
1 Introduction
Data from antenatal clinics (ANCs) in Botswana provide information on age, HIV
status, and geographic cluster (i.e. clinic) for women in their child-bearing years.
Such data are potentially useful for monitoring the HIV epidemic and for evaluating
the impact of HIV prevention strategies in different settings. Using existing methods
of surveillance is especially important because randomized studies of HIV prevention
strategies are very expensive and can be done only in a very limited number of
locations.

The analyses described below rely on publicly available data from ANCs in
Botswana (hiv.gov.bw/ uploads). To make use of these data, it is necessary to
adjust for correlation that arises due to geographic proximity of clinics and closeness
in age among women within clinics. Each antenatal clinic can be viewed as a clus-
ter. Within-cluster correlation may arise from similarity of prevalence rates among
women close in age, and between-cluster correlation may arise from similarity in
prevalence rates among clinics close in distance to one another. For example, people
in districts closer to each other may tend to be more similar in behavior or factors
related to susceptibility, or to have contacts within the same sexual networks.

The ANC data from Botswana motivate a generalized regression approach and
nonparametric model for describing the relationship between HIV prevalence and
covariates of interest. Natural cubic splines are a common choice for nonparametric
mean functions in general [2] and GEE approaches in particular [6]. Furthermore,
composite likelihood methods can be useful in cases where the sources of correlation
are complex [7]. A pairwise composite likelihood approach has previously been ap-
plied in a semi-parametric setting for binary data, where it was assumed that the
outcome variable was a function of a normally distributed spatial process [5].

2 Nonparametric estimation with an isotropic variance struc-

ture
Consider sites s = 1, ..., S and the corresponding N =

(
S
2

)
pairs of sites. We will

refer to the pair that includes sites w and t as pairwt, and the distance between sites
w and t as dwt. Within each site, measurements are available for the binary variable
(HIV status Y ∈ {0, 1}) and covariate (J age groups X ∈ {1, ..., J}) for each of the
ns women in site s, as well as the distance Ds of the site from the approximate center
of Gaborone. Our approach groups women within each site by covariate values, and
takes the logit of the proportion of HIV positive women as the observed outcome.
The model assumes the outcome logit(pwt,j) belongs to an exponential family and



that the systematic component of the exponential family is nonparametric. This
implies that logit(pwt,j) = ηwt,j = f(xwt,j), where η is the canonical link function,
and logit(p̂wt,j) = η̂wt,j is the observed data. Throughout, we model elements of f
using natural cubic splines, with f1, ..., fJ corresponding to the J covariate levels. A
function is a natural cubic spline on some interval [a, b] if it satisfies three conditions
on this interval: i) the function is cubic on all sub intervals, ii) the function has
continuous second and third derivatives at each knot of the spline, and iii) the second
and third derivatives are 0 at a and b. Furthermore, we will model the relationship
between prevalence and distance to Gaborone using a quadratic function, resulting
in a parameterization of η(µ) with µ = {f1, ..., fJ , β1, β2}, where β1 is the coefficient
on Ds and β2 is the coefficient on D2

s .
For such a model, the pairwise score equations from the penalized quasi-likelihood

for pairwt are

Φwt(µ) = Dt
wtV

−1
wt (η̂wt − η(µ))− λGµ

where Dwt = ∂ηwt/∂µ is a 2J × (J + 2) matrix of partial derivatives. The work-
ing covariance matrix for the response from pairwt is denoted Vwt = Cov(η̂wt) =

A
(1/2)
wt R(ρ)wtA

(1/2)
wt , where Awt is the diagonal matrix with element [j, j] equal to

1/(nw · p̂w,j · (1− p̂w,j)) and element [J + j, J + j] equal to 1/(nt · p̂t,j · (1− p̂t,j)) for
j ∈ {1, ..., J}. In our context, the correlation matrix is composed of sub-matrices
for covariates X and distances d. Specifically, we apply isotropic models [5], call-

ing B(ρx) the J × J correlation matrix for age with element B(ρx)ij = ρ
||i−j||
x , and

C(ρd, ρx, wt) = ρ
||dwt||
d B(ρx) the correlation matrix for age and distance. Then R(ρ)wt

is the 2J × 2J block matrix

R(ρ)wt =

[
B(ρx) C(ρd, ρx, wt)

C(ρd, ρx, wt) B(ρx)

]
with B(ρx) on the diagonal blocks and C(ρd, ρx, wt) on the off diagonal blocks. The
value of λ adjusts the degree of smoothing, and G is chosen so that Gf , the upper
J × J portion of G, satisfies

∫
[f ′′(t)]2dt = f tGf f while the remaining elements of G

are zeros [2, 6].
The estimating equations in this context are:

Φ(µ) =
S−1∑
w=1

S∑
t>w

Φwt(µ) = 0.



