.36,0.64)
50 HSIPV c = 1/8 0.098 0.099 0.50(0.37,0.64)
50 HSIPV c = 1/32 0.022 0.022 0.50(0.37,0.64)
50 HSIPV c = 1/128 0.0049 0.005 0.50(0.37,0.63)

500 GAIPV s = 1/2 0.35 0.35 0.50(0.45,0.54)
500 GAIPV s = 1/8 0.025 0.025 0.50(0.46,0.54)
500 GAIPV s = 1/32 1.6e-05 1.6e-05 0.50(0.46,0.54)
500 GAIPV s = 1/128 1.6e-21 1.5e-21 0.50(0.46,0.54)

500 HSIPV c = 1/2 0.34 0.34 0.50(0.46,0.55)
500 HSIPV c = 1/8 0.1 0.1 0.50(0.46,0.54)
500 HSIPV c = 1/32 0.022 0.022 0.50(0.46,0.54)
500 HSIPV c = 1/128 0.0057 0.0057 0.50(0.46,0.54)

From Table 1, the posterior medians of α1 and α2 both decrease with the value of the hyper-
parameter, but the the GAIPV-based values decrease by about 20 orders of magnitude whereas
the HSIPV-based values decrease by just 2 orders of magnitude. As expected, however, given the
amount of data, the posterior median of the main parameter of interest, ξ1, is not affected in this
scenario. An evaluation of the statistical implications of Theorems 1 and 2 on the estimation of ξ
is left to Section 3.3.

3.2 Fixed-data evaluation 2
MCMC algorithms draw from a target posterior distribution through iterative sampling. Because
this is a stochastic process that runs for a finite time period, each chain of iterations will follow a
different trajectory and thus yield slightly different inference. In this section, we characterize the
variation in empirical diagnostics for underflow, convergence, and running time across independent
chains as well as the variation in posterior summaries across independent chains. Specifically, we
create three datasets (described below) and, to each dataset, fit model (1) equipped with the GAIPV
prior or the HSIPV prior. Because the GAIPV prior is susceptible to underflow, we also consider
modifications to the GAIPV prior so that its support is truncated below at three different values.
These five priors are described below:

GA1 a modified GAIPV prior with shape parameter s chosen to represent ñ = 0.5 historical
observations and the support of the distribution of each αj truncated below at ε ≈ 2.22 ×
10−16;
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GA2 a modified GAIPV prior with shape parameter s chosen to represent ñ = 0.5 historical
observations and the support of the distribution of each αj truncated below at ε/10 ≈ 2.22×
10−17;

GA3 a modified GAIPV prior with shape parameter s chosen to represent ñ = 0.5 historical
observations and the support of the distribution of each αj truncated below at ε/100 ≈
2.22× 10−18;

GA4 the GAIPV prior with shape parameter s chosen to represent ñ = 0.5 historical observa-
tions (this is the standard GAIPV prior and thus, in contrast to the above priors, there is no
truncation of αj)

HS the HSIPV prior with scale parameter c chosen such that the number of anticipated jumps in
the probability curve was meff = 0.5

For each of the 15 prior-by-dataset combinations, we fit 50 models using the same settings as
in Section 3.1. Each of the 50 fitted models differs only by the starting seed for the Hamiltonian
Monte Carlo algorithm, and we compare the variation in empirical diagnostics across these 50
seeds. For each fitted model, we calculate the number of divergent transitions (Section 2.1); the
proportion of seeds in which the posterior calculation of ξ in (3) resulted in at least one numerical
value of NaN, i.e. 0/0; the Gelman-Rubin convergence statistic R̂ (Gelman et al., 1992); and the
running time of the longer of two chains. We also report the empiric distribution of the posterior
median values of αj and ξj , j = 1, . . . , K across the 50 different random seeds. The first dataset
contains 80 {X, Y } pairs, with the X’s being split equally across K = 10 categories. That is,
nj ≡

∑n
i=1 I(Xi = j) is fixed at nj = 8, j = 1, . . . , K. The second dataset contains 80 {X, Y }

pairs split equally across K = 5 categories. And the third dataset contains 320 {X, Y } pairs split
equally across K = 10 categories.

For all datasets, the prevalence of outcomes within each category was set to be
∑n

i=1 I(Xi =
j, Yi = 1) ≡ round(nj(j − 1)/(K − 1)), j = 1, . . . , K, where the round(·) function rounds its
argument to the nearest integer. Thus, the observed prevalence of the outcome is, to the closest
extent possible, uniformly increasing in each category. The three datasets are plotted as diamonds
in Figure 2 (one dataset per column).

These diagnostic results are summarized in Table 2. The most-truncated GAIPV priors, namely
GA1, and the unmodified HSIPV prior, HS, give similar numerical results: a median of 0 divergent
transitions, no evidence of numeric underflow, and a relatively fast run time (median < 10 seconds
per seed). In contrast, the least-truncated (GA3) and un-truncated (GA4) GAIPV priors both en-
countered hundreds of divergent transitions per seed, underflowed at least once in 8% to 26% of
the seeds, and required a median across seeds of 529 to 721 seconds to run to completion. GA2,
which falls between GA1 and GA3 in terms of truncation, also falls between these priors in terms
of typical diagnostics, suggesting that this loss of numeric stability occurs gradually.

Figure 1 shows the empiric distribution of the logarithm of the posterior medians of each αj
across the 50 starting seeds. The inner box gives the interquartile range of the posterior medians,
and the longer line covers the entire observed range of the posterior medians. Because the data are
fixed, what is shown here is not statistical variation due to sampling variability but rather numerical
variation due to different starting seeds and the finitude of MCMC. Thus, ideally there would be no
variation between iterations here. Noting the ranges of the y-axes, GA2, GA3, and GA4 are clearly
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Figure 1: Boxplots giving the empirical distribution of the logarithm of the posterior median of
αj by dataset (columns) and prior (rows) across 50 different starting seeds.
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Table 2: Results from numerical evaluation of three choices of prior fit to three exemplar datasets
using 50 different random seeds to start the Hamiltonian Monte Carlo algorithm. GA1, GA2, and
GA3, have their support truncated below at ε, ε/10, and ε/100, respectively; GA4 is the untruncated
GAIPV prior.

