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Abstract

This note concerns a goal common to many epidemiologic studies; mainly the estimation of

the adjusted odds ratio of a binary exposure as it relates to the risk of a binary disease outcome.

Because confounding bias is of serious concern in observational studies, investigators typically

estimate an adjusted odds ratio in a multivariate logistic regression which conditions on a large

number of potential confounders. It is well known that modeling error in speci�cation of the

confounders can lead to substantial bias in the adjusted odds ratio for exposure. As a remedy,

Tchetgen Tchetgen et al (Biometrika 2010 vol. 97(1), pages 171-180 ) recently developed so-called

doubly robust estimators of an adjusted odds ratio by carefully combining the standard logistic

regression with the reverse regression analysis in which exposure is the dependent variable and

both the outcome and confounders are the independent variables. Double robustness implies that

only one of the two modeling strategies needs to be correct for valid inferences about the odds ratio

parameter. This note aims primarily to introduce this recent methodology to the epidemiologic

literature by presenting a simple closed-form doubly-robust estimator of the adjusted odds ratio

for binary exposure. A SAS macro is given in an appendix to facilitate the use of the approach in

routine epidemiologic practice and a simulated data example is also provided for the purpose of

illustration.
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Many epidemiologic studies aim to estimate using observational data, an adjusted odds ratio for a

binary exposure A as it relates to the risk of a binary disease outcome Y , conditional on a moderate

to large number of potential confounders L:1;2 Logistic regression is widely used as the standard

analytic tool for estimating the exposure-disease adjusted odds ratio which we denote exp( �), by

�tting using maximum likelihood estimation, a working model

logitfPr (Y = 1jA;L; ; �)g = �1 + �T2 L+  A (1)

for the conditional probability of the occurrence of the outcome given exposure level A and con-

founders L, where � = (�1; �2). Throughout, we assume that as encoded in model (1), the e¤ect

of exposure is homogeneous on the odds ratio scale; that is we assume that for any individual

with covariates L; the log-odds ratio for the exposure is equal to the constant  �; the same for

all values of L; so that  � is the true value of  in model (1). It is important to note that, in

the event that unmeasured confounding is present,  � will generally fail to have a causal inter-

pretation. However, it remains a well-de�ned summary measure under model (1) of the partial

association between exposure and outcome after adjustment for the measured covariates L and

it often constitutes the primary target of inference in epidemiological analyses. Our discussion

concerns inference about the parameter  � regardless of whether or not it has a meaningful causal

interpretation, i.e. whether or not L is su¢ ciently rich to fully adjust for confounding.

Reverse regression and double robustness

Instead of the standard logistic regression described above, an alternative approach to estimate

 � less commonly used in epidemiologic practice, entails �tting a working logistic model for the

reverse regression of A on (Y; L); such as
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logitfPr(A = 1jY; L; ; �)g = �1 + �02L+  Y (2)

where � = (�1; �02)
0 : Crucially, the parameter  is shared between models (1) and (2) re�ecting

the following key property of odds ratios:

exp ( �) =
Pr(Y = 1jA = 1; L) Pr(Y = 0jA = 0; L)
Pr(Y = 1jA = 0; L) Pr(Y = 0jA = 1; L) (3)

=
Pr(A = 1jY = 1; L) Pr(A = 0jY = 0; L)
Pr(A = 1jY = 0; L) Pr(A = 0jY = 1; L)

therefore, the models (1) and (2) represent two genuine (i.e. independent) opportunities to correctly

estimate the exposure e¤ect; in the sense that the two working models are perfectly compatible

for any value of � and �. However, even if model (3) is known to hold, in practice, it is generally

impossible to know with certainty which, if any, of regression models (1) and (2) is correctly

speci�ed. The best that one can hope for is that these two distinct estimation strategies can be

combined into a single overall strategy which is guaranteed in large samples, to deliver a correct

estimate of  � provided that one of the two models (1) and (2) is correctly speci�ed, without

necessarily knowing which is correct. Tchetgen Tchetgen and colleagues have recently developed a

large class of estimators with precisely this desirable property. Stated more precisely, the methods

of Tchetgen Tchetgen et al3 yield a speci�c class of estimators of  � that are asymptotically

unbiased if one, but not necessarily both of the following is true:

(i) the working model Pr(A = 1jY = 0; L;�) is correctly speci�ed even if Pr (Y = 1jA = 0; L; �)

is incorrectly speci�ed,

(ii) the working model Pr (Y = 1jA = 0; L; �) is correctly speci�ed even if the working model
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Pr(A = 1jY = 0; L;�) is incorrectly speci�ed.

Unfortunately, the estimator of Tchetgen Tchetgen et al3 is not easily obtained without special

software, thus seriously impeding its routine use. This computational challenge inspired the SAS

macro of Tchetgen Tchetgen and Rotnitzky4 which implements the optimal doubly-robust esti-

mator via an iterative procedure which they called the ProRetroSpec algorithm. Here, the above

computational challenge is further addressed in the simple case of a binary exposure, and a simple

closed-form doubly robust estimator is provided which is easy to compute using standard software.

Suppose that independent and identically distributed data on (A; Y; L) is observed on n in-

dividuals in whom the homogeneous odds ratio model (3) is known to hold. Let bPi = Pr(Ai =

1jY = 0; Li; b�) where b� denotes the maximum likelihood estimator of � using data on non-cases

only (i.e. with Y = 0) under model (2); similarly, let bBi = Pr(Yi = 1jAi = 0; L; b�) where b�
denotes the maximum likelihood estimator of � using data on the unexposed subsample only (i.e.

with A = 0) under model (1) : Let Wi = w(Li) denote a user-speci�ed function of Li:A simple

closed-form estimator of  � is de�ned as b (w) =:
log

P
iWi

n
AiYi

�
1� bPi��1� bBi

�o
P

i Wi

n
Ai (1� Yi)

�
1� bPi� bBi + (1� Ai)Yi bPi �1� bBi

�
� (1� Ai) (1� Yi)

�
1� bPi��1� bBi

�o

For a �xed choice (possibly estimated) of w(�), the resulting estimator b (w) is doubly-robust and
thus converges to  � (in probability) with increasing sample size, provided that either condition

(i) or (ii) holds, but not necessarily both. A formal argument establishing double robustness of

b (w) is given in an online appendix for completeness. The choice for the weight function w(�)
only a¤ects e¢ ciency, and the optimal choice of the weight w (�) is easily inferred from a result in

Tchetgen Tchetgen et al3, and is beyond the scope of this note. Sample SAS code for the simple
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estimator b = b (1) is provided in the online appendix, along with code for computing standard
errors that correctly account for the variation in bPi and bBi:

A data illustration

We brie�y illustrate the application of the doubly robust macro in a simulated data set. For this

purpose, we generated independent and identically distributed data on 2000 individuals under mod-

els (1) and (2) with covariates L = (L1; L2; L3 = L1�L2); where (L1; L2) are independent standard

normal;  � = 0:5; and regression coe¢ cients � = (0:5;�0:3; 0:5;�0:5)0 ; � = (0:5; 0:5;�0:5;�0:5).

In order to illustrate the presence of bias under model mis-speci�cation of (1), we obtained es-

timates of  � using the standard (prospective) logistic regression (1) both with and without the

interaction term L3 which produced b 1p = 0:56 (s.e.=0.11) and b 2p = 0:76 (0.10) respectively. Sim-
ilarly, we obtained estimates of  � in the reverse regression (2) both with and without a term for

the interaction L3 which gave b 1r = 0.53 (s.e.=0.11) and b 2r = 0:75 (s.e.=0.10) respectively. Fi-

nally, recall that the doubly robust estimator uses both models (1) and (2) to estimate  �, and we

aim to show that only one model needs to be correct for valid inference. Thus, we obtained three

doubly robust estimators. the �rst estimator b 1dr = 0:54 (s.e.=0.11) used correct models for (1)

and (2) : The second estimator b 2dr = 0:55 (s.e.=0.10) used the correct outcome regression model
(1) but mis-speci�ed the exposure model (2) by leaving out the interaction, while b 3dr = 0:56

(s.e.=0.10) was obtained under the reversed situation, that is by mis-specifying (1) but with a

correct speci�cation of the model (2) :

As one would expect, both logistic models (1) and (2) are consistent under correct model

speci�cation and are severely biased when the interaction between confounders is omitted. This

example nicely illustrates the doubly robust property, since the doubly robust estimator is consis-

tent in the absence of modeling error, and it agrees with the outcome regression estimate b 1p when
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the latter is consistent, and it similarly agrees with the reverse regression b 1r when the latter is
consistent. Therefore, this example provides an empirical con�rmation of the theoretical property

that the doubly robust approach is consistent as long as at least one of models (1) and (2) is

correct, without knowing which one holds. For completeness, we provide an example of the macro

call used to estimate b 2dr :
%dr_odds(data=_cero_,y=outcome, a=exposure, oddsY=l1 l2, oddsA=l1 l2 l3,sample=2000) ;

where the �rst argument to the macro gives the name of the data set which contained the vari-

ables (outcome,exposure, l1,l2,l3); the second argument speci�es the outcome variable; the third

argument speci�es the exposure variable; the fourth argument lists the covariates to be included

in the outcome regression model (1) ; the �fth argument lists the covariates to be included in the

exposure model (2); and the �nal argument sets the sample size.

Final remarks

In closing, we note that the doubly robust methodology described herein generalizes to polytomous

and continuous exposure, and can also incorporate e¤ect modi�cation of the exposure-outcome

odds ratio by components of L; although closed-form estimators as obtained herein are generally

not available in such more general settings.3 Additionally, it is worth noting that because the odds

ratio e¤ect measure generally remains identi�ed under a (matched) case-control design, the doubly

robust methodology described herein equally applies under such outcome dependent sampling

designs.4
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APPENDIX

Proof of double robustness:

The proof follows from noting that b (w) solves the equation:

0 =
X
i

Ui

�b ; b�; b��
=
X
i

Wi

n�
Ai � bPi��Yi � bBi

�
exp

�
� b (w)AiYi�o

therefore b (w) converges to  � only if  � satis�es the population equation
0 = E

�
W
��
A� P#

� �
Y �B#

�
exp (� �AY )

	�

where
�
P#; B#

�
is the probability limit of

� bP ; bB� ;and E indicates expectation. We show that

the latter property holds provided that either P# = Pr(AjY = 0; L) or B# = Pr(Y jA = 0; L) but

both do not necessarily hold. consider the case where P# = Pr(AjY = 0; L); then note that

f(A = ajY; L) = f(A = ajY = 0; L) exp ( �aY )P
a� f(A = a�jY = 0; L) exp ( �a�Y )
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and

E
�
W
�
(A� P )

�
Y �B#

�
exp (� �AY )

	
jY; L

�
=
X
a

�
W
�
(a� P )

�
Y �B#

�
f(A = ajY; L) exp (� �0Y )

	�
=
X
a

�
W

�
(a� P )

�
Y �B#

� f(A = ajY = 0; L) exp ( �aY ) exp (� �aY )P
a� f(A = a�jY = 0; L) exp ( �a�Y )

��

=
X
a

�
W

�
(a� P )

�
Y �B#

� f(A = ajY = 0; L)P
a� f(A = a�jY = 0; L) exp ( �a�Y )

��

= 0

since
P

a (a� P ) f(A = ajY = 0; L) =
P

a (a� f(A = 1jY = 0; L)) f(A = ajY = 0; L) = 0: The

proof is completed by a symmetric argument for the other case.

