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Abstract

An important scienti�c goal of studies in the health and social sciences is increasingly to

determine to what extent the total e¤ect of a point exposure, treatment or intervention on a

subsequent outcome is mediated by an intermediate variable on the causal pathway between the

exposure and the outcome. A causal framework has recently been proposed for mediation analysis,

which gives rise to new de�nitions, formal identi�cation results and novel estimators of direct and

indirect e¤ects. In the present paper, the author describes a new inverse odds ratio-weighted

(IORW) approach to estimate within this causal framework, so-called natural direct and indirect

e¤ects. The approach which uses as a weight, the inverse of an estimate of the odds ratio function

relating the exposure to the mediator is universal in that it can be used to decompose total e¤ects

in a number of regression models commonly used in practice. Speci�cally, the approach may be

used for e¤ect decomposition in generalized linear models with a nonlinear link function, and in

a number of other commonly used models such as the Cox proportional hazards regression for a

survival outcome. The approach is simple and can be implemented in standard software provided
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a weight can be speci�ed for each observation. An additional advantage of the proposed approach

is that it easily accommodates multiple mediators of a categorical, discrete or continuous nature.

KEY WORDS:

1 Introduction

Mediation analysis is an important inferential goal for many studies in the health and social

sciences. In such studies, mediation analysis typically aims to quantify the extent to which a given

point exposure, treatment or intervention a¤ects the outcome of interest directly versus through

an intermediate variable on the causal pathway between the exposure and the outcome. Recent

developments in causal inference have provided a formalization of mediation analysis by providing

counterfactual de�nitions, su¢ cient conditions for identi�cation and a number of novel statistical

methods to estimate direct and indirect e¤ects (Robins and Greenland, 1992, Pearl, 2001, Avin et

al, 2005). The current paper considers the estimation of natural direct and indirect e¤ects (Robins

and Greenland, 1992, Pearl, 2001). The natural (also known as pure) direct e¤ect captures the

e¤ect of the exposure when one intervenes to set the mediator to the (random) level it would

have been in the absence of exposure (Robins and Greenland, 1992, Pearl 2001). Such an e¤ect

generally di¤ers from the controlled direct e¤ect which refers to the exposure e¤ect that arises

upon intervening to set the mediator to a �xed level that may di¤er from its actual observed value

(Robins and Greenland, 1992, Pearl, 2001, Robins, 2003). The controlled direct e¤ect combines

with the controlled indirect e¤ect to produce the joint e¤ect of the exposure and the mediator,

whereas, the natural direct and indirect e¤ects combine to produce the exposure total e¤ect. Pearl

(2001) previously noted that controlled direct and indirect e¤ects are particularly relevant for

policy making whereas natural direct and indirect e¤ects are more useful for understanding the
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underlying mechanism by which the exposure operates.

Su¢ cient conditions for identi�cation of natural direct and indirect e¤ects were given by Pearl

(2001, 2010); and related conditions can also be found in recent literature (Robins and Green-

land,1992, Pearl, 2001, Petersen et al 2006, Hafeman and Vanderweele, 2010, Imai et al, 2010);

for our purposes we shall adopt the assumptions formulated in Imai et al (2010ab) which are re-

produced in Section 2. These various assumptions lead to the nonparametric identi�cation of the

natural direct and indirect e¤ects in terms of the mediation functional of Pearl (2001,2010), which

is de�ned in Section 2. For the purpose of estimation, previous authors have considered parametric

methods (VanderWeele, 2009, VanderWeele and Vansteelandt, 2009,2010, Pearl, 2011) that posit:

(i) a model for the outcome given the exposure, mediator and pre-exposure variables,

(ii) a model for the mediator given exposure and pre-exposure variables.

and combine estimates of (i) and (ii) according to Pearl�s mediation formula (2001, 2011), to form

estimates of natural direct and indirect e¤ects. Unfortunately, when conditional mediation e¤ects

are sought given covariates, models and estimates of natural direct and indirect e¤ects, obtained

using the parametric mediation formula are restricted in their functional form by the choice of

models (i) and (ii). This is a potential limitation of the parametric mediation formula that is

rarely discussed but nonetheless deserves some consideration. There is potentially an issue with

the above approach particularly when either model (i) or model (ii) involves a non-linear link

function, in which case, the parametric mediation formula induces a non-standard model of the

conditional direct e¤ect and of the conditional indirect e¤ect; and thus of the conditional total

e¤ect. In this paper, a model for the natural direct or indirect e¤ect, or for the total e¤ect is

considered non-standard if it does not fall within the class of regression models typically used in

routine statistical applications; say a generalized linear model or a Cox proportional hazards model
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for a survival outcome. To further clarify this phenomenon, suppose that a logistic regression is

used in (i) to model a non-rare binary outcome, and that a logistic regression is used in (ii) to

model a non-rare binary mediator, then, the parametric mediation functional combines these two

standard models to produce a non-standard model of direct, indirect and total e¤ects. Speci�cally,

the logistic link function in (i) and (ii) dictates that the implied model for the regression of the

outcome on the exposure and the covariates does not match any of the standard models typically

used to estimate total e¤ects, rendering the resulting mediation inferences di¢ cult to interpret.

An alternative to reporting conditional e¤ects that resolves this di¢ culty, is to estimate marginal

natural direct and indirect e¤ects. This is the approach favored by Tchetgen Tchetgen and Shpitser

(2011a) who also address concerns about possible bias due to modelling error in either (i) or (ii)

and develop using modern semiparametric theory, multiply robust locally e¢ cient estimators of

marginal mean direct and indirect e¤ects; thus extending previous similar results for total e¤ects

to the mediation context. Tchetgen Tchetgen and Shpitser (2011b) further build on this theory

and propose similar multiply robust methodology to estimate parametric models for natural direct

and indirect e¤ects with an identity or log link function, conditional on a subset of pre-exposure

covariates, e¤ectively extending the work of van der Laan and Petersen (2005). Tchetgen Tchetgen

(2011) further develops the semiparametric approach in marginal regression models in a survival

context. Zheng and van der Laan (2011) build on the results of Tchetgen Tchetgen and Shpitser

(2010ab) and obtain alternative multiply robust locally e¢ cient targeted maximum likelihood

estimators of natural direct and indirect e¤ects on the mean di¤erence scale.

The previous discussion sheds light on an important distinction between the parametric ap-

proach for estimating the mediation formula versus the semiparametric approach in so far that

when conditional e¤ects are sought, the latter approach directly posits a standard model for nat-

ural direct and indirect e¤ects, and thus for the total e¤ect, within levels of covariates; whereas
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the former approach de�nes these e¤ects indirectly in terms of models (i) and (ii). Despite this

advantage, the semiparametric methods for conditional e¤ects developed by Tchetgen Tchetgen

and colleagues, and van der Laan and colleagues, only apply in models with an identity or log

link function, and do not allow for the use of any of the other link functions often encountered

in practice (e.g. logit, probit, or complementary-log link). Furthermore, semiparametric methods

have not yet been developed to make inferences about mediation e¤ects and thus to decompose

conditional total e¤ects in a Cox proportional hazards model. The main goal of this paper is

to address this gap in the causal mediation literature. To achieve this goal, a new inverse odds

ratio-weighted (IORW) approach is proposed for decomposing on a given scale total e¤ects into

natural direct and indirect e¤ects. The approach which uses as a weight, an estimate of the inverse

of:

(iii) the odds ratio function relating the exposure to the mediator within levels of covariates

is universal in that it can be used in a number of standard regression models commonly used

to estimate total e¤ects. Speci�cally, the approach may be used to decompose an exposure total

e¤ect into its direct and indirect components conditional on pre-exposure covariates, in generalized

linear models with a nonlinear link function, as well as in the Cox proportional hazards model for

a possibly right censored survival outcome. The approach is simple and can be implemented in

standard software provided a weight can be speci�ed for each observation. As we have indicated

above, IORW estimation requires a consistent estimate of the exposure-mediator conditional odds

ratio function given pre-exposure covariates. Such an estimate can be obtained by positing a

working model for:

(iv) the density of the exposure given the mediator evaluated at a reference value, say zero,

and pre-exposure covariates.
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Together models (i) and (iv) de�ne a model for the density of the exposure given the mediator

variable and covariates which can be estimated via standard logistic regression. An advantage of

this approach is that it readily scales with increasing number of mediators and thus easily accom-

modates multiple mediators of a categorical, discrete or continuous nature via logistic regression.

A doubly robust approach is also discussed whereby working models (ii) and (iv) are combined

to obtain a consistent estimate of the odds ratio function (iii) and therefore a consistent estimate

of direct and indirect e¤ects provided that the odds ratio model (iii) is correctly speci�ed, and at

least one of models (ii) or (iv) is correctly speci�ed, but both do not necessarily hold.

2 Identi�cation

Suppose i.i.d data on O = (Y;E;M;X) is collected for n subjects, where Y denotes the outcome

of interest, E is a binary exposure variable, M is a mediator variable with support S; known to

occur subsequently to E and prior to Y; and X is a vector of pre-exposure variables with support

X that confound the association between (E;M) and Y . To formally de�ne natural direct and

indirect e¤ects �rst requires de�ning counterfactuals. We assume for each possible level (e;m)

of the exposure and mediator variables; there exist a counterfactual variable Ye;m corresponding

to the outcome Y had possibly contrary to fact the observed exposure and mediator variables

taken the value (e;m): Similarly, for E = e, we assume there exist a counterfactual variable Me

corresponding to the mediator variable had possibly contrary to fact the exposure variable taken

the value e: To �x ideas, consider the task of decomposing on the mean scale, the conditional total
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e¤ect of E on Y given X in terms of natural direct and indirect e¤ects :


tot (X) =

total e¤ectz }| {
g�1 fE (Ye=1 jX)g � g�1 fE (Ye=0jX)g (1)

= g�1 fE (Ye=1;Me=1 jX)g � g�1 fE (Ye=0;Me=0jX)g

=

natural indirect e¤ectz }| {
g�1 fE (Ye=1;Me=1 jX)g � g�1 fE (Ye=1;Me=0jX)g+

natural direct e¤ectz }| {
g�1 fE (Ye=1;Me=0 jX)g � g�1 fE (Ye=0;Me=0jX)g:

= 
ind (X) + 
dir (X)

where E stands for expectation and g�1 is a user-speci�ed nonlinear link function. The above

decomposition reveals that identi�cation of direct and indirect e¤ects requires identi�cation of the

conditional mean of YeMe� within levels of X; where (e; e
�) 2 f0; 1g2: For identi�cation, we make

the following assumptions:

Consistency

if E = e ; then Me =M w.p.1,

and if E = e and M = m then Ye;m = Y w.p.1.

In addition, we adopt the sequential ignorability assumption of Imai et al (2010) which states

that for e; e� 2 f0; 1g:

Sequential ignorability

fYe�;m;Meg ?? EjX; (2)

Ye�;m ??M jE = e;X; (3)

where A ?? BjC states that A is independent of B given C; paired with the following:
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positivity

fM jE;X (mjE;X) > 0 w.p.1 for each m 2 S

Then, under the consistency, sequential ignorability and positivity assumptions, Imai et al

(2010) showed that the cumulative distribution function (CDF) of [YeMe� jX] is identi�ed by Pearl�s

mediation functional :

FYeMe� jX
(yjX = x) =

Z
S

FY jE;M;X (Y jE = e;M = m;X = x) fM jE;X (mjE = e�; X = x) d�(m)

(4)

where FY jE;M;X is the CDF of [Y jE;M;X] and fM jE;X is the conditional density of [M jE;X] :

This in turn implies under the above assumptions, identi�cation of various functionals of FYeMe� jX

typically of interest; in particular, the conditional mean E (Ye;Me� jX) is identi�ed from the observed

data; the hazard function of [Ye;Me� jX] is identi�ed from the observed data when Y entails a

censored failure time (provided the censoring process, and the outcome and mediator variables are

independent given (E; X)).

In this paper, we chose to work under the sequential ignorability assumption of Imai et al

(2010a,b) but we note that Robins and Richardson (2010) disagree with the label "sequential

ignorability" because its terminology has previously carried a di¤erent interpretation in the lit-

erature. Nonetheless, the assumption entails two ignorability-like assumptions that are made

sequentially. First, given the observed pre-exposure confounders, the exposure assignment is

assumed to be ignorable, that is, statistically independent of potential outcomes and potential

mediators. The second part of the assumption states that the mediator is ignorable given the

observed exposure and pre-exposure confounders. Speci�cally, the second part of the sequential
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ignorability assumption is made conditional on the observed value of the ignorable treatment and

the observed pretreatment confounders. We note that the second part of the sequential ignorabil-

ity assumption is particularly strong and must be made with care. This is partly because, it is

always possible that there might be unobserved variables that confound the relationship between

the outcome and the mediator variables even upon conditioning on the observed exposure and

covariates. Furthermore, the confounders X must all be pre-exposure variables, i.e. they must

precede E. In fact, Avin et al (2005) proved that without additional assumptions, one cannot

identify natural direct and indirect e¤ects if there are confounding variables that are a¤ected by

the exposure even if such variables are observed by the investigator. This implies that similar

to the ignorability of the exposure in observational studies, ignorability of the mediator cannot

be established with certainty even after collecting as many pre-exposure confounders as possible.

Furthermore, as Robins and Richardson (2010) point out, whereas the �rst part of the sequential

ignorability assumption could in principle be enforced in a randomized study, by randomizing E

within levels of X; the second part of the sequential ignorability assumption cannot similarly be

enforced experimentally, even by randomization. And thus for this latter assumption to hold, one

must entirely rely on expert knowledge about the mechanism under study. For this reason, it will

be crucial in practice to supplement mediation analyses with a sensitivity analysis that accurately

quanti�es the degree to which results are robust to a potential violation of the sequential ignorabil-

ity assumption. Methods to perform such sensitivity analyses are strictly beyond the scope of the

current paper, but see VanderWeele (2010), Imai et al (2010ab),Tchetgen Tchetgen and Shpitser

(2011ab) and Tchetgen Tchetgen (2011) for further detail.
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3 Model de�nition and estimation

3.1 Mediation for mean regression models

3.1.1 Estimating total e¤ects

In this section, mediation analysis in the context of mean regression is considered. Thus, suppose

that the total e¤ect of E; 
tot (X) is estimated by �tting the mean regression model

g�1 (E (Y jE = e;X = x; )) = e
tot (x; tot) e+ e
0 (x; 0) (5)

where under the consistency assumption and the ignorability assumption (2) ;

e
tot (x; tot) = 
tot (x)

is a parametric model for 
tot (x) with unknown parameter  tot; and

e
0 (x; 0) = g�1 fE (Ye=0jX)g

is a parametric model for the mean of Ye=0; with unknown parameter  0; and  T = ( T0 ;  
T
tot):

In practice, it is customary to specify a simple linear functional form for e
tot and e
0tot such as for
example

�
1; xT

�
 where  is of dimension (1 + dim(X)) ; but more elaborate possibly nonlinear

functions of x equally apply. For estimation suppose that  is estimated by the vector b which
satis�es the empirical �rst order condition:

0 = Pn
h
�tot

�
E;X; b �nY � E�Y jE = e;X = x; b �oi (6)
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where �tot

�
E;X; b � is a vector of size dim( ) ; and Pn [�] = n�1

P
i [�]i : A convenient choice

for �tot (e; x; ) is
@fe
tot(x; tot)e+e
0(x; 0)g

@ T
; however, one should note that the maximum likelihood

estimator in a generalized linear model with a mean speci�ed by (5), typically solves a score

equation of the form (6) and therefore the above class of estimating equations is quite general.

3.1.2 IORW estimation of direct e¤ects

Now, similarly to e
tot; let e
dir (x; �dir) denote a parametric model for 
dir (x) with unknown pa-
rameter �dir: To estimate natural direct e¤ects, we further assume that E (Ye;Me=0jX) is of the

parametric form:

g�1 fE (Ye;Me=0jX = x; �dir;  0)g = e
dir (x; �dir) e+ e
0 (x; 0) (7)

where � = (�dir;  0). As in the model for the total e¤ect of E, the function e
dir may be speci�ed
as a simple linear function of the covariates, but more general functional forms may also be used.

Let OR (M;EjX) denote the conditional odds ratio function relating M and E within levels of

X, that is

OR (M;EjX) =
fM jE;X (M jE;X) fM jE;X (M = m0jE = 0; X)
fM jE;X (M = m0jE;X) fM jE;X (M jE = 0; X)

(8)

=
fEjM;X (EjM;X) fEjM;X (E = 0jM = m0; X)

fEjM;X (E = 0jM;X) fEjM;X (EjM = m0; X)
(9)

where fEjM;X denotes the conditional density of [EjM;X] and m0 is a reference value for M: The

following result motivates our estimation strategy. Before stating the result, de�ne for any ��; the

function

U (��) = OR (M;EjX)�1�dir (E;X; �
�) fY � b(E;X; ��)g
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where b(e; x; ��) = g (e
dir (x; ��dir) e+ e
0 (x; �0)) and �dir is de�ned similarly to �tot:

Theorem 1: Under the consistency, sequential ignorability and positivity assumptions, and as-

suming model (7) is correctly speci�ed ; we have that U (��) is an unbiased estimating equation, in

other words, �� = � solves the population estimating equation

E fU (��)g = 0

According to the theorem, estimation of � under our assumptions requires estimation of the

odds ratio function OR (M;EjX) which is generally unknown: To proceed with inference, we

assume OR (M;EjX) follows a parametric model gOR (M;EjX;�1) with unknown parameter �1:

Then, based on the second representation (9) of the odds ratio function, we propose to estimate

� = (�0; �1) by �tting using maximum likelihood, the logistic regression model:

logitPr(E = 1jM = m;X = x;�) = loggOR (m; 1jx;�1) + log ÔDDS (x;�0) (10)

where log ÔDDS (x;�0) is a parametric model for the baseline log odds function logitPr(E =

1jM = m0; x) with unknown parameter �0: Let b�1 and gOR (m; 1jx; b�1) denote the MLEs of �1
and gOR (m; 1jx;�1) ; respectively. The estimator b� of � then solves the equation

Pn
n
U
�b�; b�1�o = 0

where for all (��; ��1) ; U (�
�; ��1) is de�ned as U (�

�) upon substitutingOR (m; 1jx; b�1) forOR (m; 1jx) :
Then, under the assumptions of Theorem 1, and the additional assumption that model (10) is cor-

rectly speci�ed,
p
n
�b� � �

�
is, under su¢ cient regularity conditions, asymptotically normal, with
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variance-covariance matrix consistently estimated by

b�1 = b
 b�b
 T

where b
 and b� are de�ned in the appendix. In practice, �b�; b�1� may be obtained by �tting
using standard software, a weighted generalized linear model with IOWR weight; a task easily

accomplished in most software packages, e.g. by using proc genmod in SAS. For inference, it is

natural to use b� to construct 95%CI for �; alternatively, the nonparametric bootstrap could be
used.

3.1.3 Estimation of indirect e¤ects

Upon obtaining e
dir �x; b�dir� and e
tot �x; b tot� using the steps outlined in the previous sections,
equation (5) produces the following estimator of the natural indirect e¤ect :

e
ind �x; b tot; b�dir� = e
tot �x; b tot�� e
dir �x; b�dir�

with consistent variance-covariance matrix b�x derived in the appendix.
An alternative approach

At this juncture, we should note that the above strategy for estimating 
dir and 
ind is asymmetric

in its treatment of direct and indirect e¤ects, and the approach clearly privileges 
dir which is

directly modeled while 
ind is deduced from 
dir and 
tot: In some settings, it may be of interest to

instead privilege the indirect e¤ect by directly specifying a model e
ind (x; �ind) for 
ind; in which
case, the counterfactual model (7) is de�ned in terms of 
ind and 
tot :

g�1 fE (Ye;Me=0jX = x; tot; �ind;  0)g = offset (e; x; tot)� e
ind (x; �ind) e+ e
0 (x; 0) (11)
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with o¤set:

offset (e; x; tot) = 
tot (x; tot) e

A consistent and asymptotically normal estimator
�b�yind; b y0� of (�ind;  0) in model (11) is obtained

by using the IORW approach described in the previous section upon substituting offset
�
e; x; b tot�

for the unknown o¤set. The variance-covariance matrix of the resulting estimator
�b�yind; b y0� is

provided in the appendix.

3.1.4 A comparison to the parametric mediation formula

As mentioned in the introduction, the parametric mediation formula approach involves estimating

a model for the mean regression of the outcome given the exposure, mediator and pre-exposure

variables. To �x ideas, suppose that the following simple model is used:

g�1 fE (Y jE = e;M = m;X = x;!)g = [1; e;mT ; xT ]! (12)

The approach also requires a model for the joint conditional density of [M jE;X] which we denote

f(M jE;X;�1; �) de�ned as followed:

fM jE;X(M jE;X;�1; �) =
fM jE;X(M jE = 0; X;�)gOR (M;EjX;�1)R

fM jE;X(mjE = 0; X;�)gOR (m;EjX;�1) d� (m) (13)

so that � parametrizes the baseline conditional density fM jE;X(M jE = 0; X); and the equation

in the above display makes explicit the dependence of the density of [M jE;X] on the odds ratio

function OR (M;EjX) : Then, the parametric mediation functional (4) produces the following
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expression for the counterfactual mean E fYeMe� jXg :

E fYeMe� jX = x;�; !; �1g =
Z
S

E (Y jE = e;M = m;X = x;!) fM jE;X(M = mjE;X;�1; �)d�(m)

This expression in turn produces analytic expressions for the natural direct and indirect e¤ects, and

for the total e¤ect in terms of (�; !; �1) : Consider the model for the mean of [Y jE;X] obtained with

the formula above E fY jE = e;X = x;�; !; �1g = E fYeMejX = x;�; !; �1g : Then, if as likely the

case when either Y orM is binary, one of the models used in the formula above involves a nonlinear

link function, then E fY jE = e;X = x;�; !; �1g will generally have a non-standard functional form,

and therefore will not correspond to a regression model within the class of generalized linear models

typically used to estimate total e¤ects. We emphasize that this phenomenon can arise even if g is

the identity link. For instance, if model (13) is a logistic regression modeling a binary mediator,

say logitfM jE;X(M = 1jE = e;X = x;�1; �) = �1 + [1; x
T ]�; The resulting model for the mean of

[Y jE;X] is of the form:

E (Y jE = e;X = x;�; !; �1) = [1; e; ep(e; x;�1; �); xT ]!
where ep(e; x;�1; �) = (

�
1 + exp(��1e� [1; xT ]�)

	�1
: Because the model in the above display

will seldom be of interest in the context of total e¤ects, mediation inferences obtained using the

above modeling framework may be di¢ cult to interpret. We should note that, there are speci�c

settings where the above approach remains appropriate. Perhaps the most common such setting

is one where both the outcome and mediator variables are continuous, and a linear regression

is used to estimate their respective mean functions. Then, the parametric mediation formula

is known to recover the classical Baron and Kenny (1986) approach and solely involves the mean
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regression parameters (VanderWeele and Vansteelandt, 2009). Settings also exist in which in which

the parametric mediation functional remains interpretable even though the outcome is a binary

variable (VanderWeele and Vansteelandt, 2009, 2010); but in general, as argued above, when

certain nonlinearities are present, the parametric mediation formula generally does not deliver

inferences that are easily interpretable.

Furthermore, the parametric mediation approach may be particularly challenging to implement

if M is multivariate (possibly with both continuous and categorical components), especially if g

in (12) is nonlinear, because the approach may require modeling the joint conditional density of

[M jE = 0; X] which may be di¢ cult to specify correctly.

In sharp contrast, as argued throughout, IORW estimation circumvents both of the above

di¢ culties. This is because IORW does not need a model for the density (or mean) of [Y jE;M;X]

or [M jE = 0; X], neither of which is directly of interest. In addition, as previously described,

multiple mediators are easily incorporated via multiple logistic regression such as (10) : IORW is

applied to the Cox proportional hazards regression in Section 3.2, but �rst, IORW is illustrated in

a data example.

3.1.5 A data example

In this section, we conduct a mediation analysis within the context of a real world application from

the psychology literature. We re-analyze data from The Job Search Intervention Study (JOBS II)

also analyzed by Imai et al (2010b). JOBS II is a randomized �eld experiment that investigates

the e¢ cacy of a job training intervention on unemployed workers. The program is designed not

only to increase reemployment among the unemployed but also to enhance the mental health of

the job seekers. In the study, 1,801 unemployed workers received a pre-screening questionnaire

and were then randomly assigned to treatment and control groups. The treatment group with
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E = 1 participated in job skills workshops in which participants learned job search skills and

coping strategies for dealing with setbacks in the job search process. The control group with

E = 0 received a booklet describing job search tips.

We consider two analyses. In the �rst analysis, the continuous outcome Y encodes depressive

symptoms based on the Hopkins Symptom Checklist; while in the second analysis, Y is a binary

variable indicating whether subjects were working more than 20 hours a week 6 months after the

job training program. Both analyses consider a continuous measure of job search self-e¢ cacy as

the hypothesized mediating variable M: (Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997,

Imai et al, 2010b). The data also included baseline covariates X measured before administering

the treatment including: pretreatment level of depression, education, income, race, marital status,

age, sex, previous occupation, and the level of economic hardship.

Continuous outcome For estimation in the context of the continuous outcome, g is set equal

to the identity link, and

e
tot (x; tot) e+ e
0 (x; 0) (14)

=  tote+  0x

and

e
dir (x; �dir) e+ e
0 (x; 0) (15)

= �dire+  0x
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which are similar to the models estimated by Imai et al (2010b). Therefore the natural indirect

e¤ect is  tot � �dir. In addition, we set

loggOR (m; 1jx;�1) = �1 (16)

log ÔDDS (x;�0) = �T0 x (17)

The odds ratio parameter �1 was estimated to be b�1 =0.2 (s.e.=0.08), indicating a signi�cant
di¤erence between treatment arms in terms of job search self-e¢ cacy. Table 1 compares results

obtained using IORW estimation versus the parametric mediation formula as in Imai et al (2010b).

Insert Table 1 here.

As previously noted, the parametric mediation formula in this speci�c setting, coincides with

the classical Baron and Kenny approach; and only requires the parameters of the following two

linear regressions:

Y = [1; E;M;XT ]#+ �y

M = [1; E;XT ]'

Estimates of both natural direct and indirect e¤ects closely agreed with the results reported in Imai

et al (2010b), with comparable e¢ ciency. The results suggest a small but statistically signi�cant

mediation e¤ect which implies that the program participation on average decreases slightly the

depressive symptoms (negative average total e¤ect) by increasing the level of job search self-e¢ cacy.

For binary Y; we estimated conditional direct and indirect e¤ects on the odds ratio scale

(i.e. with g =logit), by using IORW. As argued in section 3.1.4, odds ratio direct and indirect
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e¤ects cannot generally be obtained using the parametric mediation formula without fairly strong

distributional or related assumptions, such as a rare outcome assumption, which is known not hold

in the current application. Therefore, only IORW results are reported. The results summarized

in Table 1 suggests that, unlike what was observed for the depression outcome, the estimated

mediation e¤ect is small and not statistically signi�cant, and that the estimated average total

e¤ect is larger than the estimated mediation e¤ect, but not statistically signi�cant.

3.2 Mediation analysis in the Cox proportional hazards model

This section concerns the decomposition of the total e¤ect of an exposure in a Cox proportional

hazards model. Thus, our goal is to estimate the natural direct and indirect e¤ects on the hazards

ratio scale:

HRtot (x) =
�Ye=1jX (yjX = x)

�Ye=0jX (yjX = x)
=

total e¤ectz }| {
�Ye=1Me=1jX

(yjX = x)

�Ye=0Me=0jX
(yjX = x)

=

natural indirect e¤ectz }| {
�Ye=1Me=1jX

(yjX = x)

�Ye=1Me=0
jX (yjX = x)

�
�Ye=1Me=0jX

(yjX = x)

�Ye=0Me=0
jX (yjX = x)| {z }

natural direct e¤ect

(18)

= HRind (x)�HRdir (x)

As before, we assume that (X;E;M) is observed on all individuals, but because of censoring, we

observe D = I(Y � C) and Y � = min(Y;C) where C denotes an individual�s right censoring

time. Censoring is assumed to be independent of (Y;M) given (E;X): To proceed, suppose that
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a standard Cox regression model is used to estimate the total e¤ect of E :

HY jE;X(yjE = e;X = x) = H0(y) exp
ngHRtot (x;�tot) e+gHR0 (x;�0)o (19)

where HY jE;X is the hazard function of [Y jE;X] and H0(y) is the hazard function of [Y jE =

0; X = 0]; thus gHRtot (x;�tot) = logHRtot (x) is a parametric model for the total e¤ect of E with

unknown parameter �tot; gHR0 (x;�0) is a parametric model for the association between X and

Ye=0 on the log hazards ratio scale with restrictiongHR0 (0; �) = gHR0 (�; 0) = 0; and �0 is unknown.
The parameter

�
�Ttot; �

T
0

�
may be estimated with the usual maximum partial likelihood estimator

which we denote
�b�Ttot; b�T0 � : To estimate the hazards ratio natural direct e¤ect HRdir, we specify a

Cox regression model for the counterfactual outcome YeM0 within levels of X; thus making explicit

the proportional hazards assumption implicit in the e¤ect decomposition (18):

HYeM0
jX(yjX = x; �) = H0(y) exp

ngHRdir (x; �dir) e+gHR0 (x;�0)o (20)

so thatgHRdir (x; �dir) = logHRdir (x) is a model that encodes the direct e¤ect of E with unknown

parameter �dir; and � = (�dir; �0) :The following result motivates our strategy for estimating �dir.

Before stating the result, de�ne for any ��; the estimating function

Uph (�
�) =

Z
dN�(y)OR (M;EjX)�1

�
�ph (E;X; �

�)� �1 (y; �
�)

�0 (y; ��)

�
;

where

�j (y; �
�) = E

h
OR (M;EjX)�1�ph (E;X; �

�)j exp
ngHRdir (x; �

�
dir)E +

gHR0 (X;��0)oR(y)i ;
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N�(y) = I(min(Y;C) � y;D = 1) is the counting process of an observed failure time, R(y) =

I(min(Y;C) > y) is the at-risk process, and:

�ph (e; x; �
�) =

ngHRdir (x; �
�
dir) e+

gHR0 (x;��0)o
@��

Uph (�
�) is of the form of a weighted version of the score function of the partial likelihood in a Cox

proportional hazards model. The next theorem states that the inverse odds ratio weight is key to

identifying direct e¤ects on a hazards ratio scale.

Theorem 2: Under the consistency, sequential ignorability and positivity assumptions, and as-

suming model (20) is correctly speci�ed and censoring is independent of M given (E;X) ; we have

that Uph (��) is an unbiased estimating equation, in other words, �� = � solves the population

estimating equation

E fUph (��)g = 0

A feasible estimating equation is obtained by replacