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Loss-Based Cross-Validated
Deletion/Substitution/Addition Algorithms in

Estimation

Sandra E. Sinisi and Mark J. van der Laan

Abstract

In van der Laan and Dudoit (2003) we propose and theoretically study a uni-
fied loss function based statistical methodology, which provides a road map for
estimation and performance assessment. Given a parameter of interest which
can be described as the minimizer of the population mean of a loss function,
the road map involves as important ingredients cross-validation for estimator se-
lection and minimizing over subsets of basis functions the empirical risk of the
subset-specific estimator of the parameter of interest, where the basis functions
correspond to a parameterization of a specified subspace of the complete parame-
ter space. In this article we first review this approach. Then we propose a general
deletion/substitution/addition algorithm for minimizing over subsets of variables
(e.g., basis functions) the empirical risk of subset-specific estimators of the param-
eter of interest. In particular, in the regression context, this algorithm corresponds
to minimizing over subsets of variables the sum of squared residuals of the subset-
specific linear regression estimator. This algorithm provides us with a new class of
loss-based cross-validated algorithms in prediction of univariate and multivariate
outcomes, conditional density and hazard estimation, and we generalize it to cen-
sored outcomes such as survival. In the context of regression, using polynomial
basis functions, we study the properties of the deletion/substitution/addition algo-
rithm in simulations and apply the method to detect binding sites in yeast gene
expression experiments.



1 Introduction.

A dominating feature of statistical estimation and inference problems in ge-
nomics is that they involve parameter estimation for high-dimensional mul-
tivariate distributions, with typically unknown and intricate correlation pat-
terns among variables. Accordingly, statistical models for the data generating
distribution correspond to large parameter spaces. For instance, for the pre-
diction of clinical outcomes using whole genome microarray measures of gene
expression (i.e., thousands of gene expression measures), the parameter space
may consist of the set of all possible linear combinations of tensor products
of univariate (e.g., polynomial, wavelets, splines) basis functions of the ex-
planatory variables, in order to allow for arbitrary subsets of explanatory
variables and their functional form. Even if it were possible to minimize a
suitable empirical mean of a loss function (e.g., empirical mean of residual
sum of squared errors or log-likelihood) over the entire parameter space, the
resulting estimators would be too variable and ill-defined.

A unified framework to approach these problems and its theoretical foun-
dations are established in van der Laan and Dudoit (2003). This earlier
technical report proposes a unified loss function based methodology for esti-
mator construction, selection and performance assessment, and in particular
provides finite sample results and asymptotic optimality results concerning
v-fold cross-validation estimator selection for general data generating distri-
butions, loss functions (possibly depending on a nuisance parameter), and
estimators. These new theoretical results have the important practical im-
plication that cross-validation selection among many candidate estimators
can be used in intensive searches of large parameter spaces, even in finite
sample situations. In particular, it is shown that explicit estimators of the
type as presented in this article are minimax and adaptive to the truth due
to such aggressive searches among candidate estimators. Special cases and
applications are described in a collection of related articles: estimator se-
lection and performance assessment based on uncensored data (Dudoit and
van der Laan, 2003), estimator selection with right censored data (Keleş
et al., 2003), likelihood-based cross-validation (van der Laan et al., 2003),
tree-based estimation with censored data (Molinaro et al., 2003). An over-
all description of the estimation methodology with examples of the dele-
tion/substitution/addition algorithms as presented in this article and in the
context of histogram regression is available in (Dudoit et al., 2003).

Informally, the approach can be summarized as follows. First, one devel-
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ops an algorithm that is capable of adapting to the data completely, that is,
it is an algorithm that is capable of minimizing the empirical mean of the loss
function over an arbitrarily good approximation of the complete parameter
space. Due to the number of variables involved and limited sample size, the
non-parametric version of this algorithm is too variable: the estimator will
fit the data perfectly. Consequently, this algorithm must be indexed by a
number of “brakes,” which correspond to specified subspaces of the complete
parameter space. Natural collection of brakes are obtained by parameteriz-
ing the complete parameter space in terms of linear combinations of basis
functions, so that the choice of a basis, the number of basis functions, a
complexity measure of the basis functions, and a constraint on the vector of
coefficients (e.g., norm), provide natural choices for brakes. Based on our
cross-validation results, even when one implements a large number of brakes,
the resulting estimator will perform asymptotically exactly as well as the
estimator corresponding to the oracle selector of brakes. As a consequence,
the estimator adapts at an asymptotically increasing level to the truth when
more and more brakes are applied. In van der Laan and Dudoit (2003) this is
completely formalized in terms of a finite sample inequality and correspond-
ing asymptotics for a cross-validated adaptive ε-net estimator, which is of
the type described above, so that the constraint on the vector of coefficients
is discrete valued on a δ-grid, where δ represents the brake which needs to
be chosen by cross-validation.

Currently available algorithms used in (e.g.) regression are not aiming to
minimize empirical risk over specified parameter spaces (e.g, forward vari-
able selection, recursive partitioning in classification and regression trees,
(Breiman et al., 1984), multivariate adaptive regression splines, (Friedman,
1991; Hastie et al., 2001)). These algorithms do not adhere to the theoret-
ically validated estimation road map of Dudoit and van der Laan (2003),
which has motivated us to construct deletion/substitution/addition algo-
rithms which search aggressively over subsets of basis functions. These al-
gorithms aim to minimize over all allowed linear combinations of maximally
k basis functions, while one still selects k, among possibly other fine-tuning
parameters, with cross-validation.

Overview. In this article we will first define in detail (and discuss) the
general road map for loss-function based estimation. The fundamental in-
gredients are 1) defining subspaces of the parameter space, 2) minimizing
empirical risk of the loss function over each given subspace, and 3) using
cross-validation to choose among the candidate estimators. Subsequently,
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we propose a deletion/substitution/addition (D/S/A) algorithm for mini-
mizing empirical risk over a subspace (i.e., ingredient 2). In the context of
regression, we will study the performance of the D/S/A algorithm in terms of
asymptotically achieving the global minimum over the complete parameter
space and the properties of the resulting data adaptive estimator in simula-
tion studies. Finally, we apply the methodology to a yeast data set to detect
binding sites.

2 Unified loss-function based methodology.

In this section we will present a statistical framework which allows a uni-
fied treatment of the high dimensional estimation problems in genomics and
other fields. Let O1, . . . , On be n i.i.d. observations of O ∼ P0, where P0 is
known to be an element of a statistical model M. Let Ψ : M → D(S) be
a mapping, a so-called parameter, from the model M into a space of real
valued functions from a Euclidean set S ⊂ IRd, and let ψ0 = Ψ(P0) be the
true parameter value (i.e., a function). We will denote the parameter space
of this parameter with Ψ = {Ψ(P ) : P ∈ M} ⊂ D(S). Each parameter
value ψ : S → IR is a function from a certain d-dimensional Euclidean set
S ⊂ IRd to the real line. Note that the use of upper case Ψ and lower case
ψ allows us to distinguish between the mapping Ψ : M→ D(S) and actual
realizations of this mapping ψ, which are functions from S to the real line.

Estimators. Let Pn denote the empirical distribution of O1, . . . , On, where
Pn places probability 1/n on each realization Oi. Our goal is to use the sam-
ple to estimate the parameter ψ0 = Ψ(P0) of the unknown data generating
distribution P0. An estimator Ψ̂ is a mapping from empirical distributions to
the parameter space Ψ, and its realization will be denoted with ψ̂ = Ψ̂(Pn).
Note that estimators are viewed as algorithms one can apply to any empirical
distribution, not as the actual realizations at the observed Pn.

In the next subsection we will present the general road map for loss func-
tion based estimation (van der Laan and Dudoit (2003)), and then we will
discuss the ingredients of the road map, which will motivate the need for a
new class of algorithms as presented in this article.

3
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2.1 Estimation road map.

Our general road map for estimation is driven by the choice of loss function
and relies on cross-validation for estimator selection and performance assess-
ment. We will now describe the steps of this road map and illustrate them
with general examples.

Defining the parameter of interest in terms of a loss
function.

Let (O,ψ) → L(O,ψ) ∈ IR be a (loss) function which maps a candidate
parameter value ψ ∈ Ψ and observation O into a real number, whose expec-
tation is minimized at ψ0:

ψ0 = argminψ∈Ψ

∫
L(o, ψ)dP0(o) (1)

= argminψ∈ΨE0L(O,ψ).

We will adopt terminology from the prediction literature. The risk of a
candidate ψ ∈ Ψ is defined as EP0L(O,ψ), and we will refer to the function
ψ → E0L(O,ψ) as the risk function. The difference between the risk at ψ
and the minimal risk at ψ0 will be called the risk difference at ψ:

d(ψ, ψ0) ≡ E0{L(O,ψ)− L(O,ψ0)}.

The conditional risk of the estimator Ψ̂(Pn) (given Pn) is defined as∫
L(o, Ψ̂(Pn))dP0(o).

The marginal risk is the expectation of this conditional risk. Finally,
∫
L(o, Ψ̂(Pn))dPn(o)

is called the empirical risk estimator, which can be viewed as an estimator
of both conditional risk as well as marginal risk.

The estimation problem covers, in particular, multivariate regression and
multivariate density estimation. For example, if O = (Y,W ) ∼ P0, Y is an
outcome, W is a vector of covariates, ψ0(W ) = EP0(Y | W ) is the parameter
of interest, then we can set the loss function equal to the quadratic loss
function:

L(Y,W, ψ) = (Y − ψ(W ))2.

Note that for this choice of loss function d(ψ, ψ0) =
∫
(ψ(W )−ψ0(W ))2dP0(W ).
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Similarly, if O = (Y = (Y1, . . . , Yl),W ), Y is a multivariate random
outcome vector and W a vector of covariates, the multivariate conditional
expectation ψ0(W ) ≡ EP0(Y | W ) = (E0(Y1 | W ), . . . , E0(Yl | W )) is the
parameter of interest, then we can define the loss function as

L(O,ψ) ≡ (Y − ψ(W ))>η(W )(Y − ψ(W )),

where η is a symmetric l × l-matrix function of W . Note that for any sym-
metric matrix function η(W ) we have

ψ0 = argminψ∈ΨE0L(O,ψ). (2)

Here η could denote an approximation of an unknown matrix such as[
E0

(
{Y − E0(Y | W )}{Y − E0(Y | W )}> | W

)]−1
.

It is straightforward to show that for this choice of loss function we have
d(ψ, ψ0) =

∫
‖ η0.5(W )(Y − ψ(W )) ‖2 dP0(W ), where ‖ · ‖ denotes the Eu-

clidean norm of the l-dimensional vector (van der Laan and Dudoit (2003)).
If O ∼ f0 ≡ dP0

dµ
, where µ is a dominating measure of the data generating

distribution P0, ψ0 = f0 is the parameter of interest, then we can define the
loss function as

L(O,ψ) = − log(ψ(O)),

so that d(ψ, ψ0) =
∫

log(ψ0(O)/ψ(O))ψ0(O)dµ(O) is the Kullback-Leibler
divergence.

This same loss function applies to the case that O = (Y,W ), and ψ0 is the
conditional density of an outcome Y , given V , where V ⊂ W , but, obviously,
now the parameter space consists of conditional densities. Similarly, if the
parameter of interest is the conditional hazard λ0(· |W ) of a failure time Y ,
given W , then we can choose as loss function

L(O,ψ) = − log(ψ(Y | W )) +
∫ Y

0
ψ(u | W )dµ(u).

For this choice of loss function we have that

d(ψ, ψ0) =
∫

log(f0(O)/f(O))f0(O)dµ(O),

where f, f0 are the densities corresponding with the conditional hazards ψ, ψ0,
respectively. That is, the risk distance between the hazard and the true haz-
ard reduces to the Kullback-Leibler divergence for their corresponding den-
sities.

5
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Censored data. In censored data situations, we apply the general esti-
mating function methodology in van der Laan and Robins (2003) to map
the full, uncensored data loss function into an observed, censored data loss
function having the same expected value and leading to an efficient estima-
tor of this risk. We will present the details for the general right-censored
data structure in Section 6. The unified loss function based methodology in
van der Laan and Dudoit (2003) covers the censored data case as a special
case of loss functions L(O,ψ | υ) depending on a nuisance parameter Υ(P ),
where ψ0 = argminψ∈ΨE0L(O,ψ | υ0), and υ0 = Υ(P0) is the true nuisance
parameter value. In addition, van der Laan and Dudoit (2003) provide var-
ious general censored data examples and theorems specific to censored data
loss functions.

Selecting a sieve.

