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Why odds ratio estimates of GWAS are almost
always close to 1.0

Yutaka Yasui

Abstract

“Missing heritability” in genome-wide association studies (GWAS) refers to the
seeming inability for GWAS data to capture the great majority of genetic causes
of a disease in comparison to the known degree of heritability for the disease, in
spite of GWAS’ genome-wide measures of genetic variations. This paper presents
a simple mathematical explanation for this phenomenon, assuming that the heri-
tability information exists in GWAS data. Specifically, it focuses on the fact that
the great majority of association measures (in the form of odds ratios) from GWAS
are consistently close to the value that indicates no association, explains why this
occurs, and deduces two specific forms of epistasis/interaction as its cause. The
implication is that GWAS may be able to recover “missing heritability” if the two
specific forms of epistasis and gene-environmental interaction are fully explored.



  

1. INTRODUCTION 

A genome-wide association study (GWAS) of disease susceptibility 
compares “cases” who have developed a disease of interest to “controls” who 
have not, within a defined study population, with respect to genetic variations.  
Most commonly, the genetic variations examined in GWAS are those of single 
nucleotide polymorphisms (SNPs) across the whole genome.  As such, a GWAS 
is an epidemiological case-control study with SNP genotypes being the 
“exposures” of interest that may modify the disease risk.  The measure of 
association typically used in case-control studies is odds ratio (OR) [Gordis, 
2008].  While the underlying odds of developing the disease in a defined time 
period (i.e., the case-control ratio) is fixed by the case-control study design, and 
thus not estimable, its ratio between two groups with and without a hypothesized 
cause of the disease is estimable [Cornfield, 1951].  Specifically in GWAS, ORs 
of developing the disease are estimated between individuals with and without 
certain genotypes of SNPs: departures of the ORs from 1.0 indicate that 
corresponding genotypes of SNPs (or the regions of genome they represent) are 
associated with the disease risk.   

GWAS has become a major research framework, often conducted as 
multi-country collaborative projects with great resource requirements, aiming to 
identify regions of human genome whose variations across subjects are associated 
with risk of various diseases.   This aim has been accomplished only partially, 
however, even for diseases that have been investigated by a large number of 
GWASs such as Crohn’s Disease.  Specifically, the known degree of genetic 
contributions to the risk of developing a particular disease (i.e., the “heritability”), 
known from other types of studies (e.g., family studies), is explained poorly by 
GWAS findings, where only a small fraction of the known degree of the 
“heritability” are attributable to SNP variations discovered by GWASs.  This 
problem is referred to as the “missing heritability” problem and its potential 
causes have been debated widely [Manolio et al., 2009; Goldstein, 2009]. 

The aim of this paper is to attempt to explain the “missing heritability” 
problem with precise statistical reasoning and provide a potential direction with 
which the problem can be tackled.  The strategy is to apply a key statistical 
theorem on ORs in the population, not in the sample, namely, the collapsibility 
theorem for the analysis of contingency tables, to show that the “missing 
heritability” problem is due to two specific forms of interaction that are not 
widely assessed in GWAS analysis.  The implication of this work is that, 
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assuming GWAS data contain the “heritability” information, its extraction must 
target these specific forms of interaction.   

2. COLLAPSIBILITY AND MARGINAL ODDS RATIOS 

Analysis of GWAS data is typically performed for a single SNP, one at a 
time, without involving any other SNPs or non-genetic factors.  The salient 
systematic feature of GWAS findings, regardless of diseases and populations 
studied, is that the great majority of resulting OR estimates are close to 1.0.  
These near-null OR estimates lead to, and is the essence of, the “missing 
heritability” problem of GWAS.  This characteristic of GWAS OR estimates 
cannot be attributable to stochastic properties of the OR estimation, including 
statistical power: if it could, OR estimates would be highly variable and not 
consistently close to 1.0.  Thus, underlying ORs in the population must also be 
close to 1.0.  If the underlying biology in the population were such that there is 
only one causal factor for the disease and it is the genotype of a single SNP (or 
the region of genome it represents), the marginal OR of the disease defined for the 
SNP genotype in the population, ignoring all the other SNPs and non-genetic 
factors, would represent the underlying biological disease-SNP association 
accurately.  The underlying biology of complex diseases studied in GWAS, 
however, is expected to involve multiple SNPs and non-genetic factors.  With the 
existence of multiple causal factors, the marginal OR of the disease defined for 
one of the causal factors would not represent accurately the extent and mechanism 
of the underlying disease biology involving the factor.   