Applying a modified Fisher scoring algorithm yields the following iterative equation:

µ̂p+1 = µ̂p +

[
S−1∑
w=1

S∑
t>w

Dt
wtṼ

−1
wtDwt + λG

]−1
×

[
S−1∑
w=1

S∑
t>w

Dt
wtṼ

−1
wt (η̂wt − η(µ̂p))− λGµ̂p

]

where µ̂p is the pth iteration of the estimate for µ. The terms Ṽwt, Dt
wt, and η̂wt−η(µ̂p)

are evaluated using the pth iteration of µ. In our case, where the outcome variable
is given by the logit of the estimated proportion of those with HIV for a specific
covariate pattern, the variance and covariance structure can be derived from the
delta method and estimated as a function of the estimated p for each unique age
within a pairwise cluster. Therefore the only parameters left to be estimated are
those given by the within- and between-cluster correlation. Estimation of these
parameters can be based on a method-of-moments approach.

3 Large sample properties of the estimator
To demonstrate the consistency and asymptotic normality of an estimator defined
as the root of the function Φ(f), we make use of regularity conditions proposed by
Lindsay [7]. To specify these conditions, we define two matrices. The first is the
expected derivative of Φ(f),

I0 =
S−1∑
w=1

S∑
t=s+1

E

(
∂

∂f
Φ(w,t)(f)

)
.

The second, under regularity conditions, provides the asymptotic variance of f̂ :

I−1N = (I−10 )×

[
S−1∑
w=1

S∑
t=s+1

E(Φ(w,t)(f)ΦT
(w,t)(f))

]
× (I−10 )T .

The term IN is referred to as the Godambe information [7]. We provide the formal

proof that f̂ −→ f and I
−1/2
N (f̂ − f) −→ N(0, I) in the appendix.

Although analytical forms of the desired variances are available, they are not
always computationally feasible or convenient. To reduce the complexity of these
calculations, several procedures are available. Here we propose an analog to the
general empirical variance method [5]. First we make the assumption that N ×
E(ΦN(f)ΦN(f)T ) −→ Σ∞, which implies that there is some finite variance covariance
matrix for each pairwise cluster. Estimation of this matrix uses composite score



evaluations over M subregions where M < N . Each subregion is of sample size Sk
for k = 1, .....,M , and the estimate of Σ∞ is given by

Σ̂∞ =
1

M

M∑
k=1

SkΦSk
(f̂)ΦSk

(f̂)T .

The large sample variance of the vector f̂ can then be estimated using

Î−1N = (Î−10 )×
[

1

N
Σ̂∞

]
× (Î−10 ).

4 Simulations
We use simulated data similar to those from ANCs in Botswana to investigate the
bias and efficiency of the GEE smoothing spline estimator when ignoring correlation
versus when accounting for correlation. We consider J = 8 age groups and generate a
vector of the log odds of the probability of HIV infection (log(p/(1−p))) for each age
group as N(f(Xj),Σj) where f(u) = sin(.5u/π), and Σj is an isotropic covariance
matrix with ijth element equal to σ2ρ||i−j||. For simplicity we let σ = 1 and choose
ρ = .2. Next, with each value of p serving as a mean parameter, we generated 50
(scenario 1) and 100 (scenario 2) Bernoulli random variables, for each age, to act as
binary indicators of HIV prevalence. Finally, we assigned each observation randomly
to 1 of 5 clusters, so that all observations exhibit two sources of correlation, between-
and within-cluster correlation that are reflected in Σ. From each simulated data set,
we used both our nonparametric estimator, and a crude estimator that ignores the
correlation and calculates p as a sample proportion for each age. This was process
was repeated 500 times.

In order to assess the bias of the GEE smoothing spline that accounts for both
sources of correlation and the standard GEE that ignores correlation, we calculated
the pointwise sum of absolute deviation (SAD) for each method. We denote the

estimate of f , at the jth unique value of X, for the rth repetition as f̂
(r)
j , and the

pointwise average of f for the jth unique value of X from 500 repetitions as f̂ ∗j =∑500
r=1 f̂

(r)
j /500. From the true value of f for each value of X (i.e. f(u) = sin(.5u/π)

), we calculated the SAD as
∑J

j=1 | f̂ ∗j − f(x(j)) | [6]. The values of SAD are
0.0177 and 0.0171 (scenario 1 and scenario 2) for our spline estimator, and 0.0265
and 0.0263 (scenario 1 and scenario 2) for the crude estimator; thus our estimator
exhibits less bias than does the estimator that ignores the correlation for both sample
size scenarios.