The minimum empirical risk estimator (e.g., maximum likelihood estimator
or least squares estimator in the examples above)

argminψ∈Ψ

∫
L(O,ψ)dPn(O)

might not be well defined and/or suffer from the curse of dimensionality. A
general approach advocated in the theoretical literature for dealing with this
problem is too construct a sequence of subspaces approximating the whole
parameter space Ψ, a so-called sieve, and select the actual subspace whose
corresponding minimum empirical risk estimator minimizes an appropriately
penalized empirical risk (Barron et al., 1999) or a cross-validated empirical
risk. In most multivariate algorithms used in practice (e.g., machine learning)
this approach is not followed closely in the sense that one uses algorithms
which do not aim to minimize empirical risk for specified subspaces.

We propose the following approach.

• Parameterize the parameter space Ψ in terms of a known transforma-
tion g(·) (e.g., identity, the logit function in binary classification, or the
exponential function in the Cox proportional hazards models, or more
general, multiplicative intensity models) of linear combinations of basis
functions:

Ψ =

g
∑
j∈I

β1jΦj,β2j

 : I ⊂ I, β

 ,
6
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where {Φj,β2j
: j} denotes a collection of basis functions, possibly in-

dexed by a parameter β2j, I is a particular finite or countable subset
of indices, I denotes the collection of indices of the allowed subsets
of basis functions, and β here ranges over Euclidean sets guarantee-
ing that the linear combinations are contained in the parameter space:∑
j∈I β1jΦj,β2j

∈ Ψ.

This class of parameterizations and corresponding sieves covers most
of the examples in the literature. In projection pursuit regression
one chooses Φj,β2j

(w) = Φj(β2jw), where β2jw =
∑d
l=1 β2j,lwl repre-

sents linear combinations of the original variables w and Φj are known
functions. In particular, single layer neural networks correspond with
Φj,β2j

(w) = Φ0(β2jw), where Φ0 is a known cumulative distribution
function, which is often called a sigmoidal function (see Ripley (1996),
Hastie et al. (2001)). We refer to Barron (1993) for universal approxi-
mation results for such neural networks.

Tensor products. In many examples the basis functions Φj are
not indexed by parameters β2j. A general class of basis functions
can be obtained as tensor products of univariate basis functions. Let
e1 = 1, e2, . . . be a collection of univariate basis functions such as the
polynomial powers (i.e., 1, x, x2, . . .), spline basis functions of fixed de-
gree with corresponding fixed set of knot points, or wavelet basis func-
tions. This choice of a class of basis functions can itself be indexed by a
continuous parameter (which can be chosen with cross-validation) such
as the smoothness degree of splines, width between the knot points of
the splines, or the smoothness degree of the wavelets. Given a vector
~p = (p1, . . . , pd) ∈ INd, let φ~p = ep1(W1)× . . .× epd

(Wd) denote the ten-
sor product of univariate basis functions identified by ~p. For instance,
if we use polynomial basis functions, then φ~p(W ) = W p1

1 . . .W pd
d . The

collection {φ~p : ~p} provides now a basis for the complete parameter
space Ψ: in particular, if ej, j = 1, . . ., is an orthonormal basis in
a Hilbert space (L2(λ), 〈·, ·〉λ), where 〈f, g〉λ =

∫
f(u)g(u)dλ(u), then

the corresponding tensor products provide an orthonormal basis w.r.t.
the corresponding Hilbert space for multivariate real valued functions
endowed with the inner product 〈ψ1, ψ2〉 =

∫
ψ1(s)ψ2(s)

∏d
j=1 dλ(sj).

In general, it appears that an index ~p ∈ INd (or INd1 for some integer
d1) provides a natural way of indexing basis functions for classes of

7
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d-dimensional real valued functions. For example, even in single layer
neural networks, we can define for each ~p ∈ {0, 1}d Φ~p,β2 = Φ0(β2~pw),
where β2~pw =

∑d
l=1 β2,lplwl, so that ~p indicates which of the d variables

can be used in the linear combination. This results in a parameteriza-
tion of single layer neural networks of the form

∑
~p∈I β1,~pΦ~p,β2,~p

. There-
fore, for concreteness of our D/S/A algorithm, in the remainder of this
article we will consider basis functions {Φ~p,β2~p

: ~p ∈ INd} indexed by
d-dimensional vectors of integers. Thus the index set I represents a set
of elements in INd.

For each index set I consisting of a collection of vectors ~p, let

ψI,β ≡ g

∑
~p∈I

β1,~pΦ~p,β2,~p


be the function in the parameter space corresponding to the variables
and model identified by I and β = (β~p = (β1~p, β2,~p) : ~p ∈ I). For a given
index set I, let BI = {β : ψI,β ∈ Ψ} be the corresponding parameter
space for β.

• Given this parameterization, one defines a collection of subspaces Ψs ⊂
Ψ, indexed by an s ranging over a set An possibly depending on sample
size. Such subspaces are obtained by restricting the subsets I of basis
functions to be contained in Is ⊂ I, and/or restricting the values for
the corresponding coefficients (β~p : ~p ∈ I) to be contained in BI,s ⊂ BI :

Ψs = {ψI,β : I ∈ Is ⊂ I, β ∈ BI,s ⊂ BI}.

For example, such a subspace could be defined as all linear combina-
tions of maximally s1 basis functions, where the “dimension” of each
basis function indexed by ~p, as measured by some function m(I) (e.g.,
number of terms in the tensor product defining the basis function), is
bounded by s2, and the norm of the β-vector is bounded by a value s3:

Ψs =

∑
~p∈I

β1,~pΦ~p,β2,~p
∈ Ψ :| I |≤ s1,max

~p∈I
m(I) ≤ s2, ‖ β ‖≤ s3

 . (3)

For example in the polynomial case allowingm(I) to be bivariate makes
sense where m1(I) =

∑d
j=1 I(pj 6= 0) is the number of non-zero compo-

nents in ~p and m2(I) =
∑d
j=1 pj, and ‖ ~β ‖≡ ∑

j | βj | is the Manhattan
norm of the coefficient vector.
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Additional subspaces are obtained by also varying the collection of basis
functions, where the additional different choices of basis functions do
not necessarily generate the complete parameter space. For example,
the above construction of subspaces can be carried out for polynomial
basis, wavelet basis with different degrees of smoothness, and linear
spline basis functions.

Construction of candidate estimators.

For each s ∈ An, compute (or approximate as best as one can) the minimizer
of the empirical risk over the subspace Ψs:

ψs(Pn) ≡ argminψ∈Ψs

∫
L(O,ψ)dPn(O).

This minimization problem is naturally split into two sequential steps. Given
each possible subset I ∈ Is of basis functions, compute the corresponding
minimum risk estimator of β:

β(Pn | I, s) ≡ argminβ∈BI,s

∫
L (O,ψI,β) dPn(O).

For example, in regression with g(x) = x and parameter-free basis functions
Φ~p, this corresponds to minimizing the sum of the squared residuals over
the linear regression model in the basis functions Φ~p indexed by ~p ∈ I. If
the basis functions are indexed by a parameter, then computing β(Pn | I, s)
corresponds to a non-linear minimization problem. For each I this results in
an estimator ψ̂I,s = ΨI,s(Pn) ≡ ψI,β(Pn|I,s).

Now, it remains to minimize the empirical risk over all allowed subsets
I ∈ Is of basis functions. Specifically, one needs to minimize the function
fE,s : Is → IR defined by

fE,s(I) ≡
∫
L (O,ΨI,s(Pn)) dPn(O). (4)

Suppose that s = (s1, s2), where s1 denotes the maximal number of basis
functions, and s2 represents the additional constraints to be fine-tuned (e.g.,
see example (3) above). Let

Is(Pn) ≡ argminI∈Is
fE,s(I)

be the minimizer. In Section 3 we propose a deletion/substitution/addition
algorithm, where one run of the algorithm for a fixed s2 seeks to calculate
Is1,s2(Pn) for all s1 = 1, . . ..

9

Hosted by The Berkeley Electronic Press



Selection among candidate estimators: Cross-validation.

This provides us now with the empirical risk minimizer ψ̂s = Ψ̂s(Pn) for each
choice of subspace s, where

Ψ̂s(Pn) = ΨIs(Pn),s(Pn) = ψIs(Pn),β(Pn|Is(Pn),s).

Finally, we select s with cross-validation. Let Bn ∈ {0, 1}n be a random
vector whose observed value defines a split of the observed data O1, . . . , On,
also called learning sample, into a validation sample and a training sample. If
Bn(i) = 0 then observation i is placed in the training sample and if Bn(i) = 1,
it is placed in the validation sample. The choice of distribution of Bn now
corresponds to different possible cross-validation schemes presented in the
literature such as v-fold cross-validation and Monte-Carlo cross-validation.
We will denote the empirical distribution of the data in the training sample
and validation sample with P 0

n,Bn
and P 1

n,Bn
, respectively. The proportion of

observations in the validation sample is denoted with p =
∑
iBn(i)/n. The

bootstrap cross-validation scheme can also be included by defining Bn(i) as
the number of times observation i occurs in the bootstrap sample, P 1

n,Bn
is

the empirical distribution of all Oi with Bn(i) > 0, and P 0
n,Bn

is the weighted
empirical distribution of the remaining sample with weights being the counts
Bn(i). The cross-validation selector of s is now defined as

s(Pn) ≡ argmins∈An
EBn

∫
L(O, Ψ̂s(P

0
n,Bn

))dP 1
n,Bn

(O)

= argmins∈An
EBn

1

np

n∑
i=1

I(Bn(i) = 1)L(Oi, Ψ̂s(P
0
n,Bn

)).

Our final estimator of ψ0 is given by ψ̂ = Ψ̂(Pn) ≡ Ψs(Pn)(Pn).
In case the loss function depends on a nuisance parameter υ0, as in the

right-censored data case presented in Section 6, then one also estimates the
nuisance parameter υ0 = Υ(P0) based on the training samples. That is, given
an estimator Υ̂ of the nuisance parameter υ0, we have

s(Pn) ≡ argmins∈An
EBn

∫
L(O, Ψ̂s(P

0
n,Bn

) | Υ̂(P 0
n,Bn

))dP 1
n,Bn

(O).

For the finite sample inequalities comparing the risk distance of the cross-
validation selected estimator with the risk distance of the estimator chosen by
the oracle selector s̃(Pn) ≡ argmins∈An

EBn

∫
L(O,ψs(P

0
n,Bn

))dP0(O), and its

10

http://biostats.bepress.com/ucbbiostat/paper143



asymptotic implications, we refer to van der Laan and Dudoit (2003) for re-
sults for general loss functions, and Dudoit and van der Laan (2003), van der
Laan et al. (2003) for the corresponding results in regression and likelihood
cross-validation. The practical message of these results is that for quadratic
(e.g., convex) uniformly bounded loss functions the cross-validation selector
performs as well in risk distance as the oracle selector up to a term smaller
than C log(K(n))/(np), while for non-quadratic loss functions, this last term

is replaced by C
√

log(K(n)/(np). Thus, as long as the number K(n) of es-

timators we consider is such that log(K(n))/(np) is of smaller order than
the actual minimal risk distance mins∈An d(ψ̂s, ψ0) of the candidate estima-
tors to ψ0, then the cross-validation selector is asymptotically equivalent (in
risk distance) to the oracle selector. That is, in estimation problems which
do not allow the parametric 1/

√
n-rate of convergence, the number K(n) of

candidate estimators can be a polynomial power in n.

2.2 Discussion of road map.

Note that the cross-validated D/S/A algorithm estimating ψ0, corresponding
to the above road map, is completely defined by the following choices: the
loss function; the basis functions φj defining the parameterization ψβ,I of
the parameter space; and the sets of deletion, substitution, and addition
moves which define the D/S/A algorithm (see Section 3). Consequently,
the road map provides a unified treatment of (e.g.) multivariate prediction
and density/hazard estimation based on either uncensored or censored data.
Each of these problems can be dealt with according to the road map by the
choice of a suitable loss function.

A number of commonly used estimation procedures chooses a particular
loss function in the full data situation and follows the road map up to a de-
gree, but depart completely from this type of loss function and the preferred
estimator selection procedure when faced with the obstacle of evaluating the
loss function in the presence of censoring (e.g., classification and regression
trees, where one “minimizes” empirical risk by recursive binary partitioning
of the covariate space, see Molinaro et al. (2003)).

We show in Section 6 that one can, and should, also adhere to the above
estimation road map in censored data situations. All that is required is to
replace the preferred full (uncensored) data loss function by an observed
(censored) data loss function with the same expected value, i.e., with the
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same risk.
We also would like to note that existing regression methods for creating

candidate estimators are not following the road map. In order to account
for higher-order interactions among many variables (e.g., thousands of gene
expression measures in microarray experiments), one needs to consider large
parameter spaces. Many standard approaches either only accommodate vari-
able main effects or are rigid in their search among candidate estimators. For
example, while regression trees (e.g., CART, (Breiman et al., 1984)) and mul-
tivariate adaptive regression splines (MARS, (Friedman, 1991)) allow inter-
actions among variables, the candidate estimators are generated according
to a limited set of moves, amounting to forward selection (node splitting)
followed by backward elimination (tree pruning). In neural networks the
current types of algorithms do not select data adaptively the dimension of
the linear-predictors and the number of linear predictors. Moreover, as we re-
marked before, such algorithms (e.g., neural networks, CART, MARS) just
correspond to a particular type of parameterization, which are not neces-
sarily the most suitable one for the true underlying regression, so that it is
advisable to select the actual parameterization (i.e., the basis functions) with
cross-validation as well.