Dataset Prior Divergent transitions at least one NaN R̂ Run time, s
Label (median (max)) (proportion) (median (max)) (median (max))

1 GA1 0(0) 0 1.00(1.01) 5(8)
GA2 44(70) 0 1.00(12.5) 5(1094)
GA3 366(2679) 0.22 4.88(> 109) 721(1365)
GA4 498(3454) 0.12 7.89(> 109) 711(1347)
HS 0(0,0) 0 1.00(1.01) 2(3)

2 GA1 0(0) 0 1.00(1.01) 1(2)
GA2 18(2495) 0 1.01(5.00) 2(850))
GA3 180(4351) 0.08 1.54(> 109) 564(1122)
GA4 238(3026) 0.08 1.56(> 109) 529(1359)
HS 0(0,0) 0 1.00(1.01) 1(2)

3 GA1 0(0) 0 1.00(1.02) 7(10)
GA2 61(2236) 0.06 1.00(9.09) 7(811))
GA3 540(4998) 0.26 3.74(> 109) 650(1373)
GA4 511(2978) 0.22 2.99(> 109) 658(1234)
HS 0(0,0) 0 1.00(1.01) 3(4)

inferior, with the posterior median sometimes varying by several dozen logarithms between starting
seeds. In contrast, GA1 and HS exhibit substantially smaller variability.

The same phenomenon is exhibited in Figure 2 which gives the empiric distribution of the
posterior medians of each ξj . The red diamonds in each panel give the actual data. For GA1 and
HS, in the first and fifth rows, respectively, the posterior medians of ξj are nearly constant between
random seeds, as evidenced by the box plots having virtually no height. Again, and consistent with
the previous results, GA3 and GA4 experience a great deal of undesirable between-seed variability.

3.3 Varying-data evaluation
Finally, we conducted a simulation study evaluating the statistical performance of the five priors
above. Here, instead of fixing the data, we fix the data-generating mechanism, so that the under-
lying data varies from iteration to iteration. We consider two different generating scenarios, both
based upon model (1). In both scenarios, there are K = 10 categories, with Pr(Xi = j) ∝ 1. In
the first scenario, the outcome probabilities are given by ξj = (j− 0.5)/K, meaning that the prob-
ability of the outcome increases linearly with the category. In the second scenario, the outcome
probabilities are given by

ξj = 0.35
1

1 + exp{16.7− 66.7(j − 0.5)/K}
+ 0.65

1

1 + exp{50− 66.7(j − 0.5)/K}
(15)

In this scenario, the outcome probability increases with j, then plateaus at j = 4, and then sharply
increases again starting at j = 8. These true probabilities are plotted as dots in the two columns of
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Figure 3. We crossed these two scenarios with two sizes of the training data, n = 80 and n = 320,
yielding four unique data generating scenarios.

For each data generating scenario, we simulated 200 independent datasets and fit to each dataset
model (1) with prior GA1, GA2, GA3, GA4, or HS, using the same settings as in the fixed-data
example of Section 3.2. As a benchmark, we also compared our Bayesian models to standard
isotonic regression (labeled Isoreg). The R package cir was used for fitting standard isotonic
regression (Oron, 2017). All code developed for this article is available on the first author’s github
site (http://www.github.com/psboonstra)

Given the category of the predictor X , we summarized each fitted Bayesian model by calculat-
ing the posterior median of ξj , j = 1, . . . , K. We construct these point estimates of ξj to facilitate
direct comparison with the non-Bayesian method Isoreg. For each simulation of each of the data
generating mechanisms, we assessed model fit on a testing dataset of size ntest = 1000, generated
independently from the training data but arising from the same true generating mechanism. The
ith observation in the testing data, i = 1, . . . , 1000, consists of ji ∈ {1, . . . , K}, which is the pre-
dictor category that the ith testing observation falls in, and pi, which is the true, unknown outcome
probability arising from the same probability curve as the training data. For a given method, let ξ̂ji
indicate the point estimate of the probability category for test observation i. With this notation, the
pointwise Kullback-Leibler divergence (KL) is

KL =
1

ntest

ntest∑
i=1

[
pi log

(
pi

ξ̂ji

)
+ (1− pi) log

(
1− pi
1− ξ̂ji

)]
.

To avoid infinitely valued KL divergences, we truncated all values of pi and ξ̂ji below and above
by ε and 1− ε, respectively, where ε ≈ 2.2× 10−16. Smaller values of KL divergences are better,
with the best possible value being 0. We averaged KL across all independent datasets arising from
the same generating scenario.

We also calculate the pointwise root mean-squared error (RMSE), defined as
√

1

ntest

∑ntest

i=1 (pi − ξ̂ji)2.
As with KL divergence, smaller values of RMSE are better.

The average pointwise KL divergences and RMSEs are given in Table 3. The methods that
have a value within 10% of the best method are in boldface. Figure 3 plots the true probability
curve and the distribution of posterior medians (or, for Isoreg, the distribution of point estimates)
of each ξj across independent datasets, separately for each scenario; for clarity of presentation
we do not show the GA2 and GA3 priors, which fall between GA1 and GA4. Visually, HS more
faithfully captures the true probability curves, and this is formalized in Table 3, in which HS
is generally preferred with regards to KL divergence. Consistent with our previous results, the
GAIPV-type priors lose efficiency as the lower truncation decreases from ε (GA1) to ε/10 (GA2)
to ε/100 (GA3) to no truncation (GA4).

Remark 1 The substandard performance of Isoreg with regard to the KL divergence metric
(Table 3) is striking and is explained in part by the following. If the observations in the first
category of the predictor all have Yi = 0, then the fitted isotonic regression curve at that predictor
value will have ξ̂1 = 0. As mentioned in Section 3.3, we truncate values of ξ̂ji above and below
by ε and 1 − ε. Without this truncation, the resulting KL value would be infinite when any ξ̂ji
is zero; with this truncation, it is very large but finite. A simple fix for Isoreg would be to add a
small fractional observation, e.g. 1/64, 1/16, or 1/2, having Y = 1 and equal fractional observation
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having Y = 0 to each category of the predictor, which, if the fraction used is 1/2, would reduce to
a Jeffrey’s prior in the case of K = 1. As evidenced by the bottom rows of Table 3. The relative
performance of Isoreg improves somewhat when using RMSE as a metric.