Statisticians have proven theorems that specify exact circumstances under 
which one can ignore other relevant factors and assess the marginal association 
between two variables accurately (when all variables are categorical) [Simpson, 
1951; Whittemore, 1978; Ducharme and LePage, 1986].  Using relevant terms in 
GWAS, one of such theorems can be stated as follows. 

The SNP-disease association measured by the marginal OR between 
genotypes of a single SNP and the case-control status of a disease, without 
considering any other variable, is equal to the association measured by the 
conditional OR between these two variables in any subgroup defined by a third 
variable (and therefore the third variable can be ignored in the assessment of the 
SNP-disease association) if and only if the SNP genotype is independent of the 
third variable in both cases and controls, or the third variable is independent of 
the case-control status in all SNP-genotype groups. 
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Note that “the third variable” can be a combination of multiple variables 
including SNPs and non-genetic factors.  According to the theorem, the marginal 
OR calculated for the genotype of a single SNP, ignoring all the other relevant 
factors, genetic and non-genetic, is accurately representing the SNP-disease 
association in any subgroups defined by the other relevant factors, if and only if 
all the other relevant factors are independent of the SNP genotype in both cases 
and controls (or the trivial case holds where there is no other factor other than the 
SNP associated with the disease).  This theorem can be proven for the GWAS 
scenario, using elementary algebra of OR as shown in Appendix A.  Without loss 
of generality, we will consider hereafter binary genotypes of a SNP 
(corresponding to dominant or recessive inheritance).  

Given that even the largest OR estimates are close to 1.0 in the great 
majority of GWASs of disease susceptibility and they do not explain the full 
extent of known degrees of disease heritability, the theorem suggests that the 
violation of its condition is the norm in the underlying biology of the complex 
diseases studied in GWAS.  How is the theorem’s condition violated?  In a 
properly-designed case-control GWAS, Mendelian Randomization [Clayton and 
McKeigue, 2001] implies that genotypes of a SNP are independent of “the third 
variable” in controls, unless “the third variable” is genetic and in the region of 
linkage disequilibrium (being correlated) with the SNP.  Thus, the theorem’s 
condition that is violated has to be the independence of the SNP genotype and 
“the third variable” in cases.  In other words, the theorem identifies a potential 
source of the “missing heritability” problem to be the dependence of the SNP 
genotype and “the third variable” in cases. 

3. PRECISE CONDITIONS THAT MAKE ODDS RATIOS CLOSE 
TO 1.0 

Let us quantify this dependence in cases and identify when the marginal 
OR estimate of a SNP gets close to 1.0 in spite of its strong association (not as a 
single SNP, but together with “the third variable”) with the disease.  To simplify 
the discussion without loss of generality, consider a binary “third variable” and 
indices i and j for the ith genotype of the SNP of interest (i = 0, 1) and the jth 
category of “the third variable” (j = 0, 1).   

The independence of the SNP genotype and “the third variable” in cases 
implies that there is no interaction between the two, i.e., the conditional OR of the 
disease comparing the SNP genotype 1 vs. 0, conditioned on “the third variable”, j 
= 0 or 1, does not change between the categories of “the third variable”, i.e., 
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=1| 1|0jOR OR , where 1|jOR  is the conditional OR of the disease comparing the SNP 
genotype 1 vs. 0, conditioned on being in the jth category of “the third variable”.  
Thus, the departure from the independence can be expressed by 

δ δ= +1|1 1|0(1 ) with non‐zero   (>‐1).OR OR   Then, as shown in Appendix B, the 
marginal OR, denoted by OR, that is estimated in the single-SNP GWAS analysis 
ignoring “the third variable” is given by: 

 
δ

⎧ ⎫⎛ ⎞×⎪ ⎪= × + +⎨ ⎬⎜ ⎟×⎪ ⎪⎝ ⎠⎩ ⎭
00 00

1|0
01 01

1 / 1 ,
p odds

OR OR
p odds   

where ijp
 
be the proportion of subjects with the ith genotype of the SNP and the jth 

category of “the third variable” among controls, and ijodds  be the ratio of this 
proportion among cases to ijp , the same proportion among controls. 

According to the equation, the marginal OR is close to 1.0 systematically 
in the population, in spite of the SNP’s association with the disease risk in only 
two scenarios: (A) 1|0OR  is greater than 1.0 but δ  is negative and thus the 
marginal OR gets attenuated towards 1.0; and (B) while 1|0OR  is close to 1.0, 

1|1OR  is not with a positive δ, but the factor in the parenthesis ( ) of the equation is 
large and thus the marginal OR gets close to 1.0.  These correspond to the 
following two specific forms of interaction. 

Interaction of Redundancy/Masking 

This form occurs when the SNP is strongly associated with the increased 
disease risk in the absence of “the third variable” ( 1|0OR  is greater than 1.0), but 
the presence of “the third variable” masks the SNP-disease association.  The 
marginal OR gets close to 1.0 under this scenario if “the third variable” is 
prevalent (in the SNP=0 group) and/or strongly positively associated with the 
disease (in the SNP=0 group).   

For example, under so-called “genetic heterogeneity”, two or more SNPs 
may be associated with disease risk such that either is sufficient to modify disease 
risk, but neither is necessary.  They are redundant and the presence of both does 
not result in the sum of the two effects.  These are illustrated by broken lines in 
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Figure 1.  As a specific numerical example, 
δ γ= = = − = ×1|0 01 00 01 0010.0 / ,   0.9,  and OR odds odds p p  would yield the marginal 

OR = 1.8, 1.2, and 1.1 for γ = 1, 5, and 9, respectively.  The OR of 10.0 for each 
SNP in the absence of the other can be attenuated to the marginal OR that is close 
to 1.0, depending on the prevalence of the other. 
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Figure 1. Marginal ORs of SNP-disease associations under the 
epistasis/interaction of redundancy/masking.  The conditional ORs of SNP-
disease associations in the absence of “the third variable” are set to be 2.0 (black), 
10.0 (blue), and 50.0 (red).  The solid lines show the marginal ORs when “the 
third variable” itself does not modify disease risk, while the broken lines show the 
marginal ORs when “the third variable” and the SNP modify disease risk by the 
same multiplicative factor in the absence of the other.  These show that the 
prevalence of “the third variable” has to be very high for the marginal ORs to 
become below 1.5 (the green broken-dotted line) as seen in GWAS. 
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Another example may involve a prevalent factor, genetic and/or non-
genetic, as “the third variable” which masks SNPs’ associations with disease risk.  
In this case, the prevalent factor does not have to be associated with the disease 
risk so long as it is prevalent.  These are illustrated by solid lines in Figure 1.  As 
a specific numerical example, 

δ γ= = = − = ×1|0 01 00 01 0010.0,   / 1.0,   0.9,  and OR odds odds p p  would yield the 
marginal OR = 1.8, 1.4, and 1.2 for γ = 10, 20, and 50, respectively.  The OR of 
10.0 for the SNP in the absence of the prevalent factor that is not associated with 
the disease risk, can be attenuated to the marginal OR that is close to 1.0, 
depending on the prevalence of the prevalent factor.  This example may be more 
plausible than the previous one above because the previous example puts the 
majority of the population at higher risk.  See Table 1 for a real-data example 
from a GWAS study of Crohn’s Disease [WTCCC, 2007].  Specifically, in the 
Crohn’s Disease GWAS data of Wellcome Trust Case Control Consortium, the 
marginal OR estimate of the disease for the CC genotype of rs6518932 is 1.01.  
The corresponding conditional OR estimate, given “the third variable” 
(rs5999715’s genotype) being equal to AA/AC, is 61.80.  The strong SNP-disease 
association in the absence of “the third variable”, indicated by the conditional OR 
estimate of 61.80, is masked by the prevalent “third variable” (99.4% of the 
control group is rs5999715=CC) into the marginal OR of 1.01. 

Table 1. An illustration of “interaction of masking” with real GWAS data 

Disease 
Overall 

Case Control 

Marginal 

OR  

1 (CC) 1243 2084 SNP 
rs6518932 0 (TT/TC) 502 851 

1.01 

 

Disease Third variable 
(rs5999715) 