2.3 The loss-based cross-validated D/S/A algorithm.

The estimation road map of Section 2.1 corresponds to an algorithm which
maps a set of arguments into the estimator Ψ̂(Pn). Given these arguments,
the D/S/A algorithm, which is described in Section 3, in particular tries to
minimize fE,s(I) [equation (4)] and seeks to calculate Is(Pn) ≡ argminI∈Is

fE,s(I)
for a given s.

In function notation, we refer to the cross-validated D/S/A algorithm as
CV − DSA(·) and it takes as arguments the following: (1) the choice of
loss function L(·); (2) the parameterization of the parameter space (choice of
basis), (I, β) → ψI,β; (3) a mapping from a constraint s to allowed subsets
of basis functions s→ Is; (4) a mapping from a constraint s and a subset of
basis functions I to the parameter space BI,s for β; (5) a set An of constraints
over which to search; (6) the cross-validation scheme; (7) what moves to use
(i.e. deletions, substitutions, and/or additions); and (8) the data or learning
set, Pn.

Let’s review these arguments in a general setting and then define the
arguments in the context of polynomial regression. Refer to Section 4 for the
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specified arguments used in the simulation studies.
The first step is to define the objective function in terms of a loss func-

tion (Argument 1). If we focus on the class of basis functions obtained by
using tensor products of univariate basis functions, then these univariate
basis functions can be, for example, polynomials, splines, or wavelets (Ar-
gument 2). Recall that for each index set I consisting of a collection of
vectors ~p = (p1, . . . , pd) ∈ INd, we have ψI,β which is a function in the pa-
rameter space identified by I and β. With this, we need to define s which
indexes a collection of subspaces Ψs ⊂ Ψ over a set An (Argument 3).
For example, Ψs = {ψI,β : I ∈ Is, β ∈ BI,s ⊂ BI}. To be more specific,
given a q-valued function m(I) = (m1(I), . . . ,mq(I)), Is can be defined as
Is = {I : m(I) ≤ s} where m1(I) ≤ s1, . . . ,mq(I) ≤ sq. For example,
m1(I) = |I| represents the number of tensor products or the size of the in-
dex sets, m2(I) = max~p∈I

∑d
j=1 I(pj 6= 0) represents the maximum order of

interaction of tensor products (the number of non-zero components in ~p),
and m3(I) = max~p∈I

∑d
j=1 pj represents the maximum sum of powers of ten-

sor products, etc. Furthermore, in addition to requiring that ψI,β ∈ Ψ,
we can define constraints on β where we are restricting β such that it
lies on a δ-grid, or limit its norm so that it is less than a specified value,
BI,s = {β ∈ IR|I| : ψI,β ∈ Ψ, ‖ β ‖≤ δs} (Argument 4). Next, we decide on
which sets we would like to search, An where s ∈ An (Argument 5).

The next step is to define the cross-validation scheme (Argument 6) to use,
whereby we have been using v-fold cross-validation so you can define the level
v under which to run v-fold cross-validation. Then we can define indicators
identifying whether or not to use deletion and/or substitution moves. If
Argument 7 is (1, 1), then this corresponds to using deletion and substitution
moves, which is what is done by the D/S/A algorithm. However, if we wanted
to run pure forward selection, then Argument 7 is (0, 0). Note that addition
moves are always made. Finally, we identify the data to be used (Argument
8).

In the context of polynomial regression, CV − DSA(·) always uses the
L2-loss function, polynomial basis functions, and v-fold cross-validation, that
is CV −DSA{loss = L2; basis = poly; . . . ; v = ·; moves = (1,1); data = Pn
}.

Note the distinction between DSA(·) and CV − DSA(·) where DSA(·)
finds the best subset I(Pn) for a given s as described in Box 1. While CV −
DSA(·) finds the best subsets for the set s on the training sample, evaluates
these best subsets on the validation sample which yields the cross-validation
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selector s(Pn), and then finds the best final subset on the learning sample
given s(Pn).

In the next section we describe our proposed D/S/A algorithm.

3 D/S/A algorithm for minimizing over sub-

sets of basis functions.

We propose an aggressive and flexible algorithm for generating a sequence of
index sets I, according to three types of moves for the elements of I: dele-
tions, substitutions, and additions. We refer to this general algorithm as the
Deletion/Substitution/Addition algorithm, or D/S/A algorithm. The main
features of this novel approach are summarized below for the case where the
index sets are subsets of INd (e.g., as is the case for tensor product basis
functions φj such as polynomial basis functions in polynomial regression).
Adaptations to histogram regression with partition-specific indicator basis
functions are provided in Molinaro and van der Laan (2004). Because Sec-
tion 4 implements the D/S/A algorithm by using tensor products of poly-
nomial basis functions, it is important to briefly mention what has been
said about polynomial bases. Barron and Xiao offer a description of polyno-
mial methods when discussing the multivariate adaptive regression splines,
or MARS, method of Friedman (1991, pg. 67-82). Barron and Xiao argue
that polynomial methods provide a computationally faster algorithm than
using spline bases, for example. They also refer to approximation results by
Canuto and Quarteroni (1982) which show that polynomial approximations
are adaptive to underlying smoothness, so that polynomial methods have a
higher rate of convergence than that of splines for classes of smooth functions
(see Barron (1989); Cox (1988); Canuto and Quarteroni (1982)).

To simplify notation, in this section we will suppress dependence of quan-
tities on s. Let I denote the collection of allowed index sets; in our road map,
I now plays the role of Is for a specified subspace indexed by s ∈ An. We
assume that s = (s1, s2), where s1 denotes the upper bound on the size of the
index sets (i.e, the number of basis functions allowed), while s2 represents
the remaining fine tuning parameters. The D/S/A algorithm below aims to
calculate Is1,s2(Pn) (see (3)) for each choice of s1, given s2. Thus, one only
has to carry out this algorithm for each value of s2 to obtain all optimal
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index set {Is1,s2(Pn) : s1, s2} and thereby our collection of s-specific estima-

tors Ψ̂s(Pn), s ∈ An. Throughout the remainder of this article, we use k to
represent s1 where s1 = |I| always and s2, . . . , sq can represent additional
constraints on the tensor products and vector of coefficients.

The D/S/A algorithm for minimizing over index sets I is defined in terms
of three functions, DEL(I), SUB(I), and ADD(I), which map an index set
I ∈ I of size k into sets of index sets of size k− 1, k, and k+ 1, respectively.

Deletion/Substitution/Addition moves.
Consider index sets I ⊂ INd and let I denote a collection of subsets of INd.
Deletion moves. Given an index set I ∈ I of size k = |I|, define a set
DEL(I) ⊂ I of index sets of size k− 1, by deleting individual elements of I.
This results in k possible deletion moves, i.e., |DEL(I)| = k.
Substitution moves. Given an index set I ∈ I of size k = |I|, define a
set SUB(I) ⊂ I of index sets of size k, by replacing individual elements
~p ∈ I by one of the 2d vectors created by adding or subtracting 1 to any
of the d components of ~p. That is, for each ~p ∈ I, consider moves ~p ± ~uj,
where ~uj denotes the unit d-vector with one in position j and zero elsewhere,
j = 1, . . . , d. This results in up to k × (2d) possible substitution moves, i.e.,
|SUB(I)| = k×(2d). In case the allowed index sets require that each ~p has at
most s2 non-zero components, then we propose to add to these substitution
moves the so called swap-substitution moves. The swap-substitution moves
correspond to adding or subtracting the unit vectors as above, but if that
results in a ~p with more than s2 non-zero components, then we replace it
by the s2 vectors one obtains by setting one of the (original) non-zero com-
ponents equal to zero. This augmentation of the set of substitution moves
results in maximally k × s2 × (2d) substitution moves.
Addition moves. Given an index set I ∈ I of size k = |I|, define a set
ADD(I) ⊂ I of index sets of size k+1, by adding to I an element of SUB(I)
or one of the d unit vectors ~uj, j = 1, . . . , d. This results in up to k× (2d)+d
(or k× s2× (2d) + d) possible addition moves, i.e., |ADD(I)| = k× (2d) + d.

Thus the substitution moves (excluding the swap-substitution moves) can
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be described as

SUB(I) →



(p1 + 1, p2, p3, . . . , pd)
(p1, p2 + 1, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd + 1)
(p1 − 1, p2, p3, . . . , pd)
(p1, p2 − 1, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd − 1)

for each ~p ∈ I, and the addition moves as adding ~pk+1 described by

ADD(I) =



(1, 0, . . . , 0)
...
(0, . . . , 0, 1)
(p1 + 1, p2, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd + 1)
(p1 − 1, p2, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd − 1)

Clearly, each of these sets DEL(I), SUB(I), and ADD(I) of possible
moves can be enlarged (or modified) to enforce this algorithm to search the
parameter space more aggressively, but our current results do not indicate
an obvious need for this.

Next, we describe how the three basic moves of the D/S/A algorithm can
be used to generate index sets Ik(Pn), that seek to minimize the empirical
risk function, fE(I), over all index sets I of size less than or equal to k,
k = 1, . . . , Kn (Box 1). In the context of general loss functions depending on
a nuisance parameter, the empirical risk of the I-specific estimator Ψ̂I(Pn)
(as defined in Section 2) is given by

fE(I) ≡
∫
L(o, Ψ̂I(Pn) | Υ̂(Pn))dPn(o) (5)

=
1

n

n∑
i=1

L(Oi, Ψ̂I(Pn) | Υ̂(Pn)),

where Υ̂(Pn) is an estimator of υ0 based on the whole learning sample. fE :
I → IR defines an empirical risk function.
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In the special case of the squared error loss function, with full data, the
empirical risk function is simply the mean squared error (cf. residual sum of
squares) for Ψ̂I(Pn)

fE(I) =
1

n

n∑
i=1

(Zi − Ψ̂I(Pn)(Wi))
2.

Denote the best (in terms of empirical risk) index set I of size less than
or equal to k, k = 1, . . . , Kn, by

I?k(Pn) ≡ argmin
{I:|I|≤k, I∈I}

fE(I).

The D/S/A algorithm below returns for each k, an index set Ik(Pn) that
aims to approximate (or equal) I?k(Pn).
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Deletion/Substitution/Addition algorithm for optimizing the empirical
risk function.

1. Initialization. Set I0 = ∅ and BEST (k) = ∞, k = 1, 2, . . ., where BEST (k)
represents the current lowest value of the objective function f = fE for index
sets I of size k. Let BEST.SET (k) represent the actual index sets so that
f(BEST.SET (k)) = BEST (k).

2. Algorithm (*). Let k = |I0|. Find an optimal updated index set I− of size
k−1, among all allowed deletion moves: I− ≡ argminI∈DEL(I0)f(I). If f(I−) <
BEST (k−1), then set I0 = I−, BEST (k−1) = f(I−), BEST.SET (k−1) = I0,
and go back to (*).

Otherwise, find an optimal updated index set I= of the same size k as I0, among
all allowed substitution moves: I= ≡ argminI∈SUB(I0)f(I). If this update
improves on I0, that is, f(I=) < f(I0), then set I0 = I=, BEST (k) = f(I=),
BEST.SET (k) = I0, and go back to (*).

Otherwise, find an optimal updated index set I+ of size k+1, among all allowed
addition moves: I+ ≡ argminI∈ADD(I0)f(I). Set I0 = I+. If this update
improves on I0, that is, f(I+) < f(I0), then set BEST (k + 1) = f(I+), and
BEST.SET (k + 1) = I0. Go back to (*).

3. Stopping rule. Run the algorithm until the current index set size k = |I0| is
larger than a user-supplied max. size or until f(I+) − f(I0) < ∆ for a user-
specified ∆ > 0. Denote the last set I by Ifinal(Pn).

Note that the D/S/A algorithm is such that BEST (k) is decreasing in k,
since addition moves only occur when they result in a decrease in risk over
the current index set size. Thus, the best subset of size k is also the best
subset of size less than or equal to k. We also note that this algorithm gives
priority to moves which make the fit smaller, and it avoids getting trapped
in a local maximum by always carrying out the addition move.

Unlike previously proposed forward/backward selection approaches, this
D/S/A algorithm performs an extensive search of the parameter space, truly
aimed at minimizing the empirical risk function over all index sets of a given
size.
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3.1 Simple example to illustrate D/S/A algorithm.

