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SUMMARY

To estimate an overall treatment difference with data from a randomized, comparative clinical study,

baseline covariates are often utilized to increase the estimation precision. Using the standard analysis of

covariance (ANCOVA) technique for making inferences about such an average treatment difference may

not be appropriate, especially when the fitted model is non-linear. On the other hand, the novel augmen-

tation procedure recently studied, for example, by Zhang, Davidian and Tsiatis (2008) is quite flexible.
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2 L. TIAN ET AL.

However, in general, it is not clear how to select covariates for augmentation effectively (Shao et al, 2010).

An overly adjusted estimator can be severely biased. Furthermore, the results from the standard inference

procedure by ignoring the sampling variation from the variable selection process may not be valid. In this

paper, we first propose an estimation procedure, which augments the simple treatment contrast estimator

directly with covariates. The new proposal is asymptotically equivalent to the aforementioned augmenta-

tion method. To select covariates, we utilize the standard lasso procedure. Furthermore, to avoid potential

bias of the resulting lasso-type estimator, a cross validation method is used to obtain our final estimation

procedure. The validity of the new proposal is justified theoretically and empirically. We illustrate the

procedure extensively with a well-known primary biliary cirrhosis clinical trial data set.

Keywords: ANCOVA; Cross validation; Efficiency augmentation; Mayo PBC data; Semi-parametric efficiency

1. INTRODUCTION

For a typical randomized clinical trial to compare two treatments, generally a summary measure θ0 for

quantifying the treatment effectiveness difference can be estimated unbiasedly or consistently using its

simple two-sample empirical counterpart, say θ̂. With the subject’s baseline covariates, one may obtain

a more efficient estimator for θ0 via a standard analysis of covariance (ANCOVA) technique or a novel

augmentation procedure, which is well documented in Zhang, Tsiatis and Davidian (2008) and a series of

papers (Leon et al. 2003, Tsiatis 2006, Tsiatis et al. 2008, Lu & Tsiatis 2008, Gilbert et al. 2009, Zhang

& Gilbert 2010). The ANCOVA approach can be problematic, especially when the regression model is

non-linear, for example, the logistic or Cox model. For this case, the ANCOVA estimator generally does

not converge to θ0, but to a quantity which may be difficult to interpret as a treatment contrast measure.

Moreover, in the presence of censored event time observations, this quantity may depend on the censoring
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On the covariate-adjusted estimation for the treatment difference 3

distribution. On the other hand, the above augmentation procedure, referred as ZTD in the literature always

produces a consistent estimator for θ0, provided that the simple estimator θ̂ is consistent.

In theory, the ZTD estimator is asymptotically more efficient than θ̂ no matter how many covariates

being augmented. However, in practice, the penalty of an overly augmented estimator can be quite severe.

That is, the resulting estimator can be non-trivially biased or its standard error may be larger than that of

θ̂. Recently Zhang et al. (2008) showed empirically that the ZTD via the standard stepwise regression for

variable selection performs satisfactorily when the number of covariates is not large. In general, however,

it is not clear that the standard inference procedures for θ0 based on estimators augmented by covariates

selected via a rather complex variable selection process is appropriate especially when the number of

covariates involved is not small relative to the sample size. Therefore, it is highly desirable to develop an

estimation procedure to properly and systematically augment θ̂ and make valid inference for the treatment

difference based on studies with practical sample sizes.

Now, let Y be the response variable, T be the binary treatment indicator and Z be a p−dimensional

vector of covariates or a function thereof including the intercept. The data, {(Yi, Ti,Zi), i = 1, · · · , n},

consist of n independent copies of (Y, T,Z), where T and Z are independent of each other. Let P (T =

1) = π ∈ (0, 1). First, suppose that we are interested in the mean difference: θ0 = E(Y |T = 1) −

E(Y |T = 0). A simple unadjusted estimator is

θ̂ =
1

n

n∑
i=1

(Ti − π)Yi

π(1− π)
,

which consistently estimates θ0. To improve efficiency in estimating θ0, one may employee the standard

ANCOVA procedure by fitting the following linear regression working model:

E(Y |T,Z) = θT + γ′Z,
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4 L. TIAN ET AL.

where θ and γ are unknown parameters. Since T ⊥ Z and {(Ti,Zi), i = 1, · · · , n} are independent

copies of (T,Z), the resulting ANCOVA estimator is asymptotically equivalent to

θ̂ − γ̂′

{
1

n

n∑
i=1

(Ti − π)Zi

π(1− π)

}
, (1.1)

where γ̂ is the ordinary least square estimator for γ of the model E(Y |Z) = γ′Z. The γ̂ converges to

γ0 = argminγE(Y − γ′Z)2,

as n → ∞. It follows that the ANCOVA estimator is asymptotically equivalent to

θ̂ − γ′
0

{
1

n

n∑
i=1

(Ti − π)Zi

π(1− π)

}
. (1.2)

In theory, since θ̂ is consistent to θ0, the ANCOVA estimator is also consistent to θ0 and more efficient

than θ̂ regardless of whether the above working model is correctly specified. Note that the nonparametric

ANCOVA estimator proposed by Koch et al. (1998) and ZTD estimator are also asymptotically equivalent

to (1.2), which was noted by Tsiatis et al. (2008). We give details of this equivalence in Appendix A.