= 0 (AA/AC) Case Control 

Conditional 

1|0OR  

1 (CC) 206 5 SNP 

rs6518932 0 (TT/TC) 8 12 
61.80 
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Note that, while the discussion above, including Figure 1, Table 1, and the 
specific numerical examples considered risk-elevating SNP-disease associations 
only, the same attenuation of marginal ORs occurs for risk-reducing SNP-disease 
associations: this also applies to Figure 2 and its numerical examples below.  
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Figure 2. Marginal ORs of SNP-disease associations under the 
epistasis/interaction of concurrence.  The conditional ORs of SNP-disease 
associations in the presence of “the third variable” are set to be 2.0 (black), 10.0 
(blue), and 50.0 (red).  The solid lines show the marginal ORs when “the third 
variable” itself does not modify disease risk in the low-risk genotype group of the 
SNP: this is the mirror image of the solid lines in Figure 1.  The two broken lines 
above and below each solid line represent the same scenario as the solid line 
except that “the third variable” increases and decreases, respectively, disease risk 
by two-fold in the low-risk genotype group of the SNP.  The prevalence of “the 
third variable” has to be less than 5.6% to make the marginal OR less than 1.5, 
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when the conditional ORs are 10.0 and 1.0 in the presence and absence, 
respectively, of “the third variable.”    

Interaction of Concurrence  

This form occurs when the SNP is strongly associated with the disease risk 
only in the presence of a third factor (i.e., both factors are required).  The 
marginal OR gets close to 1.0 under this scenario if “the third variable” is 
uncommon (in the SNP=0 group) and/or strongly negatively associated with the 
disease (in the SNP=0 group).  For example, modification of disease risk may 
require multiple factors, genetic and/or non-genetic, to take place concurrently, 
similar to the set of multiple mutations required in multistage carcinogenesis for a 
cancerous cell to develop.  These are illustrated in Figure 2.  As a specific 
numerical example, 

δ γ= = = = = ×1|0 01 00 1|1 01 001.0 / ,   10 ( 9),  and OR odds odds OR p p  would lead to the 
marginal OR = 1.8, 1.4, and 1.2 for γ = 1/10, 1/20, and 1/50, respectively, in spite 
of each factor’s 10-fold modification of disease odds in the presence of the other. 

The two forms of interaction are, in fact, equivalent: the same 
phenomenon can be described in two different ways.  For example, masking by a 
prevalent “third variable” of the SNP-disease association in the absence of “the 
third variable” can be considered as the concurrence of SNP and the uncommon 
absence of “the third variable”.  Also, one’s risk elevation can be derived from the 
other’s risk reduction by switching the coding between 0 and 1 for the SNP and 
that for the third variable.  Nevertheless, it is useful to discuss both forms at least 
initially as the equivalence is not immediately clear.   

4. CONCLUSION 

In summary, the statistical reasoning above shows that the “missing 
heritability” problem may be solved if the specific form of interaction, namely, 
the interaction of concurrence with relatively uncommon genetic and non-genetic 
factors, is fully explored, assuming that heritability information itself is not 
missing in GWAS data.  The specific form of interaction has been largely 
unexplored in GWAS where the standard data analysis examines each single SNP 
one at a time.  In particular, if the etiology of the disease is known to have 
substantial genetic components and it is explained little by GWAS findings, 
exploration of interaction of concurrence with relatively uncommon genetic and 
non-genetic factors, may recover the “missing heritability” and identify genetic 
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components with appreciable ORs.  While existing tools such as logic regression 
[Ruczinski et al., 2003] may be useful for such explorations of GWAS data, it 
would be advantageous if tools are developed specifically targeting the interaction 
of concurrence with relatively uncommon genetic and non-genetic factors. 

5. SUPPLEMENTARY MATRIALS 

APPENDIX A: Proof of the theorem for GWAS scenario 

Let ijp and ijodds
 

be the proportion among controls and the odds of 
disease, respectively, with the ith genotype of the SNP of interest (i = 0, 1) and the 
jth category of “the third variable” (j = 0, 1, …, J).  The marginal OR of the 
disease comparing the SNP genotype 1 vs. 0, ignoring the third variable, and the 
corresponding conditional OR 1|jOR  in the jth category of “the third variable” are 
given by: 

= =

= =

×
= =

×

∑ ∑

∑ ∑

1 1 1
0 0

1| 1 0

0 0 0
0 0

( ) /

,    / .
( ) /

J J

j j j
j j

j j jJ J

j j j
j j

p odds p

OR OR odds odds
p odds p

  

The condition of the theorem is separated into: 

(1) Non trivial case where the SNP genotype is independent of the third variable 
in both cases and controls; and 

(2) Trivial case where the third variable is independent of the case-control status 
in both SNP-genotype groups. 