Consider the regression setting so that L(O,ψ) = (Y − ψ(W ))2, and sup-
pose that we parameterize each allowed regression function as linear com-
binations of tensor products of the polynomial powers. Suppose that W =
(W1, . . . ,W4) (i.e., d = 4) and that the current model (i.e., I0) in the D/S/A
algorithm is given by Y = W1W2W3 + W2W

5
4 . Note that the current size

is k = 2, the corresponding indices are ~p1 = (1, 1, 1, 0), ~p2 = (0, 1, 0, 5), and
I0 = {~p1, ~p2}.

A deletion move simply means removing one of the terms of the current
model and fitting a model of size k − 1. Thus, the deletions set, DEL(I0),
contains two index sets of size k = 1

DEL(I0) =
{
{~p1}, {~p2}

}
=
{
{(1, 1, 1, 0)}, {(0, 1, 0, 5)}

}
.

The substitution moves involve replacing the jth term for j = 1, . . . , k
with a new term, keeping the size of the model fixed at k. The possible
substitution moves are given by:

SUB(I0) =



W 2
1W2W3 +W2W

5
4 ~p1 = (2, 1, 1, 0)

W1W
2
2W3 +W2W

5
4 ~p1 = (1, 2, 1, 0)

W1W2W
2
3 +W2W

5
4 ~p1 = (1, 1, 2, 0)

W1W2W3W4 +W2W
5
4 ~p1 = (1, 1, 1, 1)

W2W3 +W2W
5
4 ~p1 = (0, 1, 1, 0)

W1W3 +W2W
5
4 ~p1 = (1, 0, 1, 0)

W1W2 +W2W
5
4 ~p1 = (1, 1, 0, 0)

W1W2W
5
4 +W1W2W3 ~p2 = (1, 1, 0, 5)

W 2
2W

5
4 +W1W2W3 ~p2 = (0, 2, 0, 5)

W2W3W
5
4 +W1W2W3 ~p2 = (0, 1, 1, 5)

W2W
6
4 +W1W2W3 ~p2 = (0, 1, 0, 6)

W 5
4 +W1W2W3 ~p2 = (0, 0, 0, 5)

W2W
4
4 +W1W2W3 ~p2 = (0, 1, 0, 4)

We also note that, if the total number of terms in the tensor products is
bounded by s2 = 3, then the substitution move which would not be allowed,
W1W2W3W4 +W2W

5
4 , would be replaced by these swap moves: W2W3W4 +

W2W
5
4 , W1W3W4 +W2W

5
4 , W1W2W4 +W2W

5
4 .
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If none of these substitution moves improve RSS, then the D/S/A algo-
rithm finds the best fit among the following addition moves:

ADD(I0) =



W1 +W1W2W3 +W2W
5
4 ~p3 = (1, 0, 0, 0)

W2 +W1W2W3 +W2W
5
4 ~p3 = (0, 1, 0, 0)

W3 +W1W2W3 +W2W
5
4 ~p3 = (0, 0, 1, 0)

W4 +W1W2W3 +W2W
5
4 ~p3 = (0, 0, 0, 1)

W 2
1W2W3 +W1W2W3 +W2W

5
4 ~p3 = (2, 1, 1, 0)

W1W
2
2W3 +W1W2W3 +W2W

5
4 ~p3 = (1, 2, 1, 0)

W1W2W
2
3 +W1W2W3 +W2W

5
4 ~p3 = (1, 1, 2, 0)

W1W2W3W4 +W1W2W3 +W2W
5
4 ~p3 = (1, 1, 1, 1)

W2W3 +W1W2W3 +W2W
5
4 ~p3 = (0, 1, 1, 0)

W1W3 +W1W2W3 +W2W
5
4 ~p3 = (1, 0, 1, 0)

W1W2 +W1W2W3 +W2W
5
4 ~p3 = (1, 1, 0, 0)

W1W2W
5
4 +W1W2W3 +W2W

5
4 ~p3 = (1, 1, 0, 5)

W 2
2W

5
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 2, 0, 5)

W2W3W
5
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 1, 1, 5)

W2W
6
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 1, 0, 6)

W 5
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 0, 0, 5)

W2W
4
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 1, 0, 4)

4 Simulations.

A variety of simulations were conducted to see how the algorithm performs
in different settings. The D/S/A algorithm first is implemented without
constraints (brakes), and using the notation of Section 2.3, we are running
DSA{loss = L2; basis = poly; m(I) = {m1(I)}; βI,s = everything; k = ∞;
v = NULL; moves = (1,1); data = P∞}. In all of the simulations, we are not
placing additional constraints on β. m1(I) = |I| and we are not restricting
the number of tensor products (k = ∞). We therefore are not concerned with
using cross-validation to select k. We are running DSA(·) until we reach a k
that gives a minimal residual sum of squared errors (RSS). Next, the cross-
validated D/S/A algorithm is implemented with a cross-validated constraint
placed on the number of tensor products in the regression, i.e., selecting k via
cross-validation. Let DSA1-CV be defined by CV −DSA{loss = L2; basis
= poly; m(I) = {m1(I)}; βI,s = everything; k = {1, . . . , Kn}; v = {2, 5, 10};
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moves = (1,1); data = Pn }. This means that we are running CV −DSA(·)
under 2, 5, and/or 10-fold cross-validation where we are using cross-validation
to select the number of tensor products (m1(I)). β is unrestricted as usual.
The algorithm will yield candidate estimators of size k = 1, 2, . . . , Kn based
on the training sample. Then we find amongst the estimators of size k the
one that gives the minimal cross-validated risk over the v validation samples.
Using the k̂ obtained via cross-validation, find the final estimator of size k̂ on
the learning sample. Note that the specific preset options forKn and v will be
given for each individual simulation study. The cross-validated D/S/A algo-
rithm (DSA1-CV ) is then compared to: the R function stepAIC(), forward
selection with cross-validation (fscv), and logic regression. Finally, the algo-
rithm which places a second brake on the complexity of each tensor product
(m2(I) = max~p∈I

∑d
j=1 I(pj 6= 0); m2(I) ≤ s2) and thereby incorporates the

swap-substitution moves is implemented (DSA2-CV ) and used in the logic
regression comparisons. Let DSA2-CV be defined by CV −DSA{loss = L2;
basis = poly; m(I) = {m1(I),m2(I)}; βI,s = everything; s1 = {1, . . . , Kn},
s2 = {1, . . .}; v = {2, 5, 10}; moves = (1,1); data = Pn }. Selecting s2 via
cross-validation is used in Section 5.

In each of the simulations, an n × d covariate matrix, W , is generated
from a given probability distribution, e.g. normal, uniform, Bernoulli. The
true mean linear polynomial regression model, E(Y |W ), is either manually
or randomly generated with the details described for each simulation. The
outcome Y is then generated from the true mean linear polynomial regression
model with no noise or a Gaussian noise with mean 0 and standard deviation
σ. The D/S/A algorithm is then used to minimize fE,s(I), and the procedure
may be repeated a number of times.

4.1 Implementation without constraints.

The first set of simulations explore the performance of the D/S/A algorithm
itself. Therefore, cross-validation is not yet employed, and the D/S/A algo-
rithm is run on the learning set without using cross-validation to select the
size k.

The purpose of these simulations is to establish to what degree the D/S/A
algorithm is truly capable of finding the global minimum (i.e., the optimal
predictor W → ψ0(W ) = E0(Y |W )) when n is large enough. In the following
simulations, the true regression model is randomly generated where the first
set of simulations, Table 1, uses a relatively simpler true model compared to
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the second set of simulations, Table 2.

4.1.1 Simple True Regression Models.

The protocol of this simulation can briefly be described as follows:

1. Generate the covariate matrix Wn,d of n i.i.d. observations of d vari-
ables Wi, i = 1, . . . , d using either a uniformly distributed distribution
between 0 and 1 or a Bernoulli distribution with a fixed or random
probability of event.

2. Randomly define the true polynomial regression model, E(Y |W ), such
that the number of terms in the regression along with the variables
used and the degree with which they enter the regression model is
random. Specifically, E[Y |W ], is a sum of tensor-product polynomial

basis functions: Y =
size∑
s=1

βs
d∏
j=1

W
ps(j)
j + ε, E(ε|W ) = 0. ps(j) is the

jth element of ~ps and is used to identify each basis function. The true
regression is randomly generated as follows:

size ∼ U{1, . . . , 5}
d∑
j=1

ps(j) ∼ U{1, . . . , 5}

~ps ∼ Multinomial(
∑d
j=1 ps(j), d, (

1
d
, . . . , 1

d
))

An example of a true regression used in a particular simulation (see
Table 1) when d = 5 is:

E[Y |W ] = W0W
2
1W

2
2 +W0W1W

2
2W3 +W 3

2 +W 4
4

3. Generate the outcome Y using the previously randomly generated true
regression model with no noise, ε = 0.

4. Use the D/S/A algorithm to minimize over I the residual sum of
squared errors for the I-specific least squares estimator.

5. Repeat this procedure up to nreps = 1000 times. Report the mean of
the proportion of correctly fitted terms among the terms in the true
regression or the sensitivity, the mean of the proportion of correctly
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fitted terms among the terms in the fitted regression model or the
specificity, and the mean residual sum of squares of the regression fit
selected by DSA(·) over the nreps iterations, RSS.

Using the notation of Section 2.3, we are running DSA{loss = L2; basis
= poly; m(I) = {m1(I)}; βI,s = everything; k = ∞; v = NULL; moves =
(1,1); data = P∞} in this initial set of simulations. Some of the numerical
results obtained from this simulation are given in Table 1. Again, the idea
of these simulations is to see if the D/S/A algorithm can get to the truth.
The results indicate that in each case the algorithm succeeded in minimizing
fE,s(I), RSS = 0 (col 7, table 1). Both sensitivity and specificity of DSA(·)
is 100% (cols 5-6, table 1), indicating that the algorithm is successful in
fitting true simple regressions in the case of zero error which corresponds to
choosing a very large sample size. These results are encouraging and led to
further exploration of the algorithm’s capabilities.

W n d nreps sens spec RSS
U(0, 1) 1000 5 1000 100% 100% 0.0000
U(0, 1) 1000 100 500 100% 100% 0.0000
Bernoulli(random) 1000 5 100 100% 100% 0.0000
Bernoulli(random) 2000 10 100 100% 100% 0.0000
Bernoulli(random) 1000 25 100 100% 100% 0.0000
Bernoulli(0.6) 500 5 100 100% 100% 0.0000
Bernoulli(0.6) 500 25 100 100% 100% 0.0000

Table 1: Zero error added to the true simple model. DSA{loss = L2; basis
= poly; m(I) = {m1(I)}; βI,s = everything; k = ∞; v = NULL; moves =
(1,1); data = P∞}. nreps: number of repetitions, sens: average sensitivity
across the number of repetitions, spec: average specificity across the number
of repetitions, RSS: average residual sum of square of fitted model across
the number of repetitions.

4.1.2 Not as Simple True Regression Models.

To convince ourselves that the estimator is truly consistent non-parametrically,
this set of simulations involves examples where the true model is more com-
plicated. The simulation protocol is similar, though not identical, to the
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previous one: Wn,d is generated from either a uniform or normal probability
distribution, with d = 100 in all cases. The true regression model again is
randomly generated, but now we have increased both the size and the allowed
complexity of each tensor product such that:

size ∼ U{1, . . . , 10}
d∑
j=1

ps(j) ∼ U{1, . . . , 20}

The outcome Y again is generated with no added noise, and the proce-
dure is run only once with RSS ≤ 0.000001 used as a stopping criterion.

The following four true regression models were generated:

E1[Y |W ] = W1W12W
2
13W22W24W54W79W83W95

+W15W18W37W42W68 +W6W22W
3
33W40W58W75W82W87

+W15W31

E2[Y |W ] = W7W25W31W59W63W68W70W83W88W98

+W0W32W47W54W66W72W73W77 +W82 +W7W49W55W73W80

+W33W40 +W18W21W40W56W59W71W91

+W9W13W18W20W41W53W69W95

+W3W38W78W96 +W0W20W64W88W91W96

+W2W6W16W37W45W46W61W68W91W95

E3[Y |W ] = W0W
2
1W2W

2
3W4 · · ·W98W

2
99

E4[Y |W ] = W0W
2
1W

4
4W

10
99 +W45

+W 2
2W8W14W20W22W29W36W39W41W44W48W56W62W63W65W87

+W27W48W63W77W78W93W94 +W71

+W12W18W22W44W50W55W57W64W
2
73W80W83W93W94W96

+W69W91 +W2W4W22W23W28W36W53W79W88 +W48W70W82W97

+W3W24W29W54W64W80

The true model is selected in the first three cases (col 5, rows 1-3, table 2),
but in the third case the stopping criterion is reached before the algorithm
has the chance to fit the correct 10 tensor products. It did manage to fit 80%
of the true terms (col 5, row 3, table 2) but achieved an RSS equal to that
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of our stopping criterion with a fitted model of 11 terms.