Table 3: Average pointwise Kullback-Leibler (KL) divergence ×1000 and average root mean
square error (RMSE) ×1000. Bolded entries highlight methods for which the pointwise value
was within 10% of the rowwise minimum.

Design factors Methods

Curve n Metric Isoreg HS GA1 GA2 GA3 GA4

1 80 KL Divergence 433 17 93 107 193 215
1 320 KL Divergence 78 9 34 36 57 59
2 80 KL Divergence 243 34 42 47 68 83
2 320 KL Divergence 14 12 10 10 16 16

1 80 RMSE 103 70 107 108 123 125
1 320 RMSE 62 49 71 72 75 76
2 80 RMSE 94 90 96 98 117 120
2 320 RMSE 47 54 55 56 69 66

4 Data analysis: Radiation-induced lung toxicity
We reanalyze the LF20-RILT data first reported in Owen et al. (2020) with our Bayesian isotonic
regression models. For training data, there are 58 lung cancer patients enrolled in an early-phase
clinical trial at the University of Michigan (ClinicalTrials.gov NCT00603057) between the years
2007 and 2013. The primary outcome for this analysis is grade 2+ RILT, which is a composite
toxicity endpoint defined as the occurrence of either grade 2 or higher pneumonitis or grade 2 or
higher fibrosis. Nine patients (15.5%) experienced grade 2+ RILT. The predictor is the dosimetric
LF20, which is the percentage of a patient’s normal lung tissue that both (i) is classified as low-
functioning by SPECT V/Q and (ii) received greater than 20 Gy of radiation. The data are plotted
as a rug in Figure 4. We fit the same priors considered in Sections 3.2 and 3.3, using a value of
ñ = 0.5 historical patients (GAIPV-type priors) or meff = 0.5 anticipated jumps (HSIPV prior) to
determine the value of the hyperparameters.

4.1 Categorizing LF20
Our theoretical development above is based upon the predictor Xi being distributed as an ordered
categorical variable, whereas LF20 is a proportion taking on values in [0, 1]. The Bayesian priors
can be applied after categorizing the predictor. We considered two algorithmic approaches for
identifying an ordered vector of indices with K categories. Setting up notation, let ε be as defined
above and let ζ be a K + 1-length vector ζ = {ζ1, . . . , ζK+1} ⊂ {−ε,X1, X2, . . . , Xn−1, 1}, with
ζ1 ≡ −ε, ζK+1 ≡ 1, and ζj < ζj+1 for j = 1, . . . , K. Then any valueXi for which ζj < Xi ≤ ζj+1,
j = 1, . . . , K, is assumed to have a common outcome probability ξj .
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Figure 3: True probabilities of the outcomes across each category (dots) plotted on the distribution
of posterior medians for five priors (boxplots) for two different true probability curves (columns)
and two different sizes of the training dataset (rows). The online version of this figure is in color.

Using this, one approach, called “Quantiles”, takes as input the desired number of categories,
K, and sets ζj = X(f(j)), j = 2, . . . , K, where X(`) is the `th order statistic from among the
n observations and f(j) = round(n[j − 1]/K), i.e. the whole number closest to the quantity
n(j − 1)/K. Assuming a shrinkage-type prior is being used, K can be a large fraction of n,
since the shrinkage will mitigate overfitting. We considered K = 29 for this approach in this data
analysis, yielding n/K = 58/29 = 2 observations per category.

The second approach is the ‘pool adjacent violators algorithm’ (PAVA) (Barlow et al., 1972).
The usual PAVA algorithm is applied to the set of outcomes ordered with respect to LF20 to de-
termine the cutpoints at which jumps occur in the traditional isotonic regression curve, and these
indices are used directly as ζ. PAVA grouped the 58 observations in the training data into K = 5
categories.

4.2 Cross-validation and validation
We cross-validated the fitted models by holding out one randomly selected patient who did not
experience grade 2+ RILT and, independently, one randomly selected patient who experienced
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Table 4: Description of methods fit to the RILT data and their cross-validated and validated
performance. The final three columns under the ‘Cross validation’ header give the predicted prob-
ability of grade 2+ RILT averaged across 150 held-out pairs of patients one of whom, in truth,
experienced grade 2+ RILT (p̂1), one of whom did not experience grade 2+ RILT (p̂0), and their
difference (p̂1 − p̂0), respectively.

Cross validation Validation

Method Cut strategy Hyper- Divergent Run time, s p̂†1 p̂‡0 p̂1 − p̂†0 Brier Score‡ =
parameter transitions (median(max)) 1

30

∑30
i=1(Yi − ξ̂ji )

2

(median(max))

Isoreg PAVA – – � 1(� 1) 0.247 0.113 0.134 0.149
HS PAVA c = 0.0015 0(0) 1.4(1.9) 0.237 0.121 0.116 0.146
GA1 PAVA s = 0.083 0(0) 1.9(3.3) 0.210 0.104 0.106 0.144
GA2 PAVA s = 0.083 11(24) 2.1(3.4) 0.210 0.105 0.105 0.144
GA3 PAVA s = 0.083 170(2548) 123(1091) 0.187 0.100 0.087 0.145
GA4 PAVA s = 0.083 2.72(974) 2.0(1263) 0.209 0.112 0.097 0.144

HS Quantiles c = 0.00013 0(0) 5.6(6.4) 0.256 0.147 0.110 0.136
GA1 Quantiles s = 0.017 0(0) 9.4(12.8) 0.240 0.147 0.112 0.138
GA2 Quantiles s = 0.017 0(0) 10.0(11.6) 0.239 0.127 0.112 0.137
GA3 Quantiles s = 0.017 0(0) 10.2(13.7) 0.237 0.125 0.112 0.138
GA4 Quantiles s = 0.017 2(7) 44.6(58.5) 0.222 0.119 0.103 0.139

† Larger is better
‡ Smaller is better

grade 2+ RILT. We refit the models on the remaining 56 patients (including re-calculating the
LF20 dosimetric categories as described above) and estimated the probability of grade 2+ RILT
for each held-out observation, given its value of LF20. There are 49 × 9 = 441 such possible
pairings, and we repeated this ‘leave-two out’ validation step for 150 random, unique pairs. We
report the average of the predicted probabilities, separately for the two outcomes, as well as the
difference in these probabilities. We also calculated the number of divergences and the runtime
across the 150 iterations.