The novel ZTD procedure is derived by specifying optimal estimating functions under a very general

semi-parametric setting. The efficiency gain from the ZTD has been elegantly justified using the semi-

parametric inference theory (Tsiatis 2006). The ZTD is much more flexible than the ANCOVA method

in that it can handle cases when the summary measure θ0 is beyond the simple difference of two group

means. On the other hand, the ANCOVA method may only work under the above simple linear regression

model.

In this paper, we study the estimator (1.1), which augments θ̂ directly with the covariates. The key

question is how to choose γ̂ in (1.1) especially when p is not small with respect to n. Here, we utilize

the lasso procedure with a cross validation process to construct a systematic procedure for selecting co-
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On the covariate-adjusted estimation for the treatment difference 5

variates to increase the estimation precision. The validity of the new proposal is justified theoretically and

empirically via an extensive simulation study. The proposal is also illustrated with the data from a clinical

trial to evaluate a treatment for a specific liver disease.

2. ESTIMATING THE TREATMENT DIFFERENCE VIA PROPER AUGMENTATION FROM COVARIATES

For a general treatment contrast measure θ0 and its simple two sample estimator θ̂, assume that

θ̂ − θ0 = n−1
n∑

i=1

τi(η) + op(
1√
n
),

where τi(η) is the influence function from the ith observation, η is a vector of unknown parameters, and

i = 1, · · · , n. Note that the influence function generally only involves a rather small number of unknown

parameters, which is not dependent on Z. Let η̂ denote the consistent estimator for η. Generally, the above

asymptotic expansion is also valid with τi being replaced by τi(η̂). Now, (1.2) can be rewritten as

θ̂ − γ′
0

(
n−1

n∑
i=1

ξi

)
,

where ξi = (Ti − π)Zi/{π(1− π)}, i = 1, · · · , n. Then γ̂ in (1.1) is the minimizer of

n∑
i=1

(τi(η̂)− γ′ξi)
2. (2.1)

When the dimension of Z is not small, to obtain a stable minimizer, one may consider the following

regularized minimand:

Lλ(γ) =

n∑
i=1

(τi(η̂)− γ′ξi)
2 + λ|γ|,

where λ is the lasso tuning parameter (Tibshirani 1996) and | · | denote the L1 norm for a vector. For any

fixed λ, let the resulting minimizer be denoted by γ̂(λ). The corresponding augmented estimator and its
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6 L. TIAN ET AL.

variance estimator are

θ̂lasso(λ) = θ̂ − γ̂(λ)′

(
n−1

n∑
i=1

ξi

)

and

V̂lasso(λ) = n−2
n∑

i=1

{τi(η̂)− γ̂(λ)′ξi}2, (2.2)

respectively. When the dimension of Z is small relative to the sample size, one may ignore the variability

of γ̂(λ) and treat it as a constant when we make inferences about θ0. In general, however, for practical

sample sizes, θ̂lasso(λ) can be substantially biased partly due to the fact that γ̂(λ) and {ξi, i = 1, · · · , n}

are correlated. In Appendix B we show via a simple example this undesirable feature of the above estima-

tion procedure.

One possible solution to solve the above problem is to reduce the correlation between γ̂(λ) and ξi

using a cross validation procedure. Specifically, we randomly split the data into K non-overlapping sets

{D1, · · · ,DK} and construct an estimator for θ0 :

θ̂cv(λ) = θ̂ − 1

n

n∑
i=1

γ̂(−i)(λ)
′ξi,

where i ∈ Dki , γ̂(−i)(λ) is the minimizer of

∑
j /∈Dki

(τj(η̂(−i))− γ′ξj)
2 + λ|γ|,

and η̂(−i) is a consistent estimator for η with all data, but not from Dki . Note that γ̂(−i)(λ) and ξi are

independent and no extra bias would be added from θ̂cv(λ) to θ̂. When n ≫ p, the variance of θ̂cv(λ)

can be estimated by V̂lasso(λ) given in (2.2). However V̂lasso(λ) tends to underestimate its true variance

when p is not small.
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On the covariate-adjusted estimation for the treatment difference 7

Here, we utilize the above cross validation procedure to construct a natural variance estimator:

V̂cv(λ) = n−2
n∑

i=1

{τi(η̂(−i))− γ̂′
(−i)(λ)ξi}

2.