Asymptotic variance formula:

We �rst note that b� solves the score equation
0 =

X
i

S�;i (�)

=
X
i

(1� Yi)(Ai � Pr(A = 1jY = 0; L;�)[1; L]
0

and b� solves the score equation
0 =

X
i

S�;i (�)

=
X
i

(1� Ai)(Yi � Pr(Y = 1jA = 0; L; �)[1; L]
0

The large sample variance of b (w) can be derived by a standard Taylor expansion and is consis-
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tently estimated by: P
i fUi ( ; b�; b�) +Qi +Rig2nP

i
@Ui( ;b�;b�)

@ 
j = b 

o2
where

Qi = �

8<:X
i

@Ui

�b ; �; b��
@�

j�=b�
9=;
(X

i

@S�;i (�)

@�
j�=b�

)�1
S�;i (b�)

Ri = �

8<:X
i

@Ui

�b ; b�; ��
@�

j�=b�
9=;
(X

i

@S�;i (�)

@�
j�=b�

)�1
S�;i (b�)

We emphasize that this variance estimator is nonparametric in the sense that it converges to the

asymptotic variance of b irrespective of whether any of � bP ; bB� is consistent.
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Sample SAS Code

/*

Input to the macro:

data=Name of data set;

y=name of binary outcome variable;

a=name of binary exposure variable;

oddsY = list of variables to include in the outcome regression model,

e.g."oddsY=gender age education" ;

oddsA=list of variables to include in the exposure regression model,

e.g "oddsA=gender age education age*gender" ;

sample= sample size;

Output of the macro:

psi=doubly robust estimator of the log-odds ratio

se_dr =standard error of doubly robust estimator

*/

%macro dr_odds(data= ,y=, a=, oddsY=, oddsA=,sample=) ;

data cero_bis;set &data; retain id 0;

id=id+1;

y_bis=&y;

a_bis=&a;

if &a=1 then y_bis=.;

if &y=1 then a_bis=.;

int=1;
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run;

proc logistic data=cero_bis descending;

model y_bis=&oddsY;

output out=predy_bis p=py;

run;

proc logistic data =cero_bis descending;

model a_bis=&oddsA;

output out =preda_bis p=pa;

run;

data dr_estimate; merge predy_bis preda_bis; by id; retain num denum 0;

num=num+&a*&y*(1-py)*(1-pa);

denum=denum+(1-&a)*&y*(1-py)*pa+&a*(1-&y)*py*(1-pa)-(1-&a)*(1-&y)*pa*py;

if id=&sample then do; psi_dr=log(num/denum);output; end;

run;

proc iml;

use cero_bis ;

read all var {id} into id;

read all var {int} into int;

read all var {int &oddsY} into l_y ;

read all var {int &oddsA} into l_a;

read all var {&y} into y;

read all var {&a} into a;

use predy_bis;

read all var {py} into py;
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use preda_bis;

read all var {pa} into pa;

use dr_estimate;

read all var {psi_dr} into psi;

U= (y-py)#exp(-psi*a#y)#(a-pa);

bread= 1/(((y-py)#exp(-psi*a#y)#(a-pa)#a#y)[+]);

cor_y=-t(py#(1-py) #exp(-psi*a#y)#(a-pa))*L_y;

score_y=(t((1-A)#L_y#py#(1-py))*(L_y#(1-A)))*t((y-py)#(1-A)#L_y);

cor_a=-t(pa#(1-pa) #exp(-psi*a#y)#(y-py))*L_a;

score_a=(t((1-y)#L_a#pa#(1-pa))*(L_a#(1-y)))*t((a-pa)#(1-y)#L_a);

meat_U=U+t(cor_y*score_y)+t(cor_a*score_a);

meat =t(u)*u;

se_dr= (bread*meat*bread)**.5;

create var from se_dr;

append from se_dr ;

print psi se_dr;

quit;

%mend;
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