E[Y |W ] W n d sens spec RSS
E1[Y |W ] U(0, 1) 1000 100 100% 100% 0.000000
E2[Y |W ] U(0, 1) 1000 100 100% 100% 0.000000
E3[Y |W ] N (1.1, 0.1) 5000 100 100% 100% 0.000000
E4[Y |W ] U(0, 1) 1000 100 80% 73% 0.000001

Table 2: Zero error added to the true complex model. DSA{loss = L2; basis
= poly; m(I) = {m1(I)}; βI,s = everything; k = ∞; v = NULL; moves =
(1,1); data = P∞}. sens: sensitivity, spec: specificity, RSS: residual sum of
square of fitted model.

The next step is to see what happens when some noise is added to these
regression models. We used a normal distribution with mean 1 and standard
deviation 0.5 to generate Wn,d for E5[Y |W ] and E6[Y |W ]. The outcome Y is
generated from the randomly chosen true regression model with zero error or
Gaussian error with mean 0 and standard deviation 1. These too were run
only once.

The following two models were generated, first with ε = 0 and then with
ε ∼ N (0, 1).

E5[Y |W ] = W0W
2
1W

2
2 +W0W1W

2
2W3 +W 3

2 +W 4
4

E6[Y |W ] = W0 +W0W49W99 +W 5
24 +W17W30W53W62W78W88

Table 3 displays the results of this simulation which compares two models
with zero error and a Gaussian error. The truth was identified in all cases
where ε = 0 or ε ∼ N (0, 1). The number of moves the algorithm needed to
make in order to converge are displayed as well for this simulation. Based
on Table 3, a large number of covariates does not affect the convergence rate
since the number of moves performed when d = 100 is less than the number
of moves performed when d = 5.
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E[Y |W ] n d sens spec RSSn RSS0 moves subs adds dels

E5[Y |W ] 1000 5 100% 100% 0.0000 0.0000 30 22 6 2
E5[Y |W ]∗ 1000 5 100% 80% 1.074 1.080 30 23 6 1
E6[Y |W ] 1000 100 100% 100% 0.0000 0.0000 21 17 4 0
E6[Y |W ]∗ 1000 100 100% 100% 0.9576 0.9572 21 17 4 0

Table 3: Comparing ε = 0 and ε ∼ N (0, 1)∗. DSA{loss = L2; basis = poly;
m(I) = {m1(I)}; βI,s = everything; k = ∞; v = NULL; moves = (1,1); data
= P∞}. sens: sensitivity, spec: specificity, RSSn: RSS/(n − b) represents
the estimate of the variance of the error where b is the number of independent
variables in fitted model, RSS0: true variance of the error, moves : number
of moves made by the algorithm, subs : number of substitution moves made,
adds : number of addition moves made, dels : number of deletion moves made,
*: indicates the model for which ε ∼ N (0, 1).

4.2 D/S/A algorithm with cross-validated size versus
the stepAIC() function in R.

The next set of simulations address the performance of cross-validation in
making sure that the algorithm does not select too many variables, and
thereby over-fits, by comparing it to the R function stepAIC().

Before describing the simulation protocol, let’s review how cross-validation
fits into the D/S/A algorithm. CV − DSA(·) yields a sequence of models
of size k = 1, another sequence of models of size k = 2, . . . , and finally a
sequence of models of size k = Kn. Given the “best” model of each size for
sizes ranging from k = 1 to k = Kn, calculate the cross-validated risk for
each model, and then choose the best (i.e. the model with the minimal cross-
validated risk) size via cross-validation. We are using v-fold cross-validation
to split the sample. Recall that we defined a random vector Bn ∈ {0, 1}n for
splitting the sample into a validation and a training sample:

Bn(i) =

 0 if ith observation is in the training sample

1 if ith observation is in the validation sample

Let P 0
n,Bn

, P 1
n,Bn

be the empirical distributions of the training and valida-
tion sample, respectively.

• Run the algorithm on the training sample and obtain Ψ̂k(P
0
n,Bn

) for
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k = 1, . . . , Kn (Note: k = |I|).

• Given Ψ̂k(P
0
n,Bn

), compute the risk on the validation sample and choose

k̂ such that:

k̂ ≡ argminkEBn

∫
L(O, Ψ̂k(P

0
n,Bn

))dP 1
n,Bn

(O)

• For example, in these regression simulations, k̂ ≡ ∑
i:Bn(i)=1

{Yi−Ψ̂k(P
0
n,Bn

)}2.

• Our final estimator of ψ0 is given by ψn = Ψ̂(Pn) ≡ Ψk̂(Pn).

With that in mind, the simulation protocol is:

1. Generate the covariate matrixWn,d of n i.i.d. observations of d variables
Wi, i = 1, . . . , d from a uniformly distributed distribution between 1
and 10.

2. Manually generate the following three true regression models:
E1[Y |W ] = W1 +W 2

2

E2[Y |W ] = W1W3

E3[Y |W ] = W1W3 +W 2
5 +W7W10

3. Generate the outcome Y using the previously randomly generated true
mean regression model with Gaussian error with mean 0 and standard
deviation 1.

4. Let DSA1-CV be defined by CV − DSA{loss = L2; basis = poly;
m(I) = {m1(I)}; βI,s = everything; k = {1, . . . , 10}; v = 2; moves
= (1,1); data = Pn }. The procedure is run once with DSA1-CV
and stepAIC. Report the final size of the fitted model chosen by each
method, k̂, and an estimate of the true risk, r̂.

The D/S/A algorithm creates variables data-adaptively and therefore
does not require enumeration of all potential variables. StepAIC does re-
quire enumeration of all variables. To compare the two black-box algorithms
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(data → predictor), we enumerated all main terms, squared terms, and pair-
wise interactions. This is a preliminary simulation to compare the D/S/A
algorithm with a cross-validated constraint on the size of the model with the
forward selection algorithm (enumerating all terms) using AIC to select the
size of the model. (In Section 4.3, we will compare our DSA1-CV algorithm
to forward selection with cross-validation.) For this simulation, we are inter-
ested in whether or not each method fits the true model and the true risk of
the selected model. The true risk is estimated by setting aside a large sample
of independent observations, a test set, and calculating the risk based on the
fitted model on this set of observations. In this particular case, a test set of
size 20,000 was used to estimate the true risk.

In the first simulation (row 1, table 4), both our method and stepAIC

selected the exact true model. However, in the next two simulations (rows
2-3, table 4), our method fitted the truth exactly while stepAIC heavily
over-fitted the model (col 4, table 4). The over-fitting did not hurt the
risk estimate because the estimated risk from the fitted model produced by
stepAIC is nearly the same as the estimated risk given by our method’s fitted
model.

E[Y |W ] n d k̂AIC k̂DSA1−CV r̂AIC r̂DSA1−CV
E1[Y |W ] 5000 3 2 2 0.9963 0.9963
E2[Y |W ] 5000 10 19 1 0.9995 0.9932
E3[Y |W ] 5000 10 22 3 1.0174 1.0106

Table 4: Comparing stepAIC to DSA-CV algorithm with cross-validated con-
straint on size under 2-fold cross-validation. k̂: size of the final fitted model
for each method, r̂: estimate of the true risk, based on 20,000 independent
observations, of the final model chosen by both methods.

4.3 Comparison to forward selection with cross-validation.

These simulation studies (Tables 5 - 7) compare the D/S/A algorithm, such
that DSA1-CV is defined by CV − DSA{loss = L2; basis = poly; m(I) =
{m1(I)}; βI,s = everything; k = {1, . . . , 10}; v = {2, 5, 10}; moves = (1,1);
data = Pn }, to a type of forward selection with cross-validation (fscv) algo-
rithm. The forward selection algorithm makes all the same addition moves as
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our method but does not carry out the deletion and substitution moves. Let
fscv be identified by CV −DSA{loss = L2; basis = poly; m(I) = {m1(I)};
βI,s = everything; k = {1, . . . , 10}; v = {2, 5, 10}; moves = (0,0); data =
Pn}.

In the first simulation, Table 5, the true model is y =
∑5
j=1 cjw

2j + ε,
where w ∼ U(−1, 1), ε is normal with mean 0 and standard deviation 0.25,
and cj = 1/j2. This is a difficult regression problem because it involves a
covariate which is symmetric and narrowly spread about zero and coefficients
in the range of 0.04 to 1, rendering a relatively low signal-to-noise ratio.

The risks (col 4, table 5) are roughly similar for both methods. For n =
500 and n = 1000, fscv has a better risk than DSA1-CV. Both methods have
poor sensitivity and can fit a model different from the truth but with a low
risk estimate. DSA1-CV has greater specificity in this particular simulation.

The second simulation, Table 6, has the same true model as that of the
previous simulation, but w ∼ U(−3, 3) and ε is normal with mean 0 and
standard deviation 1. This is an extreme simulation in the sense that when
w = 3, c5w

10 gives a relatively large value for y. A plot of the data would
show occasional extreme values for y where y ∈ [−4×1010, 4×1010] with the
majority centered on 0.

fscv yields models that are too big. It always picks a model of size 10,
where 10 is the preset maximal allowed terms for all methods. Because it
is picking such a large model, it has a sensitivity of 100%, but a specificity
of 50%. And naturally, a large model will have a low risk estimate. If
the maximal allowed number of terms was set to 5 instead of 10 (i.e., if the
argument k was set to {1,. . . ,5} instead of {1,. . . ,10}), then fscv, for example
when n = 1000 and v = 2, yields a mean risk estimate of 17841, an average
size of 4.5, 40% sensitivity, and 45% specificity. The D/S/A algorithm is
more aggressive than the fscv algorithm, and it is trying to fit the extreme
observations which occur on occasion. DSA1-CV always tries to fit a model
of about size 5 (col 6, table 6), where the truth contains five terms. But
when it tries to fit extreme values, it results in a poor estimator. The true
risk estimates are very spread out (col 5, table 6). For example, the median
risk estimate when n = 1000 and v = 10 is 4.051 while the mean is 765. The
aggressiveness of the D/S/A algorithm leads to variable estimators when it
is trying to account for outliers, or extreme observations, which occur in this
particular simulation.

The true model, for the third simulation (Table 7), is y = 4w + 3w3 −
2w5 + ε, where w ∼ U(1, 5), ε is normal with mean 0 and standard deviation
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1, and y ∈ (−6000, 8). The fscv algorithm, naturally, picks a model with
about 5 or more terms, not having the deletion or substitution step to get
rid of terms involving even powers, and thus has a sensitivity of 100% in all
cases. DSA1-CV picks a smaller model on average with a higher specificity as
expected. The risk estimates are approximately the same for both methods.
The D/S/A algorithm seems to be more efficient for smaller sample sizes than
the fscv algorithm. The implications of these simulations will be described
further in Section 7.

4.4 Logic Regression.

Logic Regression (Ruczinski et al., 2003), like the D/S/A algorithm, is an
adaptive regression methodology that attempts to construct predictors. How-
ever, the goal of Logic Regression is to find predictors that are Boolean
(logical) expressions, and thus is applied when the covariates in the data
to be analyzed are primarily binary. The D/S/A algorithm can handle
any combination of continuous and discrete covariates. It is important to
compare the two methods when applied to binary variables, and this sim-
ulation is an initial attempt at comparing the two. Logic Regression uses
a cross-validated constraint on the complexity of each tree, which corre-
sponds to the complexity of our tensor products (implemented by DSA2-
CV, Tables 8 - 10). Thus, Logic Regression is compared to two implemen-
tations of the D/S/A algorithm, (DSA1-CV and DSA2-CV ) referred to as
dsa1 and dsa2, respectively, in Tables 8 - 10 where DSA1-CV is defined by
CV − DSA{loss = L2; basis = poly; m(I) = {m1(I)}; βI,s = everything;
k = {1, . . . , Kn}; v = {2, 5, 10}; moves = (1,1); data = Pn } and DSA2-CV
is defined by CV − DSA{loss = L2; basis = poly; m(I) = {m1(I),m2(I)};
βI,s = everything; s1 = {1, . . . , Kn}, s2 = {1, . . .}; v = {2, 5, 10}; moves =
(1,1); data = Pn }, where m2(I) = max~p∈I

∑d
j=1 I(pj 6= 0). The first im-

plementation was used in the previous simulations (Tables 4 - 7), and the
second implementation uses cross-validation to select the number of tensor
products and places a brake on the complexity of each tensor product thereby
involving the swap moves (i.e., it is limiting the order of interactions to be
no greater than a specified value, s2).

