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A Statistical Method for Constructing
Transcriptional Regulatory Networks Using

Gene Expression and Sequence Data

Biao Xing and Mark J. van der Laan

Abstract

Transcriptional regulation is one of the most important means of gene regulation.
Uncovering transcriptional regulatory network helps us to understand the complex
cellular process. In this paper, we describe a comprehensive statistical approach
for constructing the transcriptional regulatory network using data of gene expres-
sion, promoter sequence, and transcription factor binding sites. Our simulation
studies show that the overall and false positive error rates in the estimated tran-
scriptional regulatory network are expected to be small if the systematic noise in
the constructed feature matrix is small. Our analysis based on 658 microarray
experiments on yeast gene expression programs and 46 transcription factors sug-
gests that the method is capable of identifying important transcriptional regulatory
interactions and uncovering the corresponding regulatory network structures.



1. INTRODUCTION

Transcriptional regulatory network is an important part of the gene inter-

action networks. It specifies the interactions among regulatory genes and

between regulatory genes and their target genes. Transcriptional regulatory

genes produce transcription factors (TF), which are regulatory proteins that

regulate the expression levels of target genes by recognizing and binding to

specific non-coding DNA segments (so called TF binding motifs) of target

genes and initiating the transcription process. Transcriptional regulation is

one of the most important means for gene regulations. Uncovering transcrip-

tional regulatory network, therefore, helps us to understand the underlying

mechanism of complex cellular process.

Methods have been proposed for discovering transcriptional regulatory

networks systematically. Lee et al. (2002) used genome-wide location anal-

ysis (Ren et al., 2000) to investigate how yeast transcription factors bind to

promoter sequences across the genome, then used the gene-specific TF bind-

ing information to identify the transcriptional regulatory network motifs and

network structure. Their approach is mainly experiment based. It provides

more convincing evidence of TF binding activities. However, evidence of

physical binding does not directly imply transcriptional functional activity.

Moreover, location analysis is typically based on a particular growth condi-

tion (e.g., rich medium). As a result, TF binding patterns specific to other

growth conditions may not be observed.

Bar-Joseph et al. (2003) described the GRAM (Genetic Regulatory Mod-

ules) algorithm for discovering regulatory networks of gene module, which

employs location analysis to identify initial gene modules, then expands them

by searching genes with similar expression profiles. The method is essentially

the same as Lee et al. (2002), but it recognizes the importance of using gene

expression data in finding the transcriptional regulatory networks.

Wang et al. (2002) proposed a more computational approach for decom-

posing the transcriptional regulatory networks into functional modules and

making inference on the activation of these modules or interaction between

them based on correlation analysis. The construction of the transcriptional

functional modules, however, depends on the so called transcription factor

perturbation experiment (TFPE), in which the only perturbation is dele-
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tion, mutation or over-expression of a transcription factor. One limitation

of the use of TFPEs is that the availability of TFPEs is limited. Only 28

modules were constructed based on 28 available TFPEs. Moreover, due to

the complex nature of transcriptional regulatory network and the discrete

nature of the measurements on time scale, a TFPE does not guarantee that

the gene expression changes are attributable solely and directly to the TF

being perturbated. The authors themselves also noted that “the most signif-

icant motif identified in a TFPE might not necessarily be the motif directly

bound by the factor (perturbated)”. We think that it is more appropriate

to view a microarray experiment as a realization of a certain part of the

whole transcriptional regulatory network, which is activated under the ex-

periment condition. Even with a perturbation experiment in which a TF is

over-expressed, the activated part of the transcriptional regulatory network

should consist of a bunch of regulatory genes functioning via a network struc-

ture rather than just the one being perturbated. Therefore, we think that

constructing modules for individual TF based on a perturbation experiment

may not be effective for the purpose of uncovering the underlying network

structure.

Other available methods include reverse engineering approach (Somogyi

et al., 1997; Liang et al., 1998; D’Haeseleer et al., 2000), differential equations

(Chen et al., 1999; D’Haeseleer et al., 1999), Bayesian networks (Friedman

et al., 2000; Yoo et al., 2002), machine learning by SVM (Qian et al., 2003),

etc. These methods may work for certain problems or situations, but they

usually require large number of time-course data or lack of computational

stability. We do not discuss them in details due to the space limit.

In the next section we describe a purely statistical method for uncovering

the transcriptional regulatory network based on gene expression data, pro-

moter sequences, and knowledge of TF binding sites. The method identifies

active TFs and estimates the corresponding active part of the transcriptional

regulatory network under each experiment condition, then average over dif-

ferent experiments to infer the overall network structure. We conduct simu-

lation studies to demonstrate the performance of the proposed method. The

results are summarized in Section 3. In Section 4, we apply the method to

the yeast data to study the yeast transcriptional regulatory network. We
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conclude with a discussion of the advantages and limitations of the proposed

method in Section 5.

2. METHOD

2.1 Input data

The input data include gene expression data, denoted by Y , DNA se-

quence data for the transcriptional control region (TCR) of the genes, de-

noted by S, and TF binding motifs data, denoted by W .

More specifically, Y = {Yji : j = 1, . . . , J ; i = 1, . . . , I.} is a J by I

matrix, where Yji is the gene expression measurement for the jth gene under

the ith experiment condition. In other words, Y is a collection of experiments

under various conditions and not necessarily time-course data.

S = {Sjl : j = 1, . . . , J ; l = 1, . . . , L.} is a J by L matrix, where Sj
is the DNA sequence extracted from the TCR of the jth gene and L is the

length of the sequences. (For simplicity, we let the sequences to be of the

same length L.)

W = {Wt : t = 1, . . . , T} is a vector containing binding motifs specific to

T distinct TFs.

2.2 Feature matrix X

The feature matrix X, which measures gene-specific oligomer motif abun-

dance, is created by matching TF binding motifs W to the sequence data S.

The most simplest way to construct X is to define Xjt as the count of the

occurrences of the tth motif in the jth sequence, i.e.,

Xjt =

L−w(t)+1∑

l=1

I[Sj, l : l+w(t)−1 = h(Wt)] (1)

where w(t) = |Wt| is the length of the tth motif, h(Wt) allows for degenerated

representation of Wt and its reverse complement, and l is updated by l +

w(t)− 1 if the indicator function I(·) returns 1.

Alternatively, X may be constructed by incorporating information on

both motif counts and motif locations (Keles et al., 2002) or using a position

weight matrix and a background model with Markov dependency (Conlon

et al., 2003). For the purpose of motif detecting, using a position weight
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matrix and a Markov background model may improve the sensitivity and

specificity. However, for the purpose of scoring a known motif, defining X

as in Equation (1) is time-wise more efficient.

2.3 Identifying active transcription factors

Bussemaker et al. (2001), Keles et al. (2002) and Conlon et al. (2003)

have shown that by regressing genome-wide gene expression measures over

gene-specific oligomer motif abundance measures, one can identify the motifs

(and thereby the corresponding transcription factors) that are likely to be

active and responsible for the dramatic changes in the expression levels of

their target genes under the current experiment condition. We adopt the

same idea and describe two approaches for identifying active transcription

factors under an experiment condition.

2.3.1 Multiple linear regression model selected by a loss-based V-fold cross-

validation model selector The basic idea of this approach is to build a

multiple linear regression model as follows using a single gene expression

experiment and the motif abundance measure matrix X to identify the most

significant motifs and the corresponding transcription factors under the given

experiment condition:

yj = β0 +
∑

t∈τ(i)

βtXjt + εj (2)

where yj is the absolute value of the expression level for the jth gene, Xjt is

the binding motif abundance measure for the tth transcription factor in the

promoter region of the jth gene, β’s are the regression coefficients, εj is gene-

specific random error, τ(i) ⊆ {1, . . . , T} is the set of transcription factors

that are active under the ith experiment condition, and j = 1, . . . , J .

Note that using the absolute value of gene expression measure enables

us to model the situation in which a transcription factors serves both as an

activator to some genes and a repressor to some other genes under the same

experiment condition.

An explicit assumption is that a transcription factor is active under the

current experiment condition if its binding motif is significantly associated

with the changes in the genome-wide gene expressions.

4

http://biostats.bepress.com/ucbbiostat/paper144



We use a loss-based V -fold cross-validation selector to find the best model

for a given experiment. A natural choice of the loss function for the condi-

tional mean model as Equation (2) is the squared error loss function given

by

L(X, Y, ψ) = [Y − ψ(X)]2 = [Y − E(Y |X)]2,

where ψ is a function mapping from covariate space into outcome space. For

the model selection purpose, we wish to estimate the true model, ψ0, which

minimizes the expected loss (i.e., risk)

EP0L(X, Y, ψ) =

∫
L(x, y, ψ)dP0

with respect to the unknown true data generating distribution P0 = P0(X, Y ).

The basic idea of the V -fold cross-validation model selection is that the

data is randomly divided into V mutually exclusive and exhaustive sets, each

used in turn as the validation set and the remaining sets used as the training

set. Denote the random split vector by Sn = {Sn,i : i = 1, . . . , n}, where

Sn,i = 0 if the ith observation is in the training set and Sn,i = 1 if it is in the

validation set. For the V -fold cross-validation, we have V realizations of Sn
which satisfies that

∑
i S

v
n,i ≈ n/V and

∑
v S

v
n,i = 1, and each of the V split

vector has a probability mass of 1/V .

Let P 0
n,Sn

and P 1
n,Sn

denote the empirical distributions of the training and

validation sets, respectively. For the conditional mean model as defined by

Equation (2) with the squared error loss function used, the loss-based V -fold

cross-validation model selector can be explicitly written as

k̂ = argmink
1

V

V∑
v=1

1∑
i S

v
n,i

∑

{i:Svn,i=1}
[yi − ψk(xi|P 0

n,Svn
)]2, (3)

where V is the number of splits, Svn is the vth split vector, ψk(·|P 0
n) ∈ Ψ,

k = 1, . . . , K, is a collection of candidate estimators of ψ0(·) that are obtained

based on only the training set. The expected loss is evaluated using only the

validation set.

There are many ways to generate a set of candidate estimators for ψ0.

Here we describe a forward selection algorithm to generate a sequence of
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nested candidate models. The procedure go as follows: Begin with the null

model (with only intercept). First identify the variable that, if added to the

model, contributes the most to the reduction in mean square error (MSE).

Keep the variable and obtain a nested supper-model. Repeat this procedure

until reaching the user-specified model size K. In this way, we generate a set

of nested models with increasing dimensions. Index the candidate models by

k = 1, . . . , K.

We then use the cross-validation procedure to select from the candidate

models the best one that minimizes the expected loss. The selected model

identifies the set of TFs (denoted by τ(i)) that are significantly associated

with the gene expression changes and thus assumed to be active under the

given experiment condition.

The loss-based cross validation model selector is asymptotically optimal

and unbiased for estimation of the expected loss. We refer to Breiman et al.

(1984) and van der Laan and Dudoit (2003) for more detailed theoretical

dicsussions.

2.3.2 Simple linear regression model followed by a multiple testing procedure

Alternatively, we can identify active TFs by fitting simple linear models and

using a multiple testing procedure. The idea is first to fit a simple linear

model as follows for every TF for a single gene expression experiment:

yj = β0 + β1Xjt + εjt, (4)

where yj is the absolute value of the expression level of the jth gene in the

ith experiment, Xjt is the motif abundance measure for the tth transcription

factor in the promoter of the jth gene, β’s are the regression coefficients, εjt
is the random error, and j = 1, . . . , J and t = 1, . . . , T .

We take the p-value of a model as a statistic indicating the significance of

the association between the TF and the gene expression changes. For com-

putational convenience, we may simply assume a normal model to calculate

the p-value. In this way, we obtain a vector of p-values for all the TFs for a

given experiment. Denote it by ~p = {pt : t = 1, . . . , T}.
Next we take ~p as an input and employ a multiple testing procedure to

select a subset of the TFs that are significantly associated with the gene
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expression changes by a specified criterion. Candidate multiple testing pro-

cedures include those single- or multiple-step procedures controlling for the

(generalized) family-wise error rate, false discovery rate (FDR), etc (Dudoit

et al., 2003; Storey, 2003; van der Laan et al., 2004).

Here we describe a simple procedure to control the false discovery rate

(defined as the expected proportion of false rejections) proposed by Ben-

jamini and Hochberg (1995). Suppose we wish to test simultaneously null

hypotheses H1, . . . , HT based on p-values p1, . . . , pT . Let {r1, . . . , rT} be a

mapping to {1, . . . , T} such that pr1 ≤ pr2 ≤ . . . ≤ prT . Let q be the FDR

level we wish to control. Solve

k = argmax{t=1,...,T} prt ≤
t

T
q. (5)

Define

τ(i) =

{
rt : t = 1, . . . , k, if k is defined,

∅, otherwise.
(6)

τ(i) is the rejection set for the ith experiment. The transcription factors in

τ(i) are significantly associated with gene expression changes by the specified

multiple testing control criterion and thus assumed to be active under the

experiment condition.

Benjamini and Hochberg (1995) have shown that the procedure controls

the FDR at level q for any configuration of false null hypotheses and inde-

pendent test statistics.

2.3.3 Remarks Since the genome-wide gene expression measures are used

in building the regression model, both of the two approaches can only identify

those transcription factors that potentially cause dramatic changes in the

expression levels in target genes and therefore result in significant changes in

the genome-wide gene expression profile. Both methods may fail to identify

those transcription factors that have only subtle effects on the changes of

genome-wide gene expression profile.

The results from the two approaches tend to be similar, but may not

be exactly the same. Since the second approach is time-wise much more

efficient, we recommend to use the first approach only when the number of
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experiments and the numbers of TFs involved in the analysis are small or

moderate. Otherwise, we recommend the use of the second approach.

2.4 Identify target genes of active TFs

The necessary conditions that a gene is significantly regulated by a tran-

scription factor under a certain experiment condition include at least: (1) the

upper stream region of the gene must be abundant with the transcription fac-

tor specific binding motif(s), for example, containing at least one copy of the

binding motif; (2) the transcription factor is active under the experiment

condition; and (3) the expression level of the gene is significantly different

from zero, e.g., a 2-fold change.

Motivated by this reasoning, we propose the following procedures to iden-

tify the target genes of active transcription factors for a given experiment

condition.

2.4.1 Gene expression data transformation Denote the gene expression

data for the ith experiment by ~Yi = {Yji : j = 1, . . . , J.}. Transform the

vector ~Yi into a matrix Z(i) = {Z(i)
jt : j = 1, . . . , J ; t = 1, . . . , T.} according

to

Z
(i)
jt =

{
Yji, if t ∈ τ(i) and Xjt ≥ 1,

0, otherwise,
(7)

where τ(i) ⊆ {1, . . . , T} is the set of transcription factors that are active

under the ith experiment condition (see Section 2.3.1 for definition).

As a result, the non-zero entries of the tth column of matrix Z(i) are the

potential target genes regulated by the tth transcription factor under the ith

experiment condition.

2.4.2 Classification using a normal mixture model Since not all the poten-

tial target genes are significantly regulated by an active transcription factor

under a particular experiment condition, we propose a classification proce-

dure to identify those genes that are likely to be significantly regulated by

the TF under the experiment condition using a 3-component normal mix-

ture model. The normal mixture model is used because of computational

convenience and the fact that the microarray data of gene expression are all

8

http://biostats.bepress.com/ucbbiostat/paper144



normalized such that the data are centered about the null.

The basic idea is that the non-zero entries of a column of Z(i) are seen as

generated from a mixture of three normal distributions, which characterize

the model for the target genes that are repressed, not significantly regulated,

and induced under the experiment condition, respectively. Let M ∈ {1, 2, 3}
denotes these three situations (classes). M is not observed at all and treated

as a missing variable.

Denote the tth column of Z(i) by ~Z
(i)
t . For simplicity we write it as ~Zt. If

the tth transcription factor is not active under the ith experiment condition,

the elements in ~Zt are all zero and no further classification procedure is

needed. Otherwise, let ~Z∗t be the vector of non-zero elements of ~Zt.

Let θ = {πm, µm, σ2
m : m = 1, 2, 3} be the parameter of the mixture

model, where πm, µm and σ2
m are the mixing proportion, mean and variance

for the mth component distribution, respectively, subjected to the constraint

that
∑3

m=1 πm = 1. For convenience, we assume that the observations are

independent and the true class labels are missing at random. (Although the

actual gene expression data are not independent, we believe the independence

assumption will not compromise the classification accuracy too much.) Then

we can write the density of the marginal distribution of Z∗jt given θ as follows

f(Z∗jt|θ) =
3∑

m=1

πmφ(Z∗jt|µm, σ2
m),

where φ(·) denotes the density function of the normal distribution, and m ∈
{1, 2, 3} indexes the three components of the mixture.

The observed data log-likelihood is given by

`(θ|~Z∗t ) =
∑

j∈~Z∗t

log(
3∑

m=1

πmφ(Z∗jt|µm, σ2
m)),

and the complete data log-likelihood is given by

`c(θ|~Z∗t , ~M∗
t ) =

∑

j∈~Z∗t

3∑
m=1

I(M∗
jt = m) log(πmφ(Z∗jt|µm, σ2

m)).
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An EM algorithm (Dempster et al., 1977) can be used to estimate the

model parameters iteratively. The algorithm iterates by alternately repeating

the so-called E-step and M -step. In E-step, the expected complete data log-

likelihood given the current parameter θ(k) is computed as follows

Q(θ|θ(k)) = E[`c(θ|~Z∗t , ~M∗
t )|θ(k)] =

∑

j∈~Z∗t

3∑
m=1

γ
(k)
jm log(π(k)

m φ(Z∗jt|µ(k)
m , σ2

m(k))),

where

γ
(k)
jm = P (M∗

jt = m|Z∗jt, θ(k)) =
π

(k)
m φ(Z∗jt|µ(k)

m , σ2
m(k))

∑3
l=1 π

(k)
l φ(Z∗jt|µ(k)

l , σ2
l (k))

is the conditional expectation of M = m given data and the current param-

eter. In M -step, the parameter is updated by

θ(k+1) = argmaxθ∈Θ Q(θ|θ(k)).

The iteration stops when convergence is reached or when some other

stopping rule is satisfied. We then classify the potential target genes of an

active transcription factor into three classes: ‘repressed’, ‘induced’, and ‘not

significantly regulated’, based on the posterior probabilities γjm = P (M∗
jt =

m|Z∗jt, θ̂), where θ̂ is the estimated model parameter.

If a potential target gene of an active transcription factor is classified as

either ‘repressed’ or ‘induced’, we say that there is a transcriptional regula-

tory interaction between the TF and the gene under the given experiment

condition. This definition assumes that a TF serves as both an inducer and

a repressor in the same experiment. If we assume that a TF plays primarily

a single role as an inducer or a repressor but not both in one experiment,

we can first determine whether a TF is primarily an inducer or a repressor

by fitting a multiple linear model using the selected TFs with the dependent

variable being the original expression value, then looking at the sign of the

regression coefficient corresponding to the TF of interest. If the coefficient is

positive, we say that the TF is an inducer and we infer that the genes in the

‘induced’ class are transcriptionally regulated by the TF. If the coefficient is

negative, we say that the TF is a repressor and we infer that the genes in

the ‘repressed’ class are transcriptionally regulated by the TF.
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After implementing this classification procedure to every column of the

matrix Z(i), we obtain an experiment-specific transcriptional regulatory inter-

action matrix (TRIM), denoted by B(i) = {B(i)
jt : j = 1, . . . , J ; t = 1 . . . , T.},

where B
(i)
jt is the posterior probability that the jth gene is transcriptionally

regulated by the tth transcription factor under the ith experiment condition.

By applying a cut-off (e.g., 0.50), we can convert the probability matrix

to a binary matrix whose elements indicate whether a TF transcriptionally

regulates a gene.

2.5 Constructing the all-condition transcriptional regulatory interaction ma-

trix

Consider a hypothetical situation in which all transcription factors are

active. Denote the corresponding all-condition transcriptional regulatory in-

teraction matrix by B. The scientific question of uncovering transcriptional

regulatory network is statistically equivalent to constructing the hypothetical

transcriptional regulatory interaction matrix B.

Due to the complexity of the transcriptional regulatory network and the

discrete nature of the gene expression experiments on time scale, a single

microarray experiment carries only partial information on a particular part

of the transcriptional regulatory network, which involves only a subset of

TFs that are active under the experiment condition. Accordingly, we view

the experiment-specific TRIM B(i) as a partial realization of the all-condition

TRIM B. More specifically, we view B(i) as a realization of a particular set of

columns of B, which correspond to the transcription factors that are active

under the ith experiment condition.

Suppose we have a collection of I experiments. We perform above pro-

cedures to obtain experiment-specific TRIM B(i), . . . , B(I), and experiment-

specific set of active transcription factors τ(1), . . . , τ(I) (see Section 2.3.1 for

definition of τ(i)).

Define h(t) =
∑I

i=1 I(t ∈ τ(i)) for t = 1, . . . , T . h(t) is a count of how

many times the tth transcription factor is active among the I experiments.

We then estimate B as follows

Bjt =

{
1
h(t)

∑I
i=1B

(i)
jt , if h(t) > 0,

0, if h(t) = 0.
(8)
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Note that Bjt estimated using formula (8) is the experiment-weighted

probability that the tth transcription factor transcriptionally regulates the

jth gene. We can further transform the matrix into an indicator matrix by

letting

Bjt = I(Bjt ≥ c) for j=1,. . . ,J and t=1,. . . , T, (9)

where I(·) is an indicator function and c ∈ (0, 1) is a user-specified cut-

off. The bigger c is, the more conservative we are in characterizing the

transcriptional regulatory interactions.

The binary version of the TRIM B is a convenient form for representing

the transcriptional regulatory network, which can be translated into graphical

network structure using the algorithm described in Section 2.6.

2.6 Finding network motifs

Network motifs are the simplest units of the network architecture, which

suggest models for regulatory mechanism that can be tested. Lee et al. (2002)

described six regulatory network motifs in terms of binding (see Figure 1)

and algorithms to find them. We redefine the network motifs in terms of

transcriptional regulatory interaction as follows: (a) autoregulation motif,

in which a regulator gene regulates its own expression; (b) feedforward loop

motif, in which a master regulator regulates the second regulator and both

regulate a common target gene; (c) multi-component loop motif, in which

regulator(1) regulates regulator(2), ..., regulator(n-1) regulates regulator(n),

and regulator(n) regulates regulator(1), where n ≥ 2; (d) single input motif,

in which a single regulator uniquely regulates a set of target genes; (e) multi-

input motif, in which a set of regulators regulate a set of target genes together;

and (f) regulator chain motif, in which regulator(1) regulates regulator(2),

..., regulator(n-1) regulates regulator(n), where n ≥ 2 and the chain ends if

regulator(n) does not directly regulate any other regulator that is not on the

chain.

We adopted the same idea as Lee et al. (2002) and developed R/S-plus

based programs to find the network motifs. The input data is the binary

version of the all-condition transcriptional regulatory interaction matrix B,

which can be obtained using method described in Section 2.5. A square

matrix R, also referred as to the regulator matrix, is extracted from B in
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Figure 1. Transcriptional regulatory network motifs: (a) Auto-regulation,

(b) Feed-forward loop, (c) Multi-component loop, (d) Single-input motif, (e)

Multi-input motif, and (f) Regulator chain motif. Transcription factors are

indicated by blue circles and genes by orange boxes. Solid arrows indicate

regulatory interaction between TFs and their target genes. Dashed arrows

link TFs and their producer genes. The diagram is modified from Lee et al.

(2002).
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a way such that the rows of R correspond to the set of genes that produce

the transcription factors in the columns of R, listed in the same order. So

R ⊂ B.

The algorithms to find the transcriptional regulatory network motifs are

as follows:

1. Auto-regulation motif:

Find all t such that t ∈ {1, . . . , T} and Rtt = 1. In other words, find

all non-zero entries on the diagonal of matrix R. Each of them is an

auto-regulatory motif.

2. Feed-forward loop motif:

Find all (t1, t2, j) such that Rt2,t1 = 1, Bj,t1 = 1 and Bj,t2 = 1, where

t1, t2 ∈ {1, . . . , T}, t1 6= t2 and j ∈ {1, . . . , J}. In other words, for

each column of R (master regulator t1), find all rows of R (secondary

regulators) that t1 regulates. For each master and secondary regulator

pair (t1, t2), find all rows (i.e., genes indexed by j) in matrix B regulated

by both regulators.

3. Multi-component loop motif:

Find all (t1, . . . , tn) such that Rt2,t1 = 1,. . ., Rtn,tn−1 = 1 and Rt1,tn = 1,

where t1, . . . , tn ∈ {1, . . . , T} and t1 6= . . . 6= tn. In other words, for

each regulator (column of R), find its target regulators (rows of R).

For each of the target regulators (corresponding column of R), find the

target regulators (rows of R) of the target regulator. Repeat this until

the target regulator is the same as the original.

4. Single input motif (SIM):

Step 1, find the set ω = {j : j ∈ {1, . . . , J} and (
∑T

t=1Bjt) = 1}, which

are genes that are uniquely regulated by a regulator. This is equivalent

to taking the subset of rows of B such that the row sum is 1. Step 2,

find the set ω(t) = {j : j ∈ ω and Bjt = 1}, which are genes that are

uniquely regulated by regulator t. If the size |ω(t)| ≥ 1, then (t, ω(t)) is

a single input motif. Repeat Step 2 and find single input motifs for all

t ∈ {1, . . . , T}.
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5. Multi-input motif (MIM):

Step 1, find the set ν = {j : j ∈ {1, . . . , J} and (
∑T

t=1 Bjt) > 1},
which are genes that are regulated by more than one regulator. This

is equivalent to taking the subset of rows of B such that the row sum

is > 1. Step 2, find the set ν(~t) ⊂ ν such that ~Bl = ~Bm for any row

l,m ∈ ν(~t) and l 6= m. Then (~t, ν(~t)) is a multi-input motif. This is

equivalent to finding the genes (rows) in ν that are regulated by the

same set regulators (~t). After identifying an MIM, let ν = ν−ν(~t), then

repeat Step 2 until finding all possible MIMs.

6. Regulator chain motif:

Find all (t1, . . . , tn) such that Rt2,t1 = 1, . . ., Rtn,tn−1 = 1, and Rl,t1 =

0 for all l ∈ {1, . . . , T} except for l = t1, Rm,tn = 0 for all m ∈
{{1, . . . , T}−{t1, . . . , tn}}, where t1, . . . , tn ∈ {1, . . . , T} and t1 6= . . . 6=
tn. The algorithm involves the following steps: Step 1, find a possible

starting regulator (t1) of the chain such that it is regulated by no other

regulators in the list except for itself. Step 2, find the target regulator

tk for regulator tk−1. The recursive procedure stops when the regulator

at the end of the chain does not directly regulate any other regulator

that is not on the chain except for itself or some earlier regulators on

the chain.

3. SIMULATION STUDIES

We conduct simulations to show how the proposed computational approach

performs in re-constructing the underlying regulatory network structure. The

parameter of interest is the transcriptional regulatory interaction matrix B,

which may be regarded as a 2-dimensional representation of the underlying

network. In practice, we don’t know B. But in simulations, suppose we know

B. We wish to estimate B using the above described approach, and assess

the error in the estimation.

3.1 Construct a fictitious regulatory network

We consider a fictitious transcriptional regulatory network consisting of 10

TFs and 150 genes. For simplicity, suppose that five of the TFs are inducers

and the other five are repressors. Also suppose that 50 genes are regulated
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by at least one inducer but no repressors, another 50 regulated by at least

one repressor but no repressors, and the remaining 50 genes regulated by

none of the 10 TFs. We randomly construct a binary-valued transcriptional

regulatory interaction matrix B, which satisfies the above condition.

3.2 Construct a fictitious feature matrix

Next we construct a fictitious feature matrix X, which measures the abun-

dance of binding sites of the 10 fictitious TFs. A necessary condition for the

tth TF transcriptionally regulates the jth gene is that the jth gene must have

at least one binding site for the tth TF. In other words, Bjt = 1 implies that

Xjt > 0. It is also true that Xjt = 0 implies that Bjt = 0. Assuming that

transcriptional regulatory interaction between a TF and a gene is positively

related to the abundance of the TF-specific binding sites, we then use the

following rules to construct the feature matrix X:

• If Bjt = 1, then Xjt ∼ Uniform {2, 3, 4, 5};

• If Bjt = 0, then Xjt ∼ Bernoulli {0, 1} with P (Xjt = 1) = δ.

Note the situation that Bjt = 0 and Xjt > 0 (i.e. a TF does not regulate a

gene even though the gene promoter is abundant with binding sites of the

TF) is regarded as systematic error. We consider three values for δ, i.e.,

δ = 0.10, 0.30, 0.50, representing small, moderate and large systematic error

in the feature matrix X, respectively.

3.3 Estimation with a single experiment

We first wish to see how the method estimates the partial transcrip-

tional regulatory network under one experiment condition. We randomly

choose a subset of TFs, denoted by τ ∗, assuming the size of τ ∗ is |τ ∗| ∼
Uniform {3, . . . , 7}. τ ∗ represents a particular experiment condition in which

only the TFs in τ ∗ are active. The true transcriptional regulatory interac-

tion matrix corresponding to τ ∗, denoted by B∗, is a partial realization of the

overall true transcriptional regulatory interaction matrix B, which satisfies

that B∗jt = Bjt if t ∈ τ ∗ and B∗jt = 0 otherwise.

We generate one set of fictitious gene expression data using a multiple
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linear model as follows

Yj = β0 +
∑
t∈τ∗

βtXjt + εj,

where j indexes genes, t indexes TFs, β’s are coefficients and εj is the gene-

specific random error.

For simplicity, we assume β0 = 0, ~βt = (0.25,0.30, 0.35, 0.40, 0.45,-0.25,

-0.30, -0.35, -0.40, -045), and εj = ε ∼ N(0, σ2). We consider three values

for σ, i.e., σ = 0.25, 0.50, 0.75, representing small, medium and large random

errors in microarray measurements.

We estimate B̂∗ based on the generated data and compute the overall

error rate and false positive rate as defined in Section 3.5. We repeat the

procedures 100 times and get average estimates of the error rates.

3.4 Estimation with a collection of experiments

Next we generate data that resemble the situation that we have a col-

lection of I = 50 experiments. Each experiment is seen as a realization of

certain part of the true underlying regulatory network. Thus by averaging

over all the experiments, we expect to uncover the underlying transcriptional

regulatory interaction matrix B.

To do so, for each i = 1, . . . , I, we draw a random subset τ(i) ⊆ {1, . . . , T},
with a random size |τ(i)| ∼ Uniform {3, . . . , 7}.

The fictitious gene expression data are generated using a multiple linear

model as follows

Yji = β0 +
∑

t∈τ(i)

βtXjt + εji,

where i indexes experiments, τ(i) is the set of TFs that are active under the

ith experiment, and other notations are the same as before.

We estimate B̂ by averaging over all experiments, and compute the error

rates. We repeat the procedures 100 times and obtain the average error rates.

3.5 Error in estimation

To assess the error in estimation, we define the overall error rate as

err1 =
1

J × T
∑
j,t

I(Bjt 6= B̂jt),

17

Hosted by The Berkeley Electronic Press



and the false positive rate (FPR) as

err2 =
∑
j,t

I((Bjt = 0) and (B̂jt = 1))/
∑
j,t

I(B̂jt = 1).

A small false positive rate implies less error nodes in the constructed network.

A small false positive rate plus a small overall error rate imply that the

constructed network is more complete and has less error nodes.

3.6 Simulation results

The simulation results are shown in Table 1, where ε ∼ N(0, σ2) denotes

random error in gene expression measurements, with σ = 0.25, 0.5, 0.75, for

small, moderate and large random error, respectively and δ = 0.1, 0.3, 0.5,

for small, moderate and large systematic error in the feature matrix X, re-

spectively.

In the first case, we are trying to estimate certain part of the underlying

transcriptional regulatory network that is active under one experiment condi-

tion. In the second case, we are trying to estimate the overall transcriptional

regulatory network based on a collection of 50 experiments. In both cases we

see that both the overall error rate and the false positive rates increase as the

systematic error increases. They also tend to increase as the random error

increases for the estimations based on a single experiment, but seem not to

change much for the estimations based on a set of different experiments. The

overall error rate is pretty small even when the systematic and/or random

error is large. The false positive rate is also small when the systematic and

random errors are small. But it can be moderately big when the systematic

and random errors become large. The false positive error rate also tends to

be smaller for the estimation based on a collection of experiments than that

that based on a single experiment.

In the simulation, we used c = 0.5 as a cut-off to convert the estimated

regulatory interaction probability matrix into an indicator matrix. We noted

that the choice of cut-off value plays a very important role in both the direc-

tion and magnitude of the error rates. A conservative choice of the cut-off

value tends to result in small false positive rates, and may increase the over-

all error rates if the proportion of genes that are significantly regulated by

the TFs is relatively big. A less conservative cut-off value tends to result in
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Table 1. Average Error Rates in the Estimated Transcriptional

Regulatory Interaction Matrices

Sys. Error ε ∼ N(0, 0.252) ε ∼ N(0, 0.502) ε ∼ N(0, 0.752)

δ Overall FPR Overall FPR Overall FPR

Single 0.10 0.0182 0.0940 0.0185 0.0912 0.0303 0.1486
experi- 0.30 0.0360 0.2105 0.0406 0.2276 0.0563 0.2973
ment 0.50 0.0397 0.2139 0.0503 0.2663 0.0637 0.3291

A set of 0.10 0.0101 0.0276 0.0097 0.0276 0.0104 0.0279
50 experi- 0.30 0.0408 0.1372 0.0398 0.1310 0.0394 0.1253
ments 0.50 0.0548 0.1872 0.0559 0.1875 0.0561 0.1831

increased false positive rates, and may reduce the overall error rates if the

proportion of genes that are significantly regulated by the TFs is relatively

big.

In real world, we do not know the magnitude of the systematic error in

the feature matrix with respect to the relationship between motif abundance

and TF binding. If the systematic error is very large, we would not expect

the regression approach (Bussemaker et al., 2001, Keles et al., 2002, Conlon

et al., 2003) to work well in detecting motifs. These studies imply that the

assumption of a small or moderate systematic error is realistic in real data

analysis.

For each TF, if the genes that are not significantly regulated by the TF

dominates the experiment, the overall error rate in the estimated binding

matrices tends to be small since the genes without necessary binding con-

ditions and not significantly expressed are more accurately classified during

the estimation procedure and they dominate the error rates. It is often true

that a large proportion of genes are not significantly expressed in an actual

DNA microarray experiment. This implies that the overall error rate should

usually be small or moderate in real data analysis.
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4. DATA ANALYSIS: TRANSCRIPTIONAL REGULATORY NET-

WORK IN YEAST

We apply our method to study the transcriptional regulatory network in S.

Cerevisiae (yeast) based on analysis of a large collection of DNA microarray

experiments.

4.1 Data

4.1.1 DNA microarray experiments We collect 658 DNA microarray ex-

periments on yeast gene expression programs under various conditions: 7 on

diauxic shift (DeRisi et al., 1997), 10 on sporulation (Chu et al., 1998), 60

on cell cycle (Spellman et al., 1998), 4 on adaptive evolution (Ferea et al.,

1999), 173 on environmental stress (Gasch et al., 2000), 6 on Copper regula-

tion (Gross et al., 2000), 300 on diverse mutations and chemical treatments

(Hughes et al., 2000), 8 on Pho metabolism (Ogawa et al., 2000), 12 on

SNF/SWI mutants (Sudarsanam et al., 2000), 26 on FKH1 and FKH2 roles

during cell cycle (Zhu et al., 2000), and 52 on DNA damage (Gasch et al.,

2001).

Prior to analysis, the data are normalized by subtracting the genome-wise

median for every experiment. In addition, the log2-ratios are truncated by

± log2(20).

4.1.2 Promoter sequences We extract promoter sequences of 700 bps in

length in the upper stream non-coding region [-700, -1] for 6136 ORFs using

the SCPD database (Zhu and Zhang, 1999).

4.1.3 TF Binding Motifs We collect 46 yeast TFs with known binding

sites from SCPD (Zhu and Zhang, 1999), TRANSFAC (Wingender et al.,

1996), and YPD of Incyte Proteome BioKnowledge Library (Hodges et al.,

1999) (see Table 2).

4.1.4 Constructing the feature matrix X The feature matrix X is con-

structed as described in Section 2.2 using the promoter sequence data and

TF binding motif data. Note that a transcription factor may bind to a

family of similar but distinct motifs. For example, the yeast transcription

factor HSF1p binds the heat-shock dependent element which has at least four
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Table 2. Some Yeast Transcription Factors and

Their Specific Binding Motifs

TF Binding Site Site Name

ABF1 TCRNNNNNNACG ABF1

ACE2 GCTGGT ACE2

ADR1 TCTCC ADR1

ATF1 ACGTCA ATF

BAS2 TAATRA, TAANTAA BAS2

CBF1 TCACGTG CPF1

FKH2 GTMAACAA SFF

FKH1 GTMAACAA SFF

GAL4 CGGNNNNNNNNNNNCCG GAL4

GCN4 TGANTN GCN4

GCR1 CWTCC GCR1

HAP1 CGGNNNTANCGG HAP1

HSF1 GAANNTCC, GAANNNTCC, HSE

TTCNNGAA, TTCNNNGAA HSE

INO2 ATGTGAAWW UASINO

INO4 ATGTGAAWW UASINO

LEU3 CCGNNNNCGG, GGCNNNNGCC LEU3

MAC1 GAGCAAA CuRE

MATalpha2 CRTGTWWWW MATalpha2

MBP1 WCGCGW MCB

MCM1 CCNNNWWRGG MCM1

MIG1 CCCCRNNWWWWW MIG1

MSN2 AGGGG STRE

MSN4 AGGGG STRE

NDT80 CRCAAAW MSE

PDR3 TCCGYGGA PDR3

PHO4 CACGTK PHO4

PUT3 CGGNNNNNNNNNNCCG PUT3

PPR1 TTCGGNNNNNNCCGAA PPR1

RAP1 RMACCCA RAP1

REB1 YYACCCG REB1

RFA1 TAGCCGCCGA URS1

RFA2 TAGCCGCCGA URS1

RFA3 TAGCCGCCGA URS1

RME1 GAACCTCAA RME1

ROX1 YYNATTGTTY ROX1

RTG1 GGTCAC RTG

RTG3 GGTCAC RTG

STE12 TGAAACA PRE

SWI4 CNCGAAA SCB

SWI5 KGCTGR SWI5

SWI6 CNCGAAA, WCGCGW SCB/MCB

SUM1 CRCAAAW MSE

TBP1 TATAWAW TBP

TEA1 CGGNNNNNNNNNNCCG TEA1

UME6 CTTCCT, TAGCCGCCGA UARPHR/URS1

YAP1 TTANTAA AP-1

Source: Compiled based on information from SCPD,

TRANSFAC Database, and Incyte BioKnowledge Libarary (YPD).
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Table 3. Estimated Number of Regulatory Interactions

(with 6136 ORFs and 46 TFs)

Cut-off Number of Number of Number of Number of
Genes Interactions Interactions Interactions

Involved Total Per Gene Per TF
0.70 398 540 1.4 11.7
0.50 1225 2176 1.8 47.3
0.30 2465 7572 3.1 164.6
0.25 2929 10645 3.6 231.4
0.20 3599 15375 4.3 334.2

similar but distinct forms: GAANNTCC, GAANNNTCC, TTCNNGAA, or TTCNNNGAA

(SCPD: Zhu and Zhang, 1999). Thus, we need to transform the feature ma-

trix X by combining those columns that correspond to the same TF. As a

result of this transformation, the columns of X map to distinct transcription

factors.

4.2 Analysis results

We estimate the overall transcriptional regulatory interaction matrix by

averaging over the 658 experiments and then use it to find the network motifs

and overall network structure.

4.2.1 Estimated transcriptional regulatory interactions The estimated num-

ber of transcriptional regulatory interactions between TFs and genes is a

function of cut-off value used. Table 3 shows the results at different cut-off

levels.

We found that the weighted probability of regulatory interaction between

a TF and its target gene often falls well below 0.5. One explanation is that, an

active TF is likely to significantly regulate only a subset of its target genes,

depending on specific experiment condition. In other words, a particular

target gene of a TF may or may not be significantly regulated by the TF even

when the TF is active. For example, our analysis of the α factor synchronized

cell cycle data (Spellman et al., 1998) shows that, MBP1p is active in 17 out

of the 18 time points, however, the yeast gene CDC2, a known target gene
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induced by MBP1p, seems to be significantly regulated (i.e., probability of

transcriptional regulatory interaction is ≥ 0.6) by MBP1p only at three time

points (t=21, 70 and 77 minutes) with a probability of 0.676, 0.997 and 0.680

respectively. The probability of MBP1p-CDC2 interaction at the other time

points is mostly less than 0.1. As a result, averaging over the 17 time points

when MBP1p appears to be active brings down the weighted probability of

MBP1p-CDC2 interaction to 0.253 (based on analysis of only the 18 α factor

synchronized experiments).

We recommend selecting a cut-off such that the intensity of the estimated

transcriptional regulatory interactions is comparable to those in published

studies. In our analysis, we choose c = 0.25 as a cut-off, which is comparable

to using 0.01 < p < 0.05 as a P-value threshold in Lee et al. (2002). A larger

and more stringent cut-off could be used, but it may reduce the power of the

analysis to detect true TF-gene regulatory interactions.

4.2.2 Network motifs We found 4 autoregulated genes, 34 feed-forward

loops, 0 multi-component loops, 23 single-input modules, 168 multi-input

modules and 35 regulator chains, based on the estimated transcriptional reg-

ulatory interactions matrix for 46 TFs and 6136 genes, at a cut-off value

of c = 0.25. All the findings are available on the supplement web site

(http://www.stat.berkeley.edu/users/bxing/TRN/index.html (under construc-

tion)).

To assess the significance of the findings, we compared our results with

published results from Lee et al. (2002). Our analysis involves 46 TFs,

analysis of Lee et al. (2002) involves 106 TFs. We have 33 TFs in common.

However, since the presence of additional TFs affects the finding of almost

all the network motifs, particularly the single-input and multi-input modules

and regulator chains (a result of the network motif finding algorithm). So

the comparison focuses on only autoregulation motif and feed-forward loop

motif.

At c = 0.25, we found 4 regulator genes (out of 46) that are likely to

be autoregulated: ROX1, STE12, PDR3 and NDT80. Among these, STE12

was already identified as autoregulated in Lee et al. (2002) and Ren et al.

(2000).
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The ROX1 gene encodes a heme-induced repressor of hypoxic genes in

yeast. Experiments indicated that ROX1p is capable of binding to its own up-

stream region and represses its own expression (Deckert et al., 1995). ROX1p

was included in Lee et al. (2002), but was not identified as autoregulated.

NDT80p functions at pachytene of yeast gametogenesis (sporulation) to

activate transcription of a set of genes required for both meiotic division

and gamete formation. There is evidence that NDT80p activates its own

transcription through an upstream MSE consensus site (Chu and Herskowitz,

1998; Lindgren et al., 2000).

The yeast PDR3 gene, which encodes a zinc finger transcription factor

implicated in certain drug resistance phenomena, is under positive autoregu-

lation by PDR3p. DNase I footprinting analyses using bacterially expressed

PDR3p showed specific recognition by this protein of at least two upstream

activating sequences in the PDR3 promoter (Delahodde et al., 1995; Simonics

et al., 2000).

In addition to STE12, among the 33 common TFs involved in both anal-

yses, SWI4, SUM1 and RAP1 were identified as autoregulated in Lee et al.

(2002), but not in our analysis at the 0.25 cut-off level. At a lower cut-off

level of 0.20, our analysis suggests SWI4 is autoregulated, but SUM1 and

RAP1 are still not. Searching the literature, we did not found significant

evidence that SUM1 is autoregulated. RAP1p is capable of binding to its

own promoter, but it has been shown that the role of RAP1p in the tran-

scriptional regulation of RAP1 may be very limited (Graham and Chambers,

1994).

We found 34 feed-forward loops involving 28 TFs at the 0.25 cut-off level.

Among these, FKH2-ACE2, FKH2-SWI5, MCM1-SWI, MCM1-SWI5, were

also identified in Lee et al. (2002).

4.2.3 Overall transcriptional regulatory network We assembled the overall

yeast transcriptional regulatory network based on the estimated transcrip-

tional regulatory interactions matrix for 46 TFs and 6136 ORFs. Figure 2

visualizes the overall network structure as a regulator interaction map.

The 31 nodes (boxes) shown are regulator genes that have estimated tran-

scriptional regulatory interaction with either themselves (i.e., auto-regulation)
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Figure 2. Yeast transcriptional regulatory network. Boxes indicate regula-

tor genes. Arrows indicate the direction of regulatory interactions. Regula-

tors without significant interaction with other regulators are not shown. The

potential target genes of each regulator are not shown.

or other regulators. The other 15 regulators that are involved in the analysis

but have no transcriptional regulatory interactions with any regulators are

not shown. Each of the 46 TFs involved in the analysis has its own set of

potential target genes, which are not shown in the graph either to make it

clear.

The constructed network shows two sub-network structures: the right

hand side part is related to the cell cycle process and the left hand side

part is related to the stress-responsive regulation. This is a consequence of

the data collection: a big proportion of the microarray experiments used

in the analysis are on environmental stress response and cell cycle, and the

transcription factors involved in the analysis cover only limited functional

areas.

The analysis results show that the proposed statistical approach is ca-

pable of identifying important transcriptional regulatory network structures.

For example, the constructed transcriptional regulatory network directly con-

nects most of the regulators that are known to regulate the yeast cell cycle
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process, such as MBP1, RME1, SWI4, SWI5, SWI6, ACE2, MCM1, FKH1

and FKH2, to form a sub-network for cell cycle regulation. Among the es-

timated cell cycle related transcriptional regulatory interactions, some have

already been experimentally confirmed. For example, SWI5 and ACE2 both

induce the meiosis repressor RME1 (Toone et al., 1995; McBride et al., 1999);

MCM1 induces both SWI5 and SWI4 (Althoefer et al., 1995; Svetlov and

Cooper, 1995; Fitch et al., 2003); MCM1 and FKH2 protein are both ca-

pable of binding SWI5 and ACE2 as determined by location analysis (Lee

et al., 2002); MCM1 and FKH2 form a transcription factor complex to reg-

ulate cell-cycle dependent expression of the CLB2 cluster of genes, which

include SWI5 and ACE2 (Boros et al., 2003).

The proposed method can not distinguish competitive binding. But it is

capable of revealing the transcriptional regulatory network structure that is

not obvious under a single experiment condition. For example, our analysis

suggests that SUM1p transcriptionally regulates NDT80, and NDT80 is au-

toregulated. In fact, SUM1p and NDT80p bind competitively to the MSE

sites in NDT80’s promoter region and result in very different consequences:

NDT80p activates the expression of NDT80, but SUM1p represses the ex-

pression of NDT80 (Pak and Segall, 2002). The cross link between SUM1

and NDT80 may not be observed in a location analysis based on only one

kind of growth condition.

5. DISCUSSION

We described a comprehensive statistical approach for constructing the tran-

scriptional regulatory network using data on gene expression, promoter se-

quence, and transcription factor binding sites. Our simulation studies show

that the overall and false positive error rates in the estimated transcriptional

regulatory network are expected to be small if the systematic noise in the

constructed feature matrix is small. Our analysis based on 658 microarray

experiments on yeast gene expression programs and 46 transcription factors

suggests that the method is capable of identifying important transcriptional

regulatory interactions and uncovering the corresponding network structures.

Our method is advantageous over some existing methods at least in the

following aspects. The computaional approach is based on available gene
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exression and sequence data, so it is time-wise and resource-wise more ef-

ficient than the experiment-based methods (e.g., location analysis). It is

especially suitable for mining the fast accumulating microarray data on gene

expressions under various experiment conditions. The method treats each

microarray experiment as a partial realization of the overall transcriptional

regulatory network process, which may be more appropriate and effective

than the analysis based on perturbation experiments since a TF perturba-

tion experiment does not guarantee that the gene expression changes are

attributable solely and directly to the TF being perturbated. Moreover, as

compared with the method based on location analysis data, the use of gene

expression data may be more appropriate for modeling the transcriptional

regulatory network since gene expression data is a direct result of a cer-

tain transcriptional regulatory network process while evidence of physical

binding may not directly imply transcriptional regulation. Moreover, the

location analysis data are typically obtained from a particular growth condi-

tion, which may limit the finding of the network structures that are specific

to other conditions.

The method has at least two limitations. First, it may fail to estimate

the regulatory interactions of a transcription factor that results in only sub-

tle change in the genome-wide gene expression. Second, the method relies

on knowledge of transcription factor binding sites. The number of TFs with

known consensus binding sites is small and their functional coverage is some-

what limited. However, this may not be a problem when more and more TF

binding sites are characterized and added to our knowledge. Also, we may

use putative TF binding sites in the analysis. Using putative TF binding

sites will increase the error rates in estimation, but the constructed network

should suggest more models for further testing.
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