Proof of sufficiency 

(1) Non trivial case  

If the SNP and “the third variable” are independent in controls, then 
× = ×1 00 0 10j jp p p p  for all j. 
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If the SNP and “the third variable” are independent in cases, then 
× × × = × × ×1 1 00 00 0 0 10 10( ) ( ) ( ) ( )j j j jp odds p odds p odds p odds  for all j. 

Therefore, = = =1 0 1| 10 00 1|0/ ( ) / ( )j j jodds odds OR odds odds OR  for all j, and 
also  

= =

= =

×
= =

×

∑ ∑

∑ ∑

1 1 1
0 0

1|

0 0 0
0 0

( ) /

( ) /

J J

j j j
j j

jJ J

j j j
j j

p odds p

OR OR
p odds p

 for all j. 

(2) Trivial case 

If “the third variable” and the disease are independent in both SNP 
genotype groups, then = =1 10 0 00/ / 1j jodds odds odds odds  which implies 

= =1| 1|0 .jOR OR OR  

Proof of necessity 

If = =1| 1 0( / )j j jOR OR odds odds  for all j, then 

= = = =

= = = =

× ×
= = ×

× ×

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

1 1 1 1 0 1
0 0 0 0

0 0 0 0 0 0
0 0 0 0

( ) / ( ) /

( ) / ( ) /

J J J J

j j j j j j
j j j j
J J J J

j j j j j j
j j j j

p odds p p odds p

OR OR
p odds p p odds p

 

and, therefore, 
= = = =

× = ×∑ ∑ ∑ ∑1 0 1 0 0 0
0 0 0 0

( ) / ( ) /
J J J J

j j j j j j
j j j j

p odds p p odds p .  This is satisfied 

if and only if:  

either =0 00jodds odds  or 
= =

=∑ ∑1 1 0 0
0 0

/ /
J J

j j j j
j j

p p p p  for all j, that is, either 
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(2) Trivial case holds because =0 00jodds odds  for all j which implies 
=1 10jodds odds  from = =1| 1 0( / )j j jOR OR odds odds , and therefore “the third 

variable” is independent of the case-control status in both SNP-genotype groups; 
or 

(1) Non-trivial case holds because 
= =

=∑ ∑1 1 0 0
0 0

/ /
J J

j j j j
j j

p p p p  for all j, implying the 

independence of the SNP and “the third variable” in controls 

(
= =

=∑ ∑1 0 1 0
0 0

/ /
J J

j j j j
j j

p p p p ), and the same applies to cases because of 

= =1| 1 0( / )j j jOR OR odds odds , which implies 

(
= =

× × = × ×∑ ∑1 1 0 0 1 1 0 0
0 0

/ ( ) ( ) / ( )
J J

j j j j j j j j
j j

p odds p odds p odds p odds ). 

APPENDIX B: Marginal OR ignoring “the third variable” when the condition of 
the theorem is not met in cases 

For ease of the discussion without loss of generality, we will consider the 
scenario with a binary third variable (j=0, 1).  Based on the Mendelian 
Randomization, the SNP and “the third variable” are independent in controls, i.e., 

× = ×11 00 01 10p p p p .  Let =1|0 10 00/OR odds odds  denote the conditional OR of the 
disease comparing the SNP genotype 1 vs. 0, in the category 0 of the third 
variable.  Then, the marginal OR ignoring “the third variable” is given 
b
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× + × +
=

× + × +

× + ×
=

× + ×
× + ×

=
× + ×
× × + × ×

=

11 11 10 10 11 10

01 01 00 00 01 00

10
11 11 10 10

00

01 01 00 00

01 11 00 10

01 01 00 00

01 1|0 01 00 1|0

( ) / ( )
( ) / ( )

( ) /

( )

( )
( )

(

p odds p odds p p
OR

p odds p odds p p

p
p odds p odds

p
p odds p odds

p odds p odds
p odds p odds

p OR odds p OR o δ
δ

δ

× ×
+ = +

× + × × + ×

⎧ ⎫⎛ ⎞×⎪ ⎪= × + +⎨ ⎬⎜ ⎟×⎪ ⎪⎝ ⎠⎩ ⎭

00 01 1|0 01
1|1 1|0

01 01 00 00 01 01 00 00

00 00
1|0

01 01

) ( )
   if  (1 )

( ) ( )

1 / 1 .

dds p OR odds
OR OR

p odds p odds p odds p odds

p odds
OR

p odds
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