When running Logic Regression, the preset maximum number of allowed
trees matched the number of terms in the true model. The results of both
Logic Regression and DSA-CV depend on the fine tuning parameters such as
number of folds, number of trees or maximum number of tensor products, and
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Table 5: Simulation study 1 RISK COMPARISON. Full data simulated
from y =

∑5
j=1 cjw

2j + er, where w ∼ U(−1, 1), er ∼ N(0, σ), σ = 0.25,
and cj = 1/j2. Candidate estimator was chosen over 50 repetitions of three
sample sizes (col 1), three v-fold cross-validations (col 2) for all algorithms
(col 3). The results (cols 4-9) in the table are based on an independent test
sample of n = 10000. col 4 is the average of the 50 risks for each method, col
5 is the standard deviation of the risks over the 50 reps, col 6 is the average
size (number of basis functions), col 7 is the sensitivity, col 8 is the specificity,
and col 9 is the ratio of averaged risks (col 4) − optimal risk, (ours/fscv).

Sample 50 Repetitions
Size v − fold Method mean std dev avg size sens spec ratio

ours .0648 .002 2.88 35% 73% 1
2 fscv .0651 .001 4.16 38% 47% .881

ours .0651 .002 3.58 39% 64% 1
250 5 fscv .0649 .001 4.04 38% 48% 1.055

ours .0649 .002 3.88 41% 62% 1
10 fscv .0649 .001 4.18 40% 49% .987

ours .0642 .002 3.54 40% 69% 1
2 fscv .0640 .001 4.34 41% 48% 1.106

ours .0640 .002 3.88 43% 64% 1
500 5 fscv .0638 .001 4.28 41% 48% 1.135

ours .0639 .003 4.28 48% 63% 1
10 fscv .0638 .001 4.32 42% 49% 1.077

ours .0636 .001 3.92 42% 61% 1
2 fscv .0634 .001 5.42 52% 48% 1.232

ours .0637 .001 4.06 42% 58% 1
1000 5 fscv .0633 .001 4.84 46% 48% 1.415

ours .0636 .001 3.92 40% 59% 1
10 fscv .0634 .001 5.18 50% 49% 1.291
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Table 6: Simulation study 2 RISK COMPARISON. Full data simulated
from y =

∑5
j=1 cjw

2j + er, where w ∼ U(−3, 3), er ∼ N(0, 1), and cj = 1/j2.
Candidate estimator was chosen over 50 repetitions of three sample sizes (col
1), three v-fold cross-validations (col 2) for all algorithms(col 3). The results
(cols 4-9) in the table are based on an independent test sample of n = 10000.
col 4 is the average of the 50 risks for each method, col 5 is the standard
deviation of the risks over the 50 reps, col 6 is the average size (number of
basis functions), col 7 is the sensitivity, col 8 is the specificity, and col 9 is
the ratio of averaged risks (col 4) − optimal risk, (ours/fscv).

Sample 50 Repetitions
Size v − fold Method mean std dev avg size sens spec ratio

ours 11.266 22 4.5 52% 60% 1
2 fscv 1.052 .031 10.0 100% 50% 197

ours 27.898 125 4.82 53% 56% 1
250 5 fscv 1.052 .031 10.0 100% 50% 517

ours 9.041 21 5.0 55% 55% 1
10 fscv 1.052 .031 10.0 100% 50% 155

ours 5.209 8 4.64 60% 64% 1
2 fscv 1.027 .012 10.0 100% 50% 156

ours 362.2 2525 4.48 60% 66% 1
500 5 fscv 1.027 .012 10.0 100% 50% 13377

ours 362.3 2525 4.6 62% 66% 1
10 fscv 1.027 .012 10.0 100% 50% 13381

ours 376.5 2499 4.74 47% 50% 1
2 fscv 1.015 .005 10.0 100% 50% 25033

ours 1104.9 4240 4.76 48% 51% 1
1000 5 fscv 1.015 .005 10.0 100% 50% 73593

ours 765.4 3502 5.06 51% 50% 1
10 fscv 1.015 .005 10.0 100% 50% 50960
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Table 7: Simulation study 3 RISK COMPARISON. Full data simulated
from y = 4w+3w3−2w5+er, where w ∼ U(1, 5) and er ∼ N(0, 1). Candidate
estimator was chosen over 50 repetitions of three sample sizes (col 1), three
v-fold cross-validations (col 2) for all algorithms (col 3). The results (cols
4-9) in the table are based on an independent test sample of n = 10000.
col 4 is the average of the 50 risks for each method, col 5 is the standard
deviation of the risks over the 50 reps, col 6 is the average size (number of
basis functions), col 7 is the sensitivity, col 8 is the specificity, and col 9 is
the ratio of averaged risks (col 4) − optimal risk, (ours/fscv).

Sample 50 Repetitions
Size v − fold Method mean std dev avg size sens spec ratio

ours 1.043 .018 3.62 83% 71% 1
2 fscv 1.045 .019 5.36 100% 57% .950

ours 1.044 .018 3.64 82% 71% 1
250 5 fscv 1.046 .019 5.46 100% 56% .960

ours 1.043 .018 3.62 82% 72% 1
10 fscv 1.046 .019 5.52 100% 55% .939

ours 1.031 .006 3.24 91% 86% 1
2 fscv 1.031 .007 5.28 100% 57% .980

ours 1.030 .006 3.30 89% 84% 1
500 5 fscv 1.031 .007 5.30 100% 57% .965

ours 1.030 .006 3.34 89% 83% 1
10 fscv 1.031 .007 5.34 100% 57% .967

ours 1.026 .005 3.54 85% 75% 1
2 fscv 1.026 .005 5.28 100% 57% 1.014

ours 1.027 .005 3.46 84% 75% 1
1000 5 fscv 1.026 .005 5.18 100% 58% 1.023

ours 1.026 .005 3.44 85% 77% 1
10 fscv 1.026 .005 5.28 100% 57% 1.015
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number of leaves or tensor product complexity measure. These simulations
show that the D/S/A algorithm is competitive with Logic Regression since
the risk ratios are roughly one in each simulated setting.
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Table 8: Simulation study 1 Logic Regression Comparison. Full data
simulated from y = w1 + w10 + er, where wi ∼ B(0.7), 1 ≤ i ≤ 10, and er ∼
N(0, 1). Candidate estimator was chosen over 10 repetitions of two sample
sizes (col 1), three v-fold cross-validations (col 2) for both our algorithm and
logic regression (col 3). The results (cols 4-7) in the table are based on an
independent test sample of n = 10000. col 4 is the average size (number of
basis functions for ours and number of leaves for logic), col 5 is the average of
the 10 risks (with the L2 loss function) for each method, col 6 is the variance
of the risks over the 10 reps, and col 7 is the ratio of averaged risks (col 5)
− optimal risk, (dsa/logic).

Sample 10 Repetitions
Size v − fold Method avg size mean risk std dev ratio

dsa1 1.6 1.713 .072 .975
2 dsa2 2.0 1.745 .073 1.019

logic 2.0 1.731 .077 1
dsa1 2.0 1.741 .073 1.019

250 5 dsa2 1.9 1.724 .086 .996
logic 1.1 1.727 .082 1
dsa1 2.0 1.741 .073 1.019

10 dsa2 2.0 1.745 .073 1.025
logic 1.1 1.727 .082 1
dsa1 1.8 1.708 .055 .990

2 dsa2 2.0 1.723 .041 1.011
logic 2.0 1.715 .031 1
dsa1 2.0 1.723 .041 1.011

1000 5 dsa2 2.0 1.723 .041 1.011
logic 2.0 1.715 .031 1
dsa1 2.0 1.723 .041 1.011

10 dsa2 2.0 1.723 .041 1.011
logic 2.0 1.715 .031 1
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Table 9: Simulation study 2 Logic Regression Comparison. Full data
simulated from y = β1(w1w3(1−w2))+β2((1−w1)w3(1−w2))+β3(w7w10)+er,
where wi ∼ B(0.7), 1 ≤ i ≤ 10, β ∼ N (1, 1), and er ∼ N(0, 1). Candidate
estimator was chosen over 10 repetitions of two sample sizes (col 1), three
v-fold cross-validations (col 2) for both our algorithm and logic regression
(col 3). The results (cols 4-7) in the table are based on an independent test
sample of n = 10000. col 4 is the average size (number of basis functions for
ours and number of leaves for logic), col 5 is the average of the 10 risks (with
the L2 loss function) for each method, col 6 is the variance of the risks over
the 10 reps, and col 7 is the ratio of averaged risks (col 5) − optimal risk,
(dsa/logic).

Sample 10 Repetitions
Size v − fold Method avg size mean risk std dev ratio

dsa1 4.1 4.647 .248 .995
2 dsa2 4.0 4.636 .254 .992

logic 5.6 4.664 .255 1
dsa1 4.8 4.705 .319 1.013

250 5 dsa2 4.7 4.723 .297 1.018
logic 6.0 4.657 .246 1
dsa1 4.8 4.705 .319 1.014

10 dsa2 4.7 4.723 .297 1.019
logic 6.0 4.654 .278 1
dsa1 5.0 4.738 .101 1.001

2 dsa2 4.9 4.731 .105 .999
logic 7.0 4.734 .105 1
dsa1 5.0 4.738 .101 1.001

1000 5 dsa2 5.0 4.743 .101 1.002
logic 7.0 4.734 .105 1
dsa1 5.0 4.738 .101 1.001

10 dsa2 5.0 4.743 .101 1.002
logic 7.0 4.734 .105 1
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Table 10: Simulation study 3 Logic Regression Comparison. Full
data simulated from y = β1w5w15w25w35 + β2w70w80w90 + β3w51w61 +
β4w12w19w47w69w83 + β5w100 + er, where wi ∼ B(0.5), 1 ≤ i ≤ 100,
β ∼ N (1, 1), and er ∼ N(0, 1). Candidate estimator was chosen over 1
repetition of two sample sizes (col 1), three v-fold cross-validations (col 2)
for both our algorithm and logic regression (col 3). The results (cols 4-7) in
the table are based on an independent test sample of n = 10000. col 4 is the
size (number of basis functions for ours and number of leaves for logic), col 5
is the risk (with the L2 loss function) for each method, and col 6 is the ratio
of averaged risks (col 5) − optimal risk, (dsa/logic).

Sample 1 Repetition
Size v − fold Method size risk ratio

dsa1 2.0 3.028 1.008
2 dsa2 2.0 3.028 1.008

logic 3.0 3.011 1
dsa1 5.0 3.275 1.011

250 5 dsa2 5.0 3.275 1.011
logic 3.0 3.250 1
dsa1 5.0 3.275 1.011

10 dsa2 5.0 3.275 1.011
logic 3.0 3.250 1
dsa1 3.0 3.094 1.013

2 dsa2 3.0 3.103 1.017
logic 3.0 3.068 1
dsa1 5.0 3.128 .990

1000 5 dsa2 5.0 3.167 1.008
logic 7.0 3.149 1
dsa1 5.0 3.128 .990

10 dsa2 5.0 3.167 1.008
logic 7.0 3.149 1
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5 Data Analysis.

An important problem in contemporary biology is transcription factor bind-
ing site identification. Transcriptors are proteins that bind to regions in the
vicinity of genes and as a result regulate the activities of the genes. Identi-
fication of these sites is a crucial problem as understanding the components
of regulation is a step toward understanding how genes are expressed at all
times in the cell life. This biological problem has been put by Keleş et al.
(2002) into a statistical framework by formulating it as a model selection
problem. Keleş et al. (2002) model gene expression as a function of short
oligonucleotides that represent potential binding sites and use pentamers as
an initial set of covariates, adopting a stepwise cross-validation methodology
with forward selection and backward deletion to choose the most predic-
tive pentamers. This selection approach also searches for two-way interac-
tion terms that improves the prediction of the multivariate linear regression
model.

Similar to the approach taken by Keleş et al. (2002), two implementa-
tions of the D/S/A algorithm were applied to a publicly available dataset of
the yeast Saccharomyces cerevisiae, focusing on the 800 basepairs in the up-
stream control region (UCR). The D/S/A algorithm is used to regress gene
expression on the indicators (binary scores) of the presence of a length five
motif (pentamer) at various time points of the cell cycle data by Cho et al.
(1998). The set of explanatory variables were the scores of 512 pentamers
for 2836 genes obtained from Keleş et al. (2002). As described in Keleş et al.
(2002), cells were collected at 17 time points with 10 minute intervals to cover
two full cell cycles in the experiments of Cho et al. (1998). Just as in (Keleş
et al., 2002), two time points (90 min. and 100 min.) were discarded because
of less efficient labeling of their mRNA prior to hybridization (Tavazoie et al.,
1999), and normalized expression profiles of the most variable, 2836 ORFs,
were used.

The two implementations of the D/S/A algorithm were: (1) select the
number of tensor products in the fitted model via cross-validation and leave
the complexity measure on the tensor products, m2(I) = max

∑d
j=1 I(pj 6= 0),

unconstrained, i.e., CV − DSA{loss = L2; basis = poly; m(I) = {m1(I)};
βI,s = everything; k = {1, . . . , 5}; v = 2; moves = (1,1); data = Pn } or,
(2) select both s1 and s2 via cross-validation, i.e., CV − DSA{loss = L2;
basis = poly; m(I) = {m1(I),m2(I)}; βI,s = everything; s1 = {1, . . . , 5},
s2 = {1, . . . , 5}; v = 2; moves = (1,1); data = Pn }.
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Results given by DSA1-CV and DSA2-CV for the 15 time points are
given in Tables 11 - 12. In the interest of saving time, the algorithm ran up
until a maximal size of five. The average runtime of the second implementa-
tion of the D/S/A algorithm was about 2.5 hours for the 15 time points.

Let’s look in particular at the first results for T = 0 minutes. The final
model is composed of four terms (ŝ1 = 4, s2 = ∞): a four-way interaction,
two five-way interactions including pentamers AGGGG and ATAAA and/or
their reverse complements (N.B. a pentamer can refer to itself and/or its
reverse complement), and a 12-way interaction including pentamers AAACA,
AACGC, AATAA, ACAAA, and ACGCG. Wolfsberg et al. (1999) identified
pentamers and hexamers as potential regulatory motifs, and we compared our
findings to the significant pentamers they found (p ≤ 0.05). The pentamers
involved in the interaction terms for the first time point coincide with their
significant pentamers. For example, AACGC/GCGTT overlaps with MCB
at four of the five positions. MCB is known to control the expression of genes
expressed in late G1 phase of the cell cycle (Wolfsberg et al., 1999). Hence
the method was able to select biologically relevant pentamers, and perhaps,
other identified pentamers play a role in predicting gene expression. These
first set of results, however, indicate the importance of applying a second
brake to the algorithm, namely limiting the number of terms within each
tensor product which led us to determine s2 via cross-validation for each
of the given time points. This would avoid the problem of fitting a model
with such higher-order interactions, e.g. 12-way interactions and higher. For
instance, at T = 20 minutes, DSA1-CV yielded a final model with 5 terms,
including a 16-way interaction. Yet when we let cross-validation choose s2

(DSA2-CV ), we result in a model with four main terms. Keleş et al. (2002)
show that the three pentamers with the highest rank at T = 20 minutes are:
ACGCG/CGCGT (mcb), CGCGA/TCGCG (scb), and AGGGG/CCCCT
(stre) which are three of the main terms picked by DSA2-CV. It should be
noted that there are instances where the results given by DSA1-CV and
DSA2-CV coincide, for example, both methods picked the same model with
one 2-way interaction at T = 120 minutes.

6 Right censored data loss functions.

Suppose that X = X̄(T ) ≡ (X(t) : t ≤ T ) is the full-data structure of
interest which ends at a possibly random time T (such as a survival time),
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Table 11: Yeast Data Analysis DSA1-CV vs. DSA2-CV, 2-fold cross-
validation, applied to yeast cell cycle data of (Cho et al., 1998), time point
1.

T=0 min
(ŝ1 = 4, s2 = ∞)
I(AAGAA)I(ACCCC)I(AGGGG[stre])I(ATAAA)I(CAGTA)

+ I(AAACA[ste12])I(AAAGG)I(AACGC)I(AATAA)I(AATAT )I(AATCT )
I(ACAAA)I(ACCGT )I(ACGCG[mcb])I(ACTCT )I(AGTAA)I(CCACG)

+ I(AAGGA)I(AAGGG)I(AGAAA)I(CTTAA)
+ I(AAAAA)I(AGAAA)I(ATGAG)I(CATCG)I(GATGA)

(ŝ1 = 5, ŝ2 = 3)
I(ACCCC)I(AGGGG[stre])I(CAGTA) + I(ATGAG)I(CATCG)I(GATGA)

+ I(AAGGA)I(AAGGG)I(CTTAA) + I(ACAAA)I(ACGCG[mcb])I(CGAAA)
+ I(CACTA)I(CCAGG)I(GCCCC)

but that the observed data structure is given by

O ≡
(
T̃ = min(T,C), ∆ = I(T ≤ C), X̄(T̃ )

)
,

for a right-censoring variable C with conditional distribution G0(·|X), given
the full data structure X.

By convention, if T < C, let C = ∞. One can then rewrite the observed
data structure as O = (X̄(C), C). The distribution, P0 = PFX,0,G0 , of the
observed data structure O is indexed by the full data distribution FX,0 and
the conditional distribution G0(·|X) of the censoring variable C. Let MF

be the model for the full data distribution. We assume that G0 satisfies the
coarsening at random (CAR) assumption:

Pr0(C = t | C ≥ t, X̄(T )) = Pr0(C = t | C ≥ t, X̄(t)), for t < T .

If X does not include time-dependent covariates (e.g., X = (W,Z)), then,
CAR is equivalent with assuming that C is conditionally independent of the
survival time T , given baseline covariates W .

The parameter of interest Ψ : MF → D(S), and as in Section 2 the
parameter ψ0 = Ψ(P0) is defined in terms of a loss function, L(X,ψ), as (one
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T=10 min
(ŝ1 = 5, s2 = ∞)
I(AAACA[ste12])I(AAACC)I(AAAGA)I(AAAGG)I(AAGAG)I(AATCA)I(AATTG)
I(ACAAC)I(ACAGG)I(AGAAA)I(ATAAA)I(ATGTC)I(ATTGA)I(CAAAA)
I(CAGGA)I(GAAAA[ecb])I(GCAAA)I(TAAAA)I(TGAAA)I(TTCAA)

+ I(AAAAA)I(AAACA[ste12])I(AAAGC)I(AACAC)I(AAGAA)I(AATGA)
I(AGAAA) I(AGGGG[stre])I(ATAAA)I(ATAGA)I(ATTTG)I(CTAAA)I(GAAAA[ecb])
I(GGAAA)I(GTTTA[sff ])I(TAGAA)I(TATAA)

+ I(AAAAT )I(AAGAG)I(AAGTG)I(AATGA)I(ATCAA)I(ATGAA)I(TATAA)
I(TTCAA) + I(AAACT )I(AAAGA)I(AAGAC)I(AATCA)I(ACAAT )
I(ACTCT )I(ATAAA)I(ATAAC) I(ATGGC)I(CCAGC)I(CTTTA)I(GATAA)
I(GATCC)I(TAAGA)I(TGAAA)I(TTCAA)

+ I(AAAAA)I(AAAAC)I(AAACA[ste12])I(AAACT )I(AAAGC)I(AAATT )
I(AACAC) I(AAGAA)I(AATGA)I(AGAAA)I(AGGGG[stre])I(ATAAA)I(ATAAT )
I(ATAGA) I(ATGCA)I(ATTAA)I(ATTTA)I(ATTTG)I(CAAGC)I(GAAAA[ecb])
I(GACAC) I(GGAAA)I(GTTTA[sff ])I(TAGAA)I(TATAA)I(TCAAA)I(TCTCA)
(ŝ1 = 3, ŝ2 = 2)
I(AACAC)I(GGGGA) + I(CAGGA)I(CGAGA)

+ I(GATGA)I(TTCAA)

T=20 min
(ŝ1 = 5, s2 = ∞)
I(ACGCG[mcb]) + I(AAAAC)I(AAACA[ste12])I(AAAGT )I(AAGGA)I(AATGG)
I(AGGGG[stre])I(AGTAA)I(ATTAC)I(ATTTG)I(CCAAA)I(CCTGA)I(GATTA)
I(GGAAA) I(GTAAA)I(TATAA)I(TCAAA)

+ I(AACTT )I(AAGCA)I(AATAG)I(ACACA)I(AGAAT )I(AGAGA)
I(AGCAA) I(AGGAC)I(ATAGA)I(ATGAA)I(CAAAG)I(CACAA)I(CCCGC)
I(CTAAA)I(TAAGA)

+ I(AAAAA)I(AAATG)I(AATAA)I(ATACA)I(ATATA)I(ATTGA)I(CGCGA[scb])
I(GCGAA[scb])

+ I(AAAAT )I(AAAGC)I(AAATT )I(AACAC)I(ACGCG[mcb])I(ACTTA)I(ATAAG)
I(ATATG)I(GGAAA)I(TATAA)I(TGTAA)
(ŝ1 = 4, ŝ2 = 1)
I(ACGCG[mcb]) + I(AGGGG[stre]) + I(CGCGA[scb]) + I(GATTA)
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T=30 min
(ŝ1 = 3, s2 = ∞)
I(ACGCG[mcb]) + I(AAAGA)I(AACAC)I(AACTT )I(AATAG)I(ACAAC)

I(ACGCG[mcb])I(AGCCG)I(ATTTA) I(CAAGC)I(CCATA)I(CTTTA)I(GAAAA[ecb])
I(GAAGA)I(GATAC)I(GCAAA)I(TAATA) + I(AAAAC)I(AAATA)
I(AAATT )I(AATTC)I(AATTG)I(ACGCG[mcb])I(ATCAA) I(CTAAA)I(TCAAA)
(ŝ1 = 5, ŝ2 = 3 )
I(ACGCG[mcb]) + I(ACGCG[mcb])I(AGCCG)I(GATAC)

+ I(AACGC)I(ATAAT )I(CGCGA[scb]) + I(AAAAG)I(AATAT )I(TTAAA)
+ I(AACGT )I(AATTC)I(ACGCG[mcb])

T=40 min
(ŝ1 = 2, s2 = ∞)
I(AAAAG)I(AAACT )I(AAAGT )I(AACAA)I(AACGC)I(AAGAA)I(AATAT )
I(ACAAC) I(AGACA)I(AGTAA)I(ATGCC)I(ATTGA)I(CAACA)I(CGCCA)
I(GAATA) I(GCGAA[scb])I(GGAAA) + I(AAAAG)I(AAAAT )
I(AAATA)I(AACGA)I(AATAA)I(ACAAA)I(ACGAA)I(ATAAT )
I(ATCGC)I(CAAAA)I(CACGA)I(GAAGA)
(ŝ1 = 1, ŝ2 = 2)
I(AGACA)I(CGCCA)

T=50 min
(ŝ1 = 2, s2 = ∞)
I(AAAAA)I(AAACA[ste12])I(AAATT )I(AAGAT )I(AAGTA)I(AATGT )

I(ACATA)I(ACTTC)I(AGAAG)I(AGGGA)I(ATGAG) I(ATTTA)I(CTTGA)
I(GAAGA)I(GCAAA)I(GCGGA) I(TAATA)I(TAGAA)I(TCTCA)I(TGAAA)I(TGTAA)

+ I(AAAAC)I(AAACT )I(AAGAA)I(AAGTG)I(ACAAA) I(ACTTG)I(AGCAT )
I(ATAAA) I(ATCAA)I(ATGAA)I(ATTCA) I(CGAAA)I(CTTGC)I(GCATA)I(GTATA)
I(GTTCA) I(TAACA) I(TGCAA)I(TTAAA)
(ŝ1 = 2, ŝ2 = 1)
I(GCGGA) + I(TCCCA)
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T=60 min
(ŝ1 = 4, s2 = ∞)
I(AAACA[ste12])I(AAACG)I(AAACT )I(AAAGA)I(AAATT )I(AAGAT )I(ACAAG)
I(AGAAT )I(AGTAA)I(ATAGA)I(ATATG)I(ATCAC)I(ATCTG)I(CCATA)I(CGCTC)
I(GACAA)I(GCAAA)I(TCAAA)I(TCCAA)I(TGAAA)I(TGTAA)

+ I(AAAAG)I(AAAGA)I(AACAC)I(AGAAG)I(AGGGG[stre])I(ATAAT )I(ATATC)
I(ATGTA)I(ATTAA)I(CAAAA)I(CATTA)

+ I(AAAAT )I(AAACA)I(AAAGG)I(AGAAA)I(ATATA)I(CAGAA)I(CATAA)
I(CTCCA)I(GACGC)

+ I(AAATT )I(AGATG)I(TCAAA)I(TGAAA)
(ŝ1 = 5, ŝ2 = 2)
I(CTCCA)I(GACGC) + I(AGATG)I(TCAAA)

+ I(AACAC)I(AGGGG[stre]) + I(AAAAC)I(CGAGA)
+ I(ATATC)I(CTTAC)

T=70 min
(ŝ1 = 4, s2 = ∞)
I(ACGCG[mcb]) +
I(AAAAC)I(AAAAG)I(AAACC)I(AAACT )I(AAAGC)I(AAATA)I(AAGGA)
I(ACAAA)I(ACGAT )I(ACGCG[mcb])I(ACTTA)I(AGCAA)I(CACCA)I(CTTTA)
I(GAAGA)I(GGATA)I(GGGAA)I(TAAGA)I(TACAA)I(TACGA)I(TTAAA)

+ I(AAAGC)I(AAATC)I(AAATT )I(AAGAG)I(AAGTA)I(ACAAA)I(ACAAC)
I(ACATA)I(ATTCG)I(CATCG)I(CATTA)I(CCGTC)I(CGAAG)I(GGATA)
I(GTCAA)I(TAATA)I(TACAA)I(TAGAA) + I(AAAAT )I(AAATA)
I(AATAA)I(ATAAT )I(CGCGA[scb])I(GCGAA[scb])I(TACAA)
(ŝ1 = 4, ŝ2 = 1)
I(ACGCG[mcb]) + I(CGCGA[scb]) + I(CATCG) + I(GACGC)
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T=80 min
(ŝ1 = 5, s2 = ∞)
I(AAAAA)I(AACAA)I(ACGCG[mcb])I(CAAAA) + I(AAAAT )
I(AAACA[ste12])I(AAATG)I(AACAT )I(AACTT )I(AAGAT )I(AATAT )I(AATGA)
I(AATTG)I(ACAAA)I(ACTAA)I(AGAAT )I(AGATG)I(AGTAA)I(AGTTA)I(ATAAG)
I(ATAAT )I(ATAGA)I(ATGAA)I(ATTAA)I(ATTAG)I(ATTGA)I(CAATA)I(CACAA)
I(CAGAA)I(CTAAA)I(GAAAA[ecb])I(GAACA)I(GATGA)I(GATTA)I(GTTAA)
I(GTTTA[sff ])I(TATAA)I(TCCAA)I(TGAAA)I(TGGAA)

+ I(AAAAA)I(AACAA)I(AACAT )I(AACTT )I(AAGCA)I(AAGGG)
I(AAGTA)I(AATAT )I(ACAAT )I(ACCCC)I(ACGCG[mcb])I(AGATA)I(AGGAA)
I(CAAAA) I(CTAAA)I(CTTTC)I(GAAAC)I(GATAA)I(GTAAA)I(TAATA)
I(TCCAA)I(TGACA) + I(AAAGG)I(AATAA)I(ACAAA)I(ACACG)
I(ATACA)I(ATTTG) I(CGAAA) I(CGCGA[scb])I(GCGAA[scb])I(TAAAA)I(TGAAA)
I(TTAAA) + I(AAAGG) I(AATTC)I(CATAA)I(CTAAA)I(CTTTA)
I(GAATA) I(GATTA)I(GGAAA)I(TACTA)
(ŝ1 = 5, ŝ2 = 2)
I(AACAA)I(ACGCG[mcb]) + I(CGCGA[scb])I(GCGAA[scb])

+ I(CTAAA)I(GATTA) + I(CACCC)I(CTAAG) + I(AACTT )I(ACCCC)

T=110 min
(ŝ1 = 1, s2 = ∞)
I(AAAAA)I(AAAAT )I(AAACA)I(AAAGA)I(AAAGT )I(ACGCG[mcb])I(GACGC)
I(TAGCA)
(ŝ1 = 5, ŝ2 = 1)
I(CGCGA[scb]) + I(AGTCA) + I(GACGC) + I(ATGAG)

+ I(ACGCG[mcb])

T=120 min
(ŝ1 = 1, s2 = ∞)
I(AACTT )I(CTTTA)
(ŝ1 = 1, ŝ2 = 2)
I(AACTT )I(CTTTA)
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T=130 min
(ŝ1 = 1, s2 = ∞)
I(AAACG)I(AAATC)I(AAGCG)I(AAGGT )I(AATGA)I(ACAAA)I(ACAAT )
I(ACGAA) I(AGATC)I(ATAGC)I(CTTCA)I(CTTGA)I(CTTTC)I(GAGAA)
I(GCACA)I(GCCAA) I(GCTAA)I(GTAAC)I(TCGAA)I(TTCAA)
(ŝ1 = 2, ŝ2 = 1)
I(TCGAA) + I(ACCCA)

T=140 min
(ŝ1 = 1, s2 = ∞)
I(AACGT )I(ACGTA)I(ATAAC)I(CACAC)I(CGCGA[scb])I(CTAGC)I(CTGTA)
I(CTTCA)I(GGAAC)I(GGCAA)I(GGCTA)I(TAGAA)
(ŝ1 = 1, ŝ2 = 2)
I(CACAC)I(CGCGA[scb])

T=150 min
(ŝ1 = 1, s2 = ∞)
I(AAAAT )I(AAACT )I(AAAGC)I(AACAA)I(AATTA)I(ACATA)I(ACGCG[mcb])
I(ACTTG)I(AGAAT )I(AGATA)I(ATAAT )I(ATCAT )I(ATTAG)I(ATTTC)
I(CAAAG)I(CTTCA)I(GAATA)I(TAATA)I(TACTA)
(ŝ1 = 1, ŝ2 = 2)
I(ACGCG[mcb])I(AGATA)
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Table 12: Yeast Data Analysis DSA1-CV vs. DSA2-CV, 2-fold cross-
validation, applied to yeast cell cycle data of (Cho et al., 1998), time point
15.

T=160 min
(ŝ1 = 3, s2 = ∞)
I(AAATC)I(AACTA)I(AACTT )I(AAGGA)I(AATAA)I(AATAT )I(AATCA)
I(ACTAA)I(AGAAA)I(AGCCT )I(AGGTA)I(ATACA)I(ATGTA)I(CAATC)
I(CATAA)I(CTGAA)I(GAATC)I(GTTTA[sff ])I(TCTCA)

+ I(AAAAA)I(AAGAA)I(AATAA)I(AATAT )I(ACGCG[mcb])I(ATAAA)
I(ATACA) I(ATATC)I(GAAAA[ecb])I(GTTTA[sff ])

+ I(AAAAC)I(AAGAA)I(AAGGT )I(AATAA)I(AATAC)I(AATAT )
I(ACATC) I(ACCCA)I(ACGCG[mcb])I(AGTAA)I(ATAAA)I(ATACA)I(ATATC)
I(CATGC) I(GAAAA[ecb])I(GAAGA)I(GTACA)I(TAATA)I(TACTA)I(TTAAA)
(ŝ1 = 4, ŝ2 = 2)
I(AACGC)I(ACGCG[mcb]) + I(ACGGA)I(ACTAA)

+ I(CAAGA)I(CGGGA) + I(CGCCA)I(TTAAA)

of) the minimizer(s) of the expected loss, or risk,∫
L(x, ψ0)dFX,0(x) ≡ min

ψ∈Ψ

∫
L(x, ψ)dFX,0(x).

IPCW loss function: We can map the full data loss function into the
IPCW observed data loss function (van der Laan and Robins (2003)):

L(O,ψ | G) = L(X,ψ)
∆

Ḡ(T |W )
.

Note that indeed, if Ḡ0(T | X) > 0, FX0-a.e, then E0L(O,ψ | G0) =
E0L(X,ψ). For finite sample and asymptotic results regarding the cross-
validation selector based on this loss function, we refer to van der Laan and
Dudoit (2003) and (Keleş et al., 2003).

The optimal doubly robust inverse probability of censoring weighted (DR-
IPCW) loss function is more involved and given by (van der Laan and Robins
(2003))

L(O,ψ | Q,G) ≡ L(X,ψ)∆

Ḡ(T |X)
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+
∫
EG,Q

(
L(X,ψ)∆

Ḡ(T |X)
| X̄(u), T̃ ≥ u

)
dMG(u),

where dMG(u) = I(T̃ ∈ du,∆ = 0) − I(T̃ ≥ u)λc(u|X)du, and Q = Q(FX)
refers to the FX-part of the density for the observed data, O = (X̄(C), C),
under the CAR assumption.

If Gn, Qn are consistent estimators of G0, Q0, respectively, then under reg-
ularity conditions (van der Laan and Robins (2003)) 1/n

∑
i L(Oi, ψ | Qn, Gn)

is an asymptotically efficient estimator (in the non-parametric observed data
model) of the full data risk E0L(X,ψ). In addition, if either Gn or Qn is
inconsistent, but not both, then this risk estimate remains consistent, due to
the double robustness property:∫

L(o, ψ | Q,G)dP0(o) =
∫
L(x, ψ)dFX,0(x),

if either G = G0 (and Ḡ0(T | X) > 0, FX-a.e) or Q = Q0.
The ability to map from a full data loss function into an observed data

loss function with the same risk offers several important practical advan-
tages. Firstly, this allows us to directly extend full data estimation method-
ology to censored data situations: for example, if there is no censoring, then
our methodology reduces to the preferred full data methodology. This in
contrast to common censored data estimation approaches, such as survival
trees, which bypass the risk estimation problem for censored outcomes by
altering the node splitting, tree pruning, and performance assessment crite-
ria in manners that are specific to censored survival data (Molinaro et al.,
2003). The splitting and pruning criteria seem to be chosen based on conve-
nience for handling censored data and do not reduce to the preferred choice
for uncensored data. For example, most tree-based regression and density
estimation procedures rely on the negative log-likelihood loss function assum-
ing certain models (such as exponential distributions within each node, or
Cox-proportional hazards model within each node), with the explicit or im-
plicit goal of estimating the conditional survival function given explanatory
variables, and differ mainly in their choice of model for the observed data
likelihood within nodes. This general difficulty in evaluating risk for cen-
sored observations results in a discontinuity between the full and observed
data worlds. Secondly, as shown in Molinaro et al. (2003), gains in accuracy
can be achieved by employing a loss function that is specific to the param-
eter of interest (e.g., by using the squared error loss function for regression
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rather than the negative log-likelihood loss function typically used in survival
trees which are designed to estimate the density itself). Finally, the IPCW
loss function allows us to assess performance on censored data for arbitrary
full-data loss functions. Current methods typically rely on the negative log-
likelihood loss function or lead to biased risk estimators by ignoring censored
observations altogether.

7 Discussion.

The D/S/A algorithm, as presented in this article, has been implemented in
the context of polynomial regression where the number of basis functions is
chosen by v-fold cross-validation. Also available is (1) the option to restrict
the order of interaction of candidate tensor products to be no higher than a
specified limit s2 and to choose s2 also with cross-validation and (2) the option
to restrict the sum of polynomial powers of candidate tensor products to be no
higher than a specified limit s3 and to choose s3 again with cross-validation.
The restriction on s3 of course is not needed in settings involving binary
inputs and hence was not demonstrated in the Logic Regression simulations
or in the data analysis. Future work will allow the constraint(s) on the vector
of coefficients to be an available option as well.

The simulations, displayed in Tables 5 - 7, which compare the D/S/A
algorithm to a forward selection cross-validation algorithm involve unusual
situations to see how a very aggressive algorithm compares to a less aggressive
algorithm. The forward selection algorithm used in those simulations does
involve aggressive forward moves because it uses the addition moves proposed
in this article, namely adding a main term or increasing or decreasing the
coordinates of a term by one (described in Section 3). These simulations
illustrate the fact mentioned in Section 2.1 that the cross-validation selector
performs well for uniformly bounded loss functions. If the variance of the loss
function is large relative to the number of observations, this results in poor
estimates of the empirical risk. Therefore, for theoretical reasons, we would
not expect good performance (e.g., Table 6). It is interesting to observe that
forward selection with cross-validation is able to fit a large model with good
risk performance, though it is expected to fit a larger model where the truth
is a subset of the fitted model given the nature of the simulated data. In
these simulations, a choice must be made between high specificity (CV-DSA)
and low risk (fscv).
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Logic Regression is freely available in R and is a nice tool to find interac-
tions between binary inputs associated with an output. Based on the limited
number of comparisons made between Logic Regression and CV-DSA, it ap-
pears that the D/S/A algorithm is competitive with Logic Regression. One
advantage of the D/S/A algorithm is its ability to handle continuous and
binary inputs.

Barron and Xiao argue in favor of their multivariate adaptive polynomial
synthesis (MAPS) method over MARS (Friedman, 1991, pg. 67-82). At the
time of writing their discussion, Barron had only implemented the forward
stepwise synthesis in the MAPS program, implying the utility of allowing
backward passes. Perhaps, this is similar to the fscv method that we have
implemented in Section 4.3. MARS first builds a model with its forward
moves, and at the end of that process, a backward deletion procedure is
applied. The D/S/A algorithm always is attempting to make backward and
substitution selection moves throughout its search, thereby eliminating the
luggage of undesirables.

Polynomials are a reasonable choice for basis functions for reasons in-
cluding its known approximation capabilities, interpretability, and a model
dimension which tends to be smaller than the sample size (Cox, 1988; Fried-
man, 1991, pg. 67-82). In the rejoinder to (Friedman, 1991, pg. 123-141),
Friedman argues that polynomials do not possess a good locality property:
“the function estimate at a point can be strongly influenced by data points
very far away from it in the predictor space.” The idea here is not to argue
for or against polynomials (or splines for that matter) as a choice of basis
function but to introduce a new class of algorithms, the D/S/A algorithms.
Polynomials served as a practical way to represent one version of the D/S/A
algorithm. The D/S/A algorithm generates candidate estimators and is de-
fined by choices: the loss function; the basis functions; and the set of deletion,
substitution, and addition moves.
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