In Appendix C, we justify that this estimator is better than V̂lasso(λ). Moreover, when λ is close to zero

and p is large, that is, one almost uses the standard least square procedure to obtain γ̂(−i)(λ), the above

variance estimate can be modified slightly for improving its estimation accuracy (see Appendix C for

details). A natural “optimal” estimator using the above lasso procedure is θ̂opt = θ̂cv(λ̂), where λ̂ is the

penalty parameter value, which minimizes V̂cv(λ) over a range of λ values of interest.

3. APPLICATIONS

In this section, we show how to apply the new estimation procedure to various cases. To this end, we

only need to determine the initial estimate θ̂ for the contrast measure of interest and its corresponding first

order expansion in each application. Firstly, we consider the case that the response is continuous or binary

and the group mean difference is the parameter of interest. Here

θ̂ =
1

n

n∑
i=1

(Ti − π)Yi

π(1− π)
.

In this case, it is straightforward to show that

θ̂ − θ0 =
1

n

n∑
i=1

{
Ti(Yi − µ̂1)

π
− (1− Ti)(Yi − µ̂0)

1− π

}
+ op(

1√
n
),

where η = (µ1, µ0)
′, µ̂1 =

∑n
i=1 TiYi/πn, and µ̂0 =

∑n
i=1(1− Ti)Yi/(1− π)n.

Now, when the response is binary with success rate pj for the treatment group j, j = 0, 1, but θ0 =

log{p1(1− p0)/p0/(1− p1)}, then

θ̂ = log(p̂1)− log(1− p̂1)− log(p̂0) + log(1− p̂0),

Hosted by The Berkeley Electronic Press



8 L. TIAN ET AL.

where p̂1 =
∑n

i=1 TiYi/πn, and p̂0 =
∑n

i=1(1− Ti)Yi/(1− π)n. For this case,

θ̂ − θ0 =
1

n

n∑
i=1

{
(Yi − p̂1)Ti

πp̂1(1− p̂1)
− (Yi − p̂0)(1− Ti)

(1− π)p̂0(1− p̂0)

}
+ op(

1√
n
).

Lastly, we consider the case when Y is the time to a specific event, but may be censored by an

independent censoring variable. To be specific, we observe (Ỹ ,∆) where Ỹ = Y ∧ C, ∆ = I(Y < C),

C is the censoring time and I(·) is the indicator function. A most commonly used summary measure

for quantifying the treatment difference in survival analysis is the ratio of two hazard functions. The

two sample Cox estimator is often used to estimate such a ratio. However, when the proportional hazards

assumption between two groups is not valid, this estimator converges to a parameter which may be difficult

to interpret as a measure of the treatment difference. Moreover, this parameter depends on the censoring

distribution. Therefore, it is desirable to use a model-free summary measure for the treatment contrast.

One may simply use the survival probability at a given time t0 as a model-free summary for survivorship.

For this case, θ0 = P (Y > t0|T = 1)− P (Y > t0|T = 0) and θ̂ = Ŝ1(t0)− Ŝ0(t0), where Ŝj(·) is the

Kaplan-Meier estimator of the survival function of Y in group j, j = 0, 1. For this case, θ̂ − θ0

= n−1
n∑

i=1

[
−Ti

π
Ŝ1(t0)

∫ t0

0

dM̂i1(s)∑N
j=1 I(Ỹj > s)Tj

+
1− Ti

1− π
Ŝ0(t0)

∫ t0

0

dM̂i0(s)∑N
j=1 I(Ỹj > s)(1− Tj)

]
+op(

1√
n
),

where

M̂ij(s) = I(Ỹi 6 s)∆i −
∫ s

0

I(Ỹj > u)d
{
TiΛ̂1(u) + (1− Ti)Λ̂0(u)

}
,

and Λ̂j(·) is the Nelson-Alan estimator for the cumulative hazard function of Y in group j (Flemming &

Harrington 1991).

To summarize a global survivorship beyond using t-year survival rates, one may use the mean survival

time. Unfortunately, in the presence of censoring, such a measure cannot be estimated well. An alternative

is to use the so-called restricted mean survival time, that is, the area under the survival function up to time

http://biostats.bepress.com/harvardbiostat/paper132



On the covariate-adjusted estimation for the treatment difference 9

point t0. The corresponding consistent estimator is the area under the Kaplan-Meier curve. For this case,

θ0 = E(Y ∧ t0|T = 1)− E(Y ∧ t0|T = 0) and

θ̂ =

∫ t0

0

Ŝ1(s)ds−
∫ t0

0

Ŝ0(s)ds,

For this case, θ̂ − θ0

= n−1
n∑

i=1

[
−Ti

π

∫ t0

0

{ ∫ t0
s

Ŝ1(t)dt∑N
j=1 I(Ỹj > s)Tj

}
dM̂i1(s) +

1− Ti

1− π

∫ t0

0

{ ∫ t0
s

Ŝ0(t)dt∑N
j=1 I(Ỹj > s)(1− Tj)

}
dM̂i0(s)

]
+op(

1√
n
).

4. A SIMULATION STUDY

We conducted an extensive simulation study to examine the finite sample performance of the new esti-

mates θ̂cv(λ) and θ̂opt for θ0. Specifically, under various practical settings, we investigate whether V̂cv(λ)

estimates the true variance of θ̂cv(λ) well. Furthermore, we examine the finite sample properties for the

interval estimation procedure based on the optimal θ̂opt. For all cases studied, we find that the proposed

estimation procedure performs well. Moreover, although V̂lasso(λ) in (2.2) is an asymptotically consistent

estimator for the variance of θ̂cv(λ), we find that it can be substantially smaller than the true variance.

As a specific example in our numerical study, we consider the following models for generating the

data:

Y =
20∑
j=1

j

20
Z[j] +N(0, 1), for T = 0, and

Y = 1 +
20∑
j=1

j

20
Z[j] +N(0, 1), for T = 1,

where (Z[1], · · · , Z[100])
′ is generated from the standard multivariate normal distribution. Here, n =

200, p = 100 and the group mean difference θ0 = 1. For each generated data set, the 20-fold cross val-

idation is used to calculate θ̂cv(λ) and V̂cv(λ) over a sequence of tuning parameters {λ1, λ2, · · · , λ100},

Hosted by The Berkeley Electronic Press



10 L. TIAN ET AL.

where λ1 is chosen such that γ̂(λ1) = 0 for all the simulated data sets, {λ1, · · · , λ99} is a sequence of

values evenly decreasing from λ1 to λ99 = 10−3λ1 on the log scale, and λ100 = 0. In figure 1(a), we

present the empirical average for V̂cv(λ) (blue curve) and the empirical variance of θ̂cv(λ) (red curve)

based on 5000 replications, where the x-axis is the order of those 100 λ values. The empirical average

of V̂lasso(λ) is also presented (green curve). The figure shows on average V̂cv(λ) is almost identical to

the empirical variance of θ̂cv(λ). On the other hand, V̂lasso(λ) without using cross validation tends to

substantially under estimate the true variance.

In this same set of simulation, we also generate a binary response Y from the following logistic

regression model

P(Y = 1|T = 1) =
exp{1 +

∑20
j=1

j
20Z[j]}

1 + exp{1 +
∑20

j=1
j
20Z[j]}

, and

P(Y = 1|T = 0) =
exp{

∑20
j=1

j
20Z[j]}

1 + exp{
∑20

j=1
j
20Z[j]}

.

Here, n = 200, p = 100 and the log(odds ratio) is the parameter of interest. The results on variance

estimates are shown in Figure 1(b). Again, the variance estimator V̂cv(λ) behaves well, but not V̂lasso(λ).

Lastly, we simulate the survival time from the following Cox regression model

Y = ϵ0 exp

1 +
20∑
j=1

j

20
Z[j]

 , for T = 1, and

Y = ϵ0 exp


20∑
j=1

j

20
Z[j]

 , for T = 0,

where ϵ0 follows the unit exponential distribution. The censoring distribution is generated from U(0, 3),

which yields approximately 50% of censoring. Here, n = 200, p = 100 and the difference in mean sur-

vival time truncated at t0 = 2.2 is the parameter of interest. The simulation results on variance estimates

are shown in Figure 1(c). The V̂cv(λ) curve has almost no any meaningful difference from the “true”
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variance curve of θ̂cv(λ). Note that for the above three sets of simulation, we also find that θ̂cv(λ) almost

has no bias for estimating θ0 as expected.

We also examine the performance of the optimal estimator θ̂opt = θ̂cv(λ̂), where λ̂ is chosen to be the

minimizer of V̂cv(λ), λ ∈ {λ1, · · · , λ100}. First, with the above 5000 simulated data, one can obtain the

empirical variances of θ̂cv(λ). Let λ0 be the minimizer of the curve of such empirical variances over λ.