Figure 1: Variance ratio of two smoothing spline estimators, one accounting for
correlation and the other assuming independence, from a simulation study.



Figure 1 displays the ratio of the variance the standard GEE estimator that
ignores correlation to that of our GEE spline smoothing estimator. For each value
of X our spline estimator has smaller variance. Ibrahim and Suliadi [6] show that
failing to account for within-cluster correlation also results in a more biased and less
efficient estimator.

5 Data analysis
Antenatal clinic data from 2009 are available from for 7331 pregnant women from 24
districts and 264 clinics in Botswana (www.hiv.gov.bw/uploads). We chose a subset
of 10 clinics in a region in and around the capital, Gaborone. Figure 2 shows a map
of these 10 clinics. Our focus is on the effects of proximity to Gaborone and of age
on HIV prevalence.

To estimate these effects we use the semi-parametric GEE spline model from sec-
tion 2.1. The observed outcome is the logit of the proportion of HIV positive women
in age group j and pairwt, logit(p̂wt,j) = η̂wt,j, where ηij = f(agej) + β1Ds + β2D

2
s ,

and Ds is distance from the approximate center of Gaborone. This model allows for a
baseline age effect [estimate and SE] that varies by distance from Gaborone. We as-
sume an isotropic correlation [estimates and SEs] structure, as used by Heagerty and
Lele [5], that takes into account distances among districts, as well as the difference
in ages groups. Within a district, the correlation structure reduces to AR(1). Choice
of this correlation structure reflects an assumption that women close in age have
more similar behaviors regarding both sexual activity and choice of partners than
women further apart in age. We also assume that people within same community, or
nearby community, have more similar risk than do those from communities further
apart. Zeger, Liang and Albert [9] point out that a misspecified working correlation
doesn’t affect the consistency of the parameter estimates of the mean function; this
property also holds for our methods. Also, for the purpose of demonstration, results
for several values of the smoothing parameter (1, 25, 100 and 250) are shown. Figure
3 presents the crude estimates of prevalence by age for all clinics combined as well
as the smoothed estimates of prevalence by age for Gaborone and districts that are
75 and 150 km from Gaborone.

6 Discussion
This paper combines the methods of Ibrahim and Suliadi [6] regarding spline esti-
mation with those of Heagerty and Lele [5] regarding spatial correlation in order
to estimate age-specific prevalence of HIV infection over geographic regions using



Figure 2: A map of the 10 antenatal clinics in and near Gaborone, Botswana used in
this study. Also shown are radii 100km (inner circle) and 200km (outer circle) from
Gaborone.



Figure 3: Crude prevalence of HIV by age group across 10 antenatal clinics in
Botswana and smoothed estimates for 0, 75, and 150 kilometers from Gaborone.
Results are provided for four different values of the smoothing parameter λ.



data from antenatal clinics. Such analyses require models for the age and geographic
correlation, and we illustrate our methods assuming isotropic correlation. Further
work is required to identify the best correlation structure for such settings. As men-
tioned above, correlation may arise from the positions in sexual networks occupied by
women of different ages and regions as well as age or spatial effects on the nature of
sexual behaviors and the prevalence of factors related to susceptibility. Investigation
of the properties of such networks and their implications for correlation structure can
ultimately provide structures that more fully reflect the process by which the data
are generated. Fortunately, as mentioned above, estimates remain consistent even if
the correlation structure is not correctly modeled.

Age-specific prevalence is useful for assessing the nature of HIV epidemic across
communities, and repeated splines over chronological time in the same community
can serve as a basis for estimation of incidence [4]. Future work is needed to develop
methods for estimation of incidence from such splines.

In the current application, results were shown for multiple values of the smooth-
ing parameter. Alternatively, the smoothing parameter could be estimated by cross
validation. Wu and Zhang [8] suggest leave-one-out cross-validated deviance (SCVD)
based on the deviance from a penalized quasi-likelihood (i.e. -2 × penalized quasi-
likelihood), and estimated value of the mean for the jth covariate pattern in pairwt
using f (−wt), which is the vector f obtained without the wtth pairwise cluster. How-
ever, this method is computationally intensive, even when using approximations as
described by Ibrahim and Suliadi [6].
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7 Appendix: large sample properties of f̂

7.1 Consistency of f̂

We use composite likelihood theory to establish the consistency of the estimator for
f [1, 3, 5, 7]. In particular, Heagerty and Lele [5] provide the following regularity
conditions for establishing consistency. First, define DN ⊂ Rn to be the domain over
which ΦN(f) is evaluated and call | DN | the cardinality of DN .
Proposition 1: Assume there exists α > 0 and a strictly increasing sequence of
intergers, denoted by mN , such that

∑
N≥1N

α | DmN
|−1<∞ and

∑
N≥1

Nα

(
| DmN+1

\DmN
|

| DmN
|

)2

<∞,

and the following conditions hold;

(i) ΦN(f) is continuous

(ii) supE [ΦN(f)] <∞ and supNE [N ×Φ2
N(f)] <∞

(iii)
∑S−1

w=1

∑S
t=w+1 DwtṼ

−1 −→ B∞, a finite limit

(iv) I
(1)
N −→ I

(1)
∞ where λ1, the minimum eigenvalue of I

(1)
∞ , is positive, and where

I
(1)
N =

∑S−1
w=1

∑S
t=w+1E [(∂/∂f)ΦN(f)]

(v) (∂/∂f)DwtṼwt is bounded uniformly in (w, t)

then f̂ −→ f .
Proof of Proposition 1: To establish consistency of our estimator, we will show
the equivalence between our conditions (i.) - (iv.) and those described by Heagerty
and Lele [5]. It is important to note that their asymptotic properties (R1, R2, and
R3 of section 4.4), are for a parameter that maximizes a composite likelihood, not a
function. But the analogous results will hold.

Condition (ii) is given by Guyon [3], and yields strong convergence of ΦN(f),
namely ΦN(f) −→ 0. Under conditions (i) and (iii), a Taylor series expansion of
E [ΦN(f)] is:

(f0 − f)TE [ΦN(f)] = (f0 − f)T I
(1)
N (f0 − f) + o ‖ f0 − f ‖2 .

This expression and condition (iv) are sufficient for condition (R2). Lemmas 2.2
and 3.2 provided by Crowder [1] show that condition (R3) is equivalent to the same



condition on (∂/∂f)ΦN(f). Therefore, condition (v) and the strong law of large
numbers are jointly sufficient for (R3). This condition can be verified in practice by
assuming bounded covariates and a bounded parameter space for f . Therefore all
the conditions of Proposition 1 have been met, implying consistency of f̂ .

7.2 Asymptotic Normality of f̂

Guyon [3] and Lindsay [7] proposed general conditions for the asymptotic normality
of the maximum likelihood estimator from a composite likelihood. Heagerty and
Lele [5] have also proposed conditions for a semi-parametric probit model. Here, we
restate conditions for our context.
Proposition 2: Consider the following conditions:

(a.) There exists an open neighborhood W of f ⊂ Rn over which ΦN(f) is continu-
ously differentiable, and there exists an integrable random variable q such that
for all elements of (∂/∂f)ΦN(f) and all α ∈ W , (∂/∂f)ΦN(α, Y ) < q(Y ).

(b.) There exists a limiting covariance matrix I
(2)
∞ such that I

(2)
N = N×E

[
ΦN(f)ΦN(f)T

]
where I

(2)
∞ > 0 and I

(2)
N > I

(2)
∞ for N ≥ m for some m.

(c.) There exists a sequence of matrices I
(1)
N such that I

(1)
N > I

(1)
∞ for N ≥ m for

some m and limN→∞

[
(∂/∂f)ΦN(f)− I(1)N

]
= 0 in probability.

Under these conditions

√
N
[
I
(2)
N

]
I
(1)
N (f̂ − f) −→ N(0, I).

Proof of Proposition 2: Condition (b.) implies that a central limit theorem can be

applied to ΦN(f) and therefore implies
√
N
[
I
(2)
N

]
ΦN(f) −→ N(0, I). By assuming

an exponential correlation decay, such as an isotropic correlation used by Heagerty
and Lele [5], condition (b.) is met. Conditions (a.) and (c.) are satisfied as a result
of (iv.) and (v.) in section 7.1. Under these conditions we can apply (3.4.5) of Guyon
[3] to establish the asymptotic distribution of our estimator.