We also validated the models fit to the the full 58 patient training cohort on a completely
separate cohort of patients from a later clinical trial also at the University of Michigan (Clini-
calTrials.gov NCT02492867), which began accruing patients in 2016. This validation cohort was
comprised of 30 similar patients, of which six (20%) experienced the RILT outcome. We calculated
the Brier score, which is the average squared difference between each patient’s model-predicted
risk, ξ̂j , and their eventual outcome, Yi, namely 1

30

∑30
i=1(Yi− ξ̂ji)2. It is similar to the RMSE met-

ric used in Section 3.3, but replacing the true unknown probability pi with the observed outcome
Yi.

Figure 4 plots the model-based probabilities of grade 2+ RILT as a function of LF20 and Table
4 gives the cross-validated and validated assessments of each model. For clarity of presentation, we
do not present results for GA2 and GA3 in the figure. From the figure, there were greater differences
between methods at the higher dose levels, where there is less data. Specifically, using the PAVA
categorization, GA1 and GA4 estimated the probability of toxicity at the highest dosimetric to
be 0.3 and 0.4, respectively, versus 0.45 and 0.5 for HS and Isoreg. Under the quantiles-based
categorization, HS estimates this probability to be 0.44, greater than GA4 (0.37) and GA1 (0.43).

Focusing on the cross-validated metrics, from Table 4, under the PAVA categorization, the
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average difference between p̂1 and p̂0 was largest, i.e. best, for Isoreg and HS1 (about 0.13 and
0.12 versus 0.11 or less for the remaining methods). Under the quantiles-based categorization, all
methods except GA4 had similar average differences between p̂1 and p̂0. With regard to running
time, the non-Bayesian Isoreg can be fit virtually instantaneously in these data. HS1, GA1, and
GA2 required about 2 seconds per cross-validated dataset (PAVA categorization) or 5-10 seconds
(quantiles-based categorization). The median running time for GA3 was similarly short, but under
the PAVA categorization its longest running time across cross-validated datasets was about 18
minutes. GA4 was slower, particularly under the quantiles-based categorization, consistent with
our numerical studies.

The untruncated/less-truncated GAIPV priors did encounter divergent transitions, although not
to the extent observed in our simulation studies. GA4 underflowed in one dataset (results not
shown). Although the untruncated gamma-based prior (GA4) is prone to underflow and/or may
have long runtimes, this will not be the case in every data configuration.

Focusing on our validation in the separate cohort of 30 patients, from the last column of Table 4,
the GAIPV-priors had the smallest, i.e. best, Brier scores under PAVA categorization (about 0.144-
0.145), and HS had the smallest Brier score under the quantiles-based categorization (0.136).

5 Discussion
Extending the original Bayesian isotonic regression first considered in Ramsey (1972), we have
shown that our novel prior for this model, based on the horseshoe distribution, is both compu-
tationally robust and statistically efficient. That the horseshoe-based prior is not subject to the
numerical underflow that can ensnare the gamma-based prior is supported by our key theoretical
result, given in Section 2.3, which gives that the rate at which the horseshoe density diverges as its
argument goes to zero is always less than the rate at which the gamma density does so.

Apart from a head-to-head comparison of the horseshoe versus gamma-based prior, it is also
noteworthy that the performance, running time, and diagnostics of the latter are sensitive to the
value of the lower truncation. That is, the only difference between GA1 and GA4 is that in the
former the support of the distribution of αj is truncated to be no smaller than ε ≈ 2.2 × 10−16,
whereas in the latter there is no truncation. This is a large relative difference, to be sure, but a small
absolute difference nonetheless.
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Appendix

5.1 Proof of Proposition 2
Proof 1 It is straightforward to show part a by the definition of the density form: g(x) = {Γ(s)}−1xs−1 exp(−x) =
O(xs−1) and when x→ 0,

|g′(x)| = {Γ(s)}−1{(s− 1)xs−2 − xs−1} exp(−x) = O(xs−2).

For part b, by the Theorem 1 by (Liu et al., 2013), we have −s log(α) → Exp(1) as s → 0. This
further implies that

lim
s↓0

Pr(α < δ)

= lim
s↓0

Pr{α < exp
(
−s−κ

)
}

= lim
s↓0

Pr{−s log(α) > s1−κ}

= lim
s↓0

exp
(
−s1−κ

)
= 1

5.2 Proof of Theorem 1
Proof 2 ‘ Recall that ξk =

∑k
j=1 αj/

∑K
j=1 αj . Define mk ≡

∑n
i=1 I(Xi = k, Yi = 1) and

nk ≡
∑n

i=1 I(Xi = k). The posterior density of α given {mk, nk}Kk=1 is proportional to

h(α) =
K−1∏
k=1

ξmkk (1− ξk)nk−mk
K∏
l=1

π(αl)

=
K−1∏
k=1

(∑k
l=1 αl∑K
l=1 αl

)mk
(∑K

l=k+1 αl∑K
l=1 αl

)nk−mk K∏
l=1

π(αl)

= g(α−j, αj)
K∏
l=1

π(αl)

for any 1 ≤ j < K, where

g(α−j, αj) =
K−1∏
k=1

(∑k
l=1 αl∑K
l=1 αl

)mk
(∑K

l=k+1 αl∑K
l=1 αl

)nk−mk

=
∏
k≥j

(∑k
l=1,l 6=j αl + αj∑
l=1,l 6=j αl + αj

)mk ( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + αj

)nk−mk

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + αj

)mk
(∑K

l=k+1,l 6=j αl + αj∑K
l=1,l 6=j αl + αj

)nk−mk

Let δ = exp(−sκ). When 0 < αj < δ, for any α−j = {αl, l 6= j}, it is straightforward to show
that

gl(α−j, δ) ≤ g(α−j, αj) ≤ gu(α−j, δ), (16)
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where

gl(α−j, δ) =
∏
k≥j

(∑k
l=1,l 6=j αl∑
l=1,l 6=j αl

)mk ( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + δ

)nk−mk

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + δ

)mk
(∑K

l=k+1,l 6=j αl∑K
l=1,l 6=j αl

)nk−mk

(17)

gu(α−j, δ) =
∏
k≥j

(∑k
l=1,l 6=j αl + δ∑
l=1,l 6=j αl + δ

)mk ( ∑K
l=k+1 αl∑K
l=1,l 6=j αl

)nk−mk

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl

)mk
(∑K

l=k+1,l 6=j αl + δ∑K
l=1,l 6=j αl + δ

)nk−mk

(18)

for any α−j .
When αj > δ, we have

g(α−j, αj) ≤ g∗u(α−j, δ)

where

g∗u(α−j, δ) =
∏
k≥j

( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + δ

)nk−mk

×
∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + δ

)mk

In part a, for any given n ≥ 1, when s→ 0, then δ = exp (−s−κ)→ 0 and

gl(α−j, δ)→ g(α−j, 0),

gu(α−j, δ)→ g(α−j, 0).

Then the marginal posterior probability of αj being concentrated within a small neighborhood of
zero is given by

Pr(αj < δ | Y,X) (19)

=

∫ δ
0

∫
(0,+∞)K−1 h(α)dαjdα−j∫∞

0

∫
(0,+∞)K−1 h(α)dαjdα−j

=

∫ δ
0

∫
(0,+∞)K−1 g(α−j, αj)π(αj)

∏
l 6=j π(αl)dαjdα−j∫ δ

0

∫
(0,+∞)K−1 g(α−j, αj)π(αj)

∏
l 6=j π(αl)dαjdα−j +

∫∞
δ

∫
(0,+∞)K−1 g(α−j, αj)π(αj)

∏
l 6=j π(αl)dαjdα−j

≥

∫ δ
0

∫
(0,+∞)K−1 gl(α−j, δ)π(αj)

∏
l 6=j π(αl)dαjdα−j∫ δ

0

∫
(0,+∞)K−1 gu(α−j, δ)π(αj)

∏
l 6=j π(αl)dαjdα−j +

∫∞
δ

∫
(0,+∞)K−1 g∗u(α−j, δ)π(αj)

∏
l 6=j π(αl)dαjdα−j

=

(∫ δ
0
π(αj)dαj

)
∫ δ
0
π(αj)dαj

{∫
(0,+∞)K−1 gu(α−j ,δ)

∏
l6=j π(αl)dα−j∫

(0,+∞)K−1 gl(α−j ,δ)
∏
l 6=j π(αl)dα−j

}
+
{

1−
∫ δ
0
π(αj)dαj

}{∫
(0,+∞)K−1 g∗u(α−j ,δ)

∏
l 6=j π(αl)dα−j∫

(0,+∞)K−1 gl(α−j ,δ)
∏
l 6=j π(αl)dα−j

}
→ 1
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in P n
θ0

probability, as s→ 0 and δ → 0.
In part b, we consider the large sample property of the posterior distribution of αj . Under the

actual distribution of data given the true parameters θ0 = {η0k, ξ0k}Kk=1, where η0k = Pr(Xi = k)
and ξ0k = Pr(Yi = 1 | Xi = k). By the law of the large numbers, as n→∞,

mk

n
→ η0kξ0k and

nk −mk

n
→ η0k(1− ξ0k)

in P∞θ0 probability. Since s = o(n−1/κ), then δ = o{exp(−n)} and for any α−j ,

gl(α−j, δ)

fl(α−j, n)
→ 1 and

gu(α−j, δ)

fu(α−j, n)
→ 1

in P∞θ0 probability, where

fl(α−j, n) =
∏
k≥j

(∑k
l=1,l 6=j αl∑
l=1,l 6=j αl

)η0kξ0kn( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + exp(−n)

)η0k(1−ξ0k)n

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + exp(−n)

)η0kξ0kn
(∑K

l=k+1,l 6=j αl∑K
l=1,l 6=j αl

)η0k(1−ξ0k)n

, (20)

and

fu(α−j, n) =
∏
k≥j

(∑k
l=1,l 6=j αl + exp(−n)∑
l=1,l 6=j αl + exp(−n)

)η0kξ0kn( ∑K
l=k+1 αl∑K
l=1,l 6=j αl

)η0k(1−ξ0k)n

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl

)η0kξ0kn
(∑K

l=k+1,l 6=j αl + exp(−n)∑K
l=1,l 6=j αl + exp(−n)

)η0k(1−ξ0k)n

. (21)

This implies that as n→∞,

fl(α−j, n)

fu(α−j, n)
→ 1 (22)

in P∞θ0 probability. ∫
(0,+∞)K−1 fu(α−j, n)

∏
l 6=j π(αl)dα−j∫

(0,+∞)K−1 fl(α−j, n)
∏

l 6=j π(αl)dα−j
→ 1 (23)

in P∞θ0 probability. ∫
(0,+∞)K−1 gu(α−j, δ)

∏
l 6=j π(αl)dα−j∫

(0,+∞)K−1 gl(α−j, δ)
∏

l 6=j π(αl)dα−j
→ 1 (24)

in P∞θ0 probability. Thus, by (19), we have

Pr(αj < exp(−Mn) | Y,X)→ 1 (25)

in P∞θ0 probability.
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5.3 Proof of Proposition 3
Proof 3 Let θj = λjτ . Then the density of θj is given by

π(t) =
2

π2

log(t2)

t2 − 1

and

αj | θj ∼ N+

(
0,

c2θ2j
1 + c2θ2j

)
with

E(αj | θj, c) =

√
2

π

cθj√
1 + c2θ2j

, Var(αj | θj, c) =
c2θ2j

1 + c2θ2j

(
1− 2

π

)
This further implies that

E(αj | c) = E{E(αj | θj, c)} (26)

=

√
2

π

∫ ∞
0

ct√
1 + c2t2

2

π2

log(t2)

t2 − 1
dt. (27)

Not that for any t ≥ 0 and 0 ≤ c ≤ 1,

ct

t+ 1
≤ ct

ct+ 1
≤ ct√

1 + c2t2
≤ min

{√
ct

2
, 1

}
, (28)

Also, ∫ ∞
0

√
t
log(t2)

t2 − 1
dt = π2 and

∫ ∞
0

t

t+ 1

log(t2)

t2 − 1
dt =

π2

4
.

Thus,

c√
2π
≤ E(αj | c) ≤

√
2

π
min(

√
2c, 1) (29)

When 0 < c < 1/2, then

c√
2π
≤ E(αj | c) ≤ 2

√
c

π
(30)

In addition,

Var(αj | c) = Var{E(αj | θj, c)}+ E{Var(αj | θj, c)} (31)

= Var

√ 2

π

cθj√
1 + c2θ2j

+ E

{
c2θ2j

1 + c2θ2j

(
1− 2

π

)}
(32)

= E

(
c2θ2j

1 + c2θ2j

)
−

E

√ 2

π

cθj√
1 + c2θ2j

2

(33)
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Note that

E

(
c2θ2j

1 + c2θ2j

)
≤
√
c

2
E
(√

θj

)
E

(
c2θ2j

1 + c2θ2j

)
≤
√

2c

Note that

{E(αj | c)}2 ≥
c2

2π
. (34)

When 0 < c < (2π
√

2)2/3, then

Var(αj | c) ≤
√

2c− c2

2π
. (35)

5.4 Lemmas for Proposition 4
Lemma 1 For any c > 0, the marginal half-horseshoe prior density evaluated at αj = x, h(x) ≡∫∫

π(αj = x | λj, τ)π(τ)π(λj)dλjdτ , can be written as

h(x) = exp

(
−x

2

2

)√
2

π5c2

∫ ∞
0

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt.

Proof 4 (of Lemma 1) Let θj = cτλj . Then π(αj | θj) = N+{αj | 0, θ2j/(1 + θ2j )}. In this case,

Carvalho et al. (2010) give that the density of θ̃j ≡ θj/c is π(θ̃j) = 2π−2 log
(
θ̃2j

)
/
(
θ̃2j − 1

)
. This

implies that the marginal prior density evaluated at αj = x is the function

h(x) =

∫ ∞
0

π(αj = x | θ̃j)π(θ̃j)dθ̃j

=

(
2√

2πc2

)(
2

π2

)∫ ∞
0

√
1 + u2c2

u
exp

{
−x

2(1 + c2u2)

2c2u2

}
log u2

u2 − 1
du

= exp

(
−x

2

2

)(
2√

2πc2

)(
2

π2

)∫ ∞
0

√
1 + u2c2

u
exp

(
− x2

2c2u2

)
log u2

u2 − 1
du.

Letting t = u−2, so that − 1

2t
dt =

1

u
du gives

h(x) = exp

(
−x

2

2

)√
2

π5c2

∫ ∞
0

√
1 +

c2

t
exp

(
− x2

2c2
t

)
− log t

t(1/t− 1)
dt

= exp

(
−x

2

2

)√
2

π5c2

∫ ∞
0

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt
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Lemma 2 Let the function f(x, y) : R+ × R+ → R+ be defined as

α(x, t) =

√
1 +

c2

t

log(t)

t− 1
exp

(
−x

2

c2
t

)
Then,

d

dx

∫ ∞
0

α(x, t)dt =

∫ ∞
0

∂α(x, t)

∂x
dt

Proof 5 (of Lemma 2) We have that

∂α(x, t)

∂x
= −2t

c2

√
1 +

c2

t

log(t)

t− 1
x exp

(
−x

2

c2
t

)
Also, for any t > 0,

0 <
log(t)

t− 1
<

1√
t

This implies that∣∣∣∣∂α(x, t)

∂x

∣∣∣∣ = 2t

√
1 +

c2

t

log(t)

t− 1
x exp

(
−x

2

c2
t

)
< 2x

√
t+ c2 exp

(
−x

2

c2
t

)
Note that∫ ∞

0

2x
√
t+ c2 exp

(
−x

2

c2
t

)
dt = exp

(
x2
) ∫ ∞

c2
4xu2 exp

(
−x

2

c2
u2
)

du

≤ c3 exp
(
x2
) ∫ ∞
−∞

2xz2 exp{−x2z2}dz

= 2
√
πc3 exp

(
x2
) ∫ ∞
−∞

z2
√

2x√
2π

exp

{
−(
√

2x)2

2
z2

}
dz

= 2
√
πc3 exp

(
x2
)
E(Z2), Z ∼ N{0, 1/(2x2)}

=

√
πc3 exp(x2)

x2
.

Then, for any two positive numbers a, b with 0 < a < b <∞, we have∫ b

a

∫ ∞
0

∣∣∣∣∂α(x, t)

∂x

∣∣∣∣ dtdx ≤ √πc3 ∫ b

a

exp(x2)

x2
dx ≤

√
πc3 exp

(
b2
)(1

a
− 1

b

)
<∞,

which gives that ∂α(x,t)
∂x

is locally integrable (Theorem 4, Talvila, 2001). This completes the proof.
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5.5 Proof of Proposition 4a
Proof 6 According to Lemma 1, we can write

h(x) ∝ exp
(
−x2/2

)
α(x),

where

α(x) =

∫ ∞
0

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt

=

∫ 2

0

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt+

∫ ∞
2

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt

≤ c{
√

2 + 4/c2 + c csch−1(c/
√

2)}+

√
1 +

c2

2

√
2c

x

Note that ∫ 2

0

√
1 + c2/t exp

(
− x2

2c2
t

)
log t

t− 1
dt

≤
∫ 2

0

√
1 + c2/tdt = c{

√
2 + 4/c2 + c csch−1(c/

√
2)},

where csch−1(z) = log
(√

1 + 1/z2 + 1/z
)

and∫ ∞
2

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt

≤
∫ ∞
2

1√
t

exp

(
− x2

2c2
t

)
dt ≤

√
2c

x

This implies that

h(x) ≤ O

(
1

x

)
.

For the derivative of h(x), we have

h′(x) = −xh(x)− 2x exp
(
−x2/2

)√ 2

π5c2
β(x)

where

β(x) =

∫ ∞
0

t

√
1 +

c2

t
exp

(
− x2

2c2
t

)
log t

t− 1
dt

≤
∫ 2

0

√
t(t+ c2)dt+

√
1 + c2/2

∫ ∞
2

t exp

(
− x2

2c2
t

)
log t

t− 1
dt

=
1

4

{
√

2
√

2 + c2(4 + c2)− c2 sinh−1

(√
2

c

)}
+ 2c2

√
1 + c2/2

{exp(−2x2) log(2) + E1(x
2/c2)}

x2
.

(36)
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The exponential integral function E1(z) is defined as

E1(z) =

∫ ∞
z

exp(−t)
t

dt = −γ − log(z)−
∞∑
k=1

(−z)k

kk!
,

and γ ≈ 0.577 is the Euler-Mascheroni constant. Thus,

h′(x) ≤ O
(
−x−1 log(x)

)
,

as x→ 0

5.6 Proof of Proposition 4b
Proof 7 The conditional prior probability of αj given λj and τ for any λj > 0 and τ > 0,

Pr(c1/κ < αj ≤ cυ | λj, τ)

= 2

Φ

 cυ

cτλj/
√

1 + c2τ 2λ2j

− Φ

 c1/κ

cτλj/
√

1 + c2τ 2λ2j


= 2

Φ

 cυ−1

τλj/
√

1 + c2τ 2λ2j

− Φ

 c1/κ−1

τλj/
√

1 + c2τ 2λ2j

 ↑ 1, as c ↓ 0.

By the monotone convergence theorem, the result implies that, as c→ 0,

Pr(c1/κ < αj ≤ cυ) = E{Pr(c1/κ < αj ≤ cυ | λj, τ)} → 1,

5.7 Proof of Theorem 2
Proof 8 The joint posterior density of α, λ and τ given {mk, nk}Kk=1 is proportional to

h(α,λ, τ) =
K−1∏
k=1

ξmkk (1− ξk)nk−mk
K∏
l=1

π(αl | λl, τ)
K∏
l=1

π(λl)π(τ)

=
K−1∏
k=1

(∑k
j=1 αl∑K
l=1 αl

)mk (∑K
l=k+1 αl∑K
l=1 αl

)nk−mk K∏
l=1

π(αl | λl, τ)
K∏
l=1

π(λl)π(τ)

= g(α−j, αj)
K∏
l=1

π(αl | λl, τ)
K∏
l=1

π(λl)π(τ)
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for any 1 ≤ j < K, where

g(α−j, αj) =
K−1∏
k=1

(∑k
j=1 αl∑K
l=1 αl

)mk (∑K
l=k+1 αl∑K
l=1 αl

)nk−mk

=
∏
k≥j

(∑k
l=1,l 6=j αl + αj∑
l=1,l 6=j αl + αj

)mk ( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + αj

)nk−mk

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + αj

)mk
(∑K

l=k+1,l 6=j αl + αj∑K
l=1,l 6=j αl + αj

)nk−mk

In part a, when c1/κ < αj < cυ, for any α−j = {αl, l 6= j}, it is straightforward to show that

gl(α−j, c) ≤ g(α−j, αj) ≤ gu(α−j, c), (37)

where

gl(α−j, c) =
∏
k≥j

(∑k
l=1,l 6=j αl + c1/κ∑
l=1,l 6=j αl + c1/κ

)mk ( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + cυ

)nk−mk

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + cυ

)mk
(∑K

l=k+1,l 6=j αl + c1/κ∑K
l=1,l 6=j αl + c1/κ

)nk−mk

(38)

gu(α−j, c) =
∏
k≥j

(∑k
l=1,l 6=j αl + cυ∑
l=1,l 6=j αl + cυ

)mk ( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + c1/κ

)nk−mk

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + +c1/κ

)mk
(∑K

l=k+1,l 6=j αl + cυ∑K
l=1,l 6=j αl + cυ

)nk−mk

. (39)

Note that for any α−j . Then

lim
c→0

gu(α−j, c) = lim
c→0

gl(α−j, c) = g(α−j, 0). (40)

Let Rd
+ = (0,∞)d and the marginal posterior probability of c1/κ < αj ≤ cυ is given by

Pr(c1/κ < αj ≤ cυ | Y,X)

=

∫∞
0

∫
RK+

∫
RK−1
+

∫ cυ
c1/κ

h(α,λ, τ)dαjdα−jdλdτ∫∞
0

∫
RK+

∫
RK−1
+

∫∞
0
h(α,λ, τ)dαjdα−jdλdτ

=

∫∞
0

∫
RK+

∫
RK−1
+

∫ cυ
c1/κ

g(α−j, αj)π(αj | λj, τ)
∏

l 6=j π(αl | λl, τ)π(λ)π(τ)dαjdα−jdλdτ∫∞
0

∫
RK+

∫
RK−1
+

∫∞
0
g(α−j, αj)π(αj | λj, τ)

∏
l 6=j π(αl | λl, τ)π(λ)π(τ)dαjdα−jdλdτ

=
I(c1/κ, cν)

I(0, c1/κ) + I(c1/κ, cν) + I(cν ,∞)
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where

I(a, b)

=

∫ ∞
0

∫
RK+

∫
RK−1
+

∫ b

a

g(α−j, αj)π(αj | λj, τ)
∏
l 6=j

π(αl | λl, τ)π(λ)π(τ)dαjdα−jdλdτ.

This implies that

Il(c) ≤ I(c1/κ, cν) ≤ Iu(c) (41)

Il(c) =

∫ ∞
0

∫
RK−1
+

∫
RK+

{∫ cν

c1/κ
π(αj | λj, τ)dαj

}{
gl(α−j, c)

∏
l 6=j

π(αl | λl, τ)

}
π(λ)π(τ)dα−jdλdτ

Iu(c) =

∫ ∞
0

∫
RK−1
+

∫
RK+

{∫ cν

c1/κ
π(αj | λj, τ)dαj

}{
gu(α−j, c)

∏
l 6=j

π(αl | λl, τ)

}
π(λ)π(τ)dα−jdλdτ

Iu(a, b) =

∫ ∞
0

∫
RK−1
+

∫
RK+

{∫ b

a

π(αj | λj, τ)dαj

}{
gu(α−j, c)

∏
l 6=j

π(αl | λl, τ)

}
π(λ)π(τ)dα−jdλdτ

Then

lim
c→0

Il(c)

Iu(c)
= 1, lim

c→0
Iu(0, c

1/κ) = 0, lim
c→0

Iu(c
ν ,∞) = 0

Thus, for any n ≥ 1, as c→ 0,

Pr(c1/κ < αj ≤ cυ | Y,X)

≥ Il(c)

Iu(0, c1/κ) + Iu(c) + Iu(cν ,∞)
→ 1,

in P n
θ0

probability.
In part b, when Mn−1/(κν) < αj ≤Mn−1 for any fixed M > 0. Similar to Theorem 1b, under

the actual distribution of data given the true parameters θ0 = {η0k, ξ0k}Kk=1, where η0k = Pr(Xi =
k) and ξ0k = Pr(Yi = 1 | Xi = k). By the law of the large numbers, as n→∞,

mk

n
→ η0kξ0k and

nk −mk

n
→ η0k(1− ξ0k)

in P∞θ0 probability. Since c = (Mn)−1/ν , and for any α−j , as n→∞,

gl(α−j, c)

fl(α−j, n)
→ 1 and

gu(α−j, c)

fu(α−j, n)
→ 1
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in P∞θ0 probability, where

fl(α−j, n) =
∏
k≥j

(∑k
l=1,l 6=j αl + (Mn)−1/κν∑
l=1,l 6=j αl + (Mn)−1/κν

)η0kξ0kn( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + (Mn)−1

)η0k(1−ξ0k)n

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + (Mn)−1

)η0kξ0kn
(∑K

l=k+1,l 6=j αl + (Mn)−1/κν∑K
l=1,l 6=j αl + (Mn)−1/κν

)η0k(1−ξ0k)n

,

(42)

and

fu(α−j, n) =
∏
k≥j

(∑k
l=1,l 6=j αl + (Mn)−1∑
l=1,l 6=j αl + (Mn)−1

)η0kξ0kn( ∑K
l=k+1 αl∑K

l=1,l 6=j αl + (Mn)−1/κν

)η0k(1−ξ0k)n

×

∏
k<j

( ∑k
l=1 αl∑K

l=1,l 6=j αl + (Mn)−1/κν

)η0kξ0kn
(∑K

l=k+1,l 6=j αl + (Mn)−1∑K
l=1,l 6=j αl + (Mn)−1

)η0k(1−ξ0k)n

,

(43)

As n→∞, it can be shown that

fl(α−j, n)

fu(α−j, n)
→ 1 (44)

in P∞θ0 probability. Thus

gl(α−j, 1/(Mn)−1/ν)

gu(α−j, 1/(Mn)−1/ν)
→ 1 (45)

in P∞θ0 probability.
Let J(n) = I(Mn−1/(κν),Mn−1), Jl(n) = Il{(Mn)−1/ν} and Ju(n) = Iu{(Mn)−1/ν}. Then

we have
Jl(n) ≤ J(n) ≤ Ju(n).

Then by proposition 4b, as n→∞,∫ (Mn)−1/ν

(Mn)−1/νκ

π(αj | λj, τ)dαj → 1.

Then

lim
n→∞

Jl(n)

Ju(n)
= lim

n→∞

E
[∫ (Mn)−1/ν

(Mn)−1/νκ π(αj | λj, τ)dαjgl(α−j, 1/(Mn)−1/ν) | Y,X
]

E
[∫ (Mn)−1/ν

(Mn)−1/νκ π(αj | λj, τ)dαjgu(α−j, 1/(Mn)−1/ν) | Y,X
] = 1

in P∞θ0 probability, where E(· | Y,X) is taken with respect to the joint posterior distribution of
τ, λ,α−j . In addition,

Iu{0, (Mn)−1/κν} → 0, Iu{(Mn)−1),∞} → 0
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in P∞θ0 probability. Thus, for any fixed M > 0, as n→∞,

Pr{(Mn)1/κναj ≤ (Mn)−1 | Y,X}

≥ Jl(n)

Iu{0, (Mn)−1/κν}+ Ju(n) + Iu{(Mn)−1),∞}
→ 1

in P∞θ0 probability.
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Figure 4: Model-based probabilities of grade 2+ radiation-induced lung toxicity (RILT) as a
function of proportion of lung that is both low-functioning and received 20 Gy. The rugs at the top
and bottom of each panel denote the data.

35


	1 Introduction
	2 Methods
	2.1 Gamma isotonic probability vector distribution
	2.2 Horseshoe isotonic probability vector distribution
	2.3 HSIPV versus GAIPV

	3 Simulation-based comparison of HSIPV to GAIPV
	3.1 Fixed-data evaluation 1
	3.2 Fixed-data evaluation 2
	3.3 Varying-data evaluation

	4 Data analysis: Radiation-induced lung toxicity
	4.1 Categorizing LF20
	4.2 Cross-validation and validation

	5 Discussion
	5.1 Proof of Proposition 2
	5.2 Proof of Theorem 1
	5.3 Proof of Proposition 3
	5.4 Lemmas for Proposition 4
	5.5 Proof of Proposition 4a
	5.6 Proof of Proposition 4b
	5.7 Proof of Theorem 2