Then, for each set of the above simulation, we generated 5000 0.95 confidence intervals based on θ̂opt and

V̂opt = V̂cv(λ̂). We compute the corresponding empirical coverage level and the length. For comparisons,

we also obtain those values based on the simple estimator θ̂ and its variance estimate V̂ , and also based on

the cross validation estimation procedure with λ0. The results are summarized in Table 1. The coverage

levels for θ̂opt are close to the nominal counterparts and the interval lengths are almost identical to those

for the estimate with the true optimal λ0. On the other hand, the simple estimate θ̂ tends to have substantial

wider interval estimates that θ̂opt.

For all cases studied, the estimate θ̂opt is almost unbiased and can substantially improve the efficiency

of the simple estimate θ̂ for the overall treatment difference in terms of narrowing the length of the con-

fidence interval of θ0. Furthermore, the variability in λ̂ is almost negligible in making inference for θ0

based on θ̂cv(λ̂).

5. AN EXAMPLE

We illustrate the new proposal with the data from a clinical trial to compare D-penicillmain and placebo for

patients with primary biliary cirrhosis (PBC) of liver (Therneau & Grambsch 2000). The primary endpoint

is the time to death. The trial was conducted between 1974 and 1984. For illustration, we use the difference

of two restricted mean survival times up to t0 = 3650 (days) as the primary parameter θ0 of interest.

Hosted by The Berkeley Electronic Press



12 L. TIAN ET AL.

Moreover, we consider 18 baseline covariates for augmentation: gender, stage (1, 2, 3, and 4), presence of

ascites, edema, hepatomegaly or enlarged liver, blood vessel malformations in the skin, log-transformed

age, serum albumin, alkaline phosphotase, aspartate aminotransferase, serum bilirubin, serum cholesterol,

urine copper, platelet count, standardized blood clotting time and triglycerides. There are 276 patients with

complete covariate information (136 and 140 in control and D-penicillmain arms, respectively). The data

used in our analysis are given in the Appendix D.1 of Flemming & Harrington (1991). Figure 2(a) provides

the Kaplan-Meier curves for the two treatment groups. The simple two sample estimate θ̂ is 115.2 (days)

with an estimated standard error V̂ of 156.6 (days). The corresponding 95% confidence interval for the

difference is (-191.8, 422.1) (days). The optimal estimate θ̂opt augmented additively with the above 18

coavariates is 106.3 with an estimated standard error V̂opt of 121.4. These estimates were obtained via

a 23-fold cross validation (Note that 276 = 23 × 12) described in Section 2. The corresponding 95%

confidence interval is (-131.8, 344.4).

To examine how robust the new proposal is with respect to different augmentations. We consider a

case which includes the above 18 covariates, but also their quadratic terms as well as all their two-way

interactions. The dimension of Z is 178 for this case. The resulting optimal θ̂opt is 110.1 with an estimated

standard error of 122.6. Note the resulting estimates are amazingly close to those based on the augmented

procedure with 18 covariates only.

To examine the advantage of using the cross validation for the standard error estimation, in Figure 2(b),

we plot V̂cv(λ) and V̂lasso(λ) over the order of 100 λ’s, which were generated using the same approach

as in Section 4. Note that V̂lasso(λ) is substantially smaller than V̂cv(λ), especially when λ approaches to

0, that is, there is no penalty for the L2 loss function. For θ̂opt, V̂lasso is about 20% smaller than its cross

validated counterpart.

http://biostats.bepress.com/harvardbiostat/paper132



On the covariate-adjusted estimation for the treatment difference 13

It has been shown via numerical studies that the ZTD performs well via the standard stepwise regres-

sion by ignoring the sampling variation of the estimated weights when the dimension of Z is not large with

respect to n. However, it is not clear how the ZTD augmentation performs with a relatively high dimen-

sional covariate vector Z. It would be interesting to compare the ZTD and the new proposal with the PBC

data. To this end, we implement ZTD augmentation procedure using (1) baseline covariates (p = 18); (2)

baseline covariates and their quadratic transformations as well as all their two-way interactions (p = 178);

and (3) only five baseline covariates: edema and log-transformed age, serum albumin, serum bilirubin and

standardized blood clotting time, which were selected in building a multivariate Cox regression model to

predict the patient’s survival by Therneau & Grambsch (2000). Note that the ZTD procedure augments

the following estimating equations for θ0

n∑
i=1

(1− Ti)∆̃i

K̂0(Ỹi ∧ t0)
[Ỹi ∧ t0 − at0 ] = 0,

n∑
i=1

Ti∆̃i

K̂1(Ỹi ∧ t0)
[Ỹi ∧ t0 − at0 − θ] = 0,

where at0 is the restricted mean for the comparator and θ is the treatment difference, ∆̃i = I(Yi∧t0 < Ci)

and K̂j(·) is the Kaplan-Meier estimate for the survival function of censoring time C in group T = j, j =

0, 1. In Table 2, we present the resulting ZDT point estimates and their corresponding standard error

estimates for the above three cases. We used the standard forward stepwise regression procedure to select

the augmentation covariates with the entry Type I error rate of 0.10 (Zhang et al., 2008; Zhang & Gilbert,

2010). It appears that using the entire data set for selecting covariates and making inferences about θ0 may

introduce nontrivial bias and an overly optimistic standard error estimate when p is large. On the other

hand, the new procedure does not lose efficiency and yields similar result as ZTD procedure when p is

small.
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14 L. TIAN ET AL.

6. REMARKS

The new proposal performs well even when the dimension of the covariates involved for augmentation is

not large. The new estimation procedure may be implemented for improving estimation precision regard-

less of the marginal distributions of the covariate vectors between two treatment groups being balanced.

On the other hand, to avoid post ad hoc analysis, we strongly recommend that the investigators prespecify

the set of all potential covariates for adjustment in the protocol or the statistical analysis plan before the

data from the clinical study are unblinded.

The stratified estimation procedure for the treatment difference is also commonly used for improving

the estimation precision using baseline covariate information. Specifically, we divide the population into

K strata based on baseline variables, denoted by {Z ∈ B1}, · · · , {Z ∈ BK}, the stratified estimator is

θ̂str =

∑K
k=1 θ̂kwk∑K
k=1 wk

,

where θ̂k and wk are corresponding simple two sample estimator for the treatment difference and the

weight for the kth stratum, k = 1, · · · ,K. In general, the underlying treatment effect may vary across

strata and consequently the stratified estimator may not converge to θ0. If θ0 is the mean difference be-

tween two groups and wk is the size of the kth stratum, θ̂str is a consistent estimator for θ0. Like the

ANCOVA, the stratified estimation procedure may be problematic. On the other hand, one may use the

indicators {I(Z ∈ B1), · · · , I(Z ∈ BK)}′ to augment θ̂ to increase the precision for estimating the

treatment difference θ0.

In this paper we follow the novel approach taken, for example, by Zhang et al. (2008) for augmenting

the simple two sample estimator, but present a systematic, practical procedure for choosing covariates

for making valid inferences about the overall treatment difference. When p is large, there are several ad-
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vantages over other approaches for augmenting θ̂ with covariates. Firstly, it avoids the complex variable

selection step in two arms separately as proposed in Zhang et al. (2008). Secondly, compared with other

variable selection methods such as the stepwise regression, the lasso method directly controls the variabil-

ity of γ̂, which is important to ensure the validity of the statistical inference for the treatment difference.

When λ increases from 0 to +∞, the resulting estimator varies from the fully augmented estimator us-

ing all the components of Zi to θ̂. The lasso procedure also possesses superior computational efficiency

with high dimensional covariates to alternatives. Lastly, since the ZTD estimator can also be viewed as a

generalized method of moment estimator with

(
θ − θ̂0

n−1
∑n

i=1 ξi

)
≈ 0

as moment conditions (Hall 2005), the cross validation method introduced here may be extended to a

much broader context than the current setting.

It is important to note that if a permuted block treatment allocation rule is used for assigning patients

to the two treatment groups, the augmentation method proposed in the paper can be easily modified. For

instance, for the K-fold cross validation process, one may choose the sets {Dk, k = 1, · · · ,K} so that

each permuted block would not be in different sets.

For assigning patients to the treatment groups, a stratified random treatment allocation rule is also

often utilized to ensure a certain level of balance between the two groups in each stratum. For this case,

a weighted average θ0 of the treatment differences θk0 with weight wk, k = 1, · · · ,K, across K strata

may be the parameter of interest for quantifying an overall treatment contrast. Let θ̂k be the simple two

sample estimator for θk0 and ŵk be the corresponding empirical weight for wk. Then the weight average

θ̂ =
∑

k ŵkθ̂k/
∑

k ŵk is the simple estimator for θ0. For the kth stratum, one may use the same approach

as discussed in this paper to augment θ̂k, let the resulting optimal estimator be denoted by θ̂opt,k. Then we
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16 L. TIAN ET AL.

can use the weighted average
∑

k ŵkθ̂opt,k/
∑

k ŵk to estimate θ0. On the other hand, for the case with

the dynamic treatment allocation rules (see, for example, (Pocock & Simon 1975)), it is not clear how

to obtain a valid variance estimate even for the simple two sample estimator θ̂ (Shao et al. 2010). How

to extend the augmentation procedure to cases with more complicated treatment allocation rule warrants

further research.

7. APPENDIX

7.1 Appendix A: Asymptotical Equivalence Between ZTD and ANCOVA.

When the group mean is the parameter of interest, the naive estimator for θ0 can viewed as the root of the

estimating equation

n∑
i=1

(
Ti

1− Ti

)
S0(θ, a, Yi, Ti) =

n∑
i=1

(
Ti

1− Ti

)
(Yi − a− Tiθ) = 0,

where a = E(Y |T = 0) is a nuisance parameter. In the ZTD augmentation procedure, one may augment

this simple estimating equation via following steps

• Obtain the initial estimator (
θ̂
â

)
=

1

n

n∑
i=1

(
(Ti−π)Yi

π(1−π)
(1−Ti)Yi

1−π

)

from the original estimating equation

• Obtain β̂1 and β̂′
0 by minimizing the objective function

n∑
i=1

Ti{S0(θ̂, â, Yi, Ti)− β′
1Zi}2

and
n∑

i=1

(1− Ti){S0(θ̂, â, Yi, Ti)− β′
0Zi}2
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respectively. In other words, using β̂′
jZ to approximate E{S0(θ0, a0;Y, T )|Z, T = j}.

• Solve the augmented estimating equations

n∑
i=1

(
Ti

1− Ti

)
S0(θ, a, Yi, Ti)−

n∑
i=1

(Ti − π)

(
β̂′
1Zi

β̂′
0Zi

)
= 0

to obtain the ZTD estimator.

The resulting ZTD estimator is always asymptotically more efficient than the naive counterpart and a

simple sandwich variance estimator can be used to consistently estimate the variance of the new estima-

tor. It has been shown that ZTD estimator is asymptotically the most efficient one from the class of the

estimators

A =

{
θ̂γ = θ̂ − γ′

{
n−1

n∑
i=1

(Ti − π)Zi

π(1− π)

} ∣∣∣∣ γ ∈ Rp

}
,

whose members are all consistent for θ0 and asymptotically normal. Since

θ̂ − θ0 =
1

n

n∑
i=1

{
(Ti − π)Yi

π(1− π)
− θ0

}
,

the optimal weight minimizing the variance of

θ̂ − γ′ 1

n

n∑
i=1

(Ti − π)Zi

π(1− π)

is simply

[
E

{
(Ti − π)Zi

π(1− π)

}⊗2
]−1

E

[
(Ti − π)Zi

π(1− π)

{
(Ti − π)Yi

π(1− π)
− θ0

}]
=[E(Z⊗2

i )]−1E(ZiYi) = γ0

Therefore, ZTD estimator is asymptotically equivalent to the commonly used ANCOVA estimator. This

equivalence is noted in Tsiatis et al. (2008).
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7.2 Appendix B: An Example on the Potential Bias of ZTD Procedure

In this section we show via an example that if we estimate the weights γ with the entire data set and then

construct θ̂lasso(0) and ZTD estimator with the same data set, the resulting estimation procedure can be

substantially biased. To this end, we consider the following models to generate the data:

Y =

10∑
j=1

1− Z2
[j]

2
−

20∑
j=1

j

20
Z[j] +N(0, 1), for T = 0, and

Y =
10∑
j=1

Z2
[j] − 1

2
+

20∑
j=1

j

20
Z[j] +N(0, 1), for T = 1,

where (Z[1], · · · , Z[20])
′ is the 20-dimensional standard multivariate normal. We let the total sample size

be 200 with 1:1 random allocations. Here, the true parameter θ0 = 0. We construct θ̂lasso(0) and the ZTD

estimator. Based on 5000 simulated data sets from the above model, we obtain the average bias and the

standard error. The empirical bias of θ̂lasso(0) is -0.09, which is 24% of the empirical standard error. The

ZTD estimator is slightly more biased than θ̂lasso(0) with an empirical bias of -0.12, 31% of its empirical

standard error.

7.3 Appendix C: Justification of the cross validation based variance estimator for θ̂cv(λ)

To justify the cross validation based variance estimator, first consider the expansion

θ̂cv(λ) =

{
θ̂ − γ′

0

(
n−1

n∑
i=1

ξi

)}
− n−1

n∑
i=1

{γ̂(−i)(λ)− γ0}′ξi.

The variance of θ̂cv(λ) can be expressed as V11 + V22 − 2V12, where

V11 = E

{
θ̂ − γ′

0

(
n−1

n∑
i=1

ξi

)}2

,

V22 =
1

n2
E

[
n∑

i=1

{γ̂(−i)(λ)− γ0}′ξi

]2
,
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and

V12 =
1

n
E

[{
θ̂ − γ′

0

(
n−1

n∑
i=1

ξi

)}
n∑

i=1

{γ̂(−i)(λ)− γ0}′ξi

]
.

Firstly

V12 =
1

n2
E

[
n∑

i=1

(τi(η̂)− γ′
0ξi)

n∑
i=1

{γ̂(−i)(λ)− γ0}′ξi

]

≈ 1

n2

∑
i̸=j

E
[
(τi(η̂)− γ′

0ξi){γ̂(−j)(λ)− γ0}′
]
Eξj +

1

n2

n∑
i=1

E
[
(τi(η̂)− γ′

0ξi){γ̂(−i)(λ)− γ0}′ξi
]

≈ 1

n2

n∑
i=1

E{γ̂(−i)(λ)− γ0}′E [(τi(η̂)− γ′
0ξi)ξi] ≈ 0.

Therefore, the variance of the augmented estimator θ̂cv(λ) is approximately

V11 + V22

=
1

n

[
E{(τi(η̂)− γ′

0ξi)
2}+ E{(γ̂(−i)(λ)− γ0)

′ξi}2
]
+

(n− 1)

n
E[ξ′1{γ̂(−1)(λ)− γ0}ξ′2{γ̂(−2)(λ)− γ0}]

≈V̂cv(λ) +
(n− 1)

n
E[ξ′1γ̂(−1)(λ)ξ

′
2γ̂(−2)(λ)].

In our experience, d(λ) = E[ξ′1γ̂(−1)(λ)ξ
′
2γ̂(−2)(λ)] = O(n−2) is very small compared with V̂cv(λ) =

O(n−1) and is negligible, when λ is not close zero . Therefore, in general, V̂cv(λ) serves as a satisfactory

estimator for the variance of θ̂cv(λ). For small λ, to explicitly estimate d(λ), the covariance between

ξ′1γ̂(−1)(λ) and ξ′2γ̂(−2)(λ), one may use

d̂(λ) =
2(K2 − 1)

n(n− 1)K

∑
16i<j6n

ξ′i

{
K − 1

K
γ̂(−j)(λ)− γ̂(λ)

}
ξ′j

{
K − 1

K
γ̂(−i)(λ)− γ̂(λ)

}
(7.1)

as an ad-hoc jackknife-type estimator, where γ̂(λ) is the lasso solution based on the entire data set. To

justify the approximation, first note that when λ is close to zero,

γ̂(λ)− γ0 ≈
n∑

i=1

Υi and γ̂(−i)(λ)− γ0 ≈ K

K − 1

∑
i/∈Dki

Υi
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20 L. TIAN ET AL.

where Υi is the mean zero influence function from the ith observation for γ̂(λ). Therefore,

d(λ) = E[ξ′1γ̂(−1)(λ)ξ
′
2γ̂(−2)(λ)] ≈

(
1− 1

K2

)
E[ξ′1Υ2ξ

′
2Υ1],

which can be approximated by d̂(λ) and one may use V̂cv(λ) + (n− 1)d̂(λ)/n as the variance estimator

for the augmented estimator. Note that the difference between V̂cv and its modified version appears to be

negligible in all the numerical studies presented in the paper.
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Fig. 1. Comparing various estimates for θ̂cv(λ) at {λ1, · · · , λ100}: the empirical variance of θ̂cv(λ) (red curve);

V̂cv(λ) (blue curve); V̂lasso(λ) (green curve)
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(a) Estimated survival functions of D-penicillmain (red)
and placebo arms (black)
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(b) V̂cv(λ) (black) vs. V̂lasso(λ) (red)

Fig. 2. Analysis results for primary biliary cirrhosis data
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Table 1. The empirical coverage levels and lengths for the 0.95 interval estimation procedure based on θ̂opt and V̂opt

(EAL: empirical length; ECL: empirical coverage level)

θ̂opt θ̂ θ̂cv(λ0)
Response EAL ECL EAL ECL EAL ECL

Continuous 0.644 94.4% 1.578 95.4% 0.653 94.4%
Binary 0.946 94.7% 1.136 94.7% 0.954 94.9%

Survival 0.476 93.8% 0.626 94.4% 0.479 94.1%

Table 2. Comparisons between the new and ZTD estimate with the data from the Mayo Clinic Primary Biliary Cir-

rhosis clinical trial (SE: estimated standard error)

The new optimal procedure ZTD
p Estimate SE Estimate SE
5 92.0 121.5 96.3 119.4
18 106.3 121.4 126.4 111.7
178 110.1 122.6 65.3 114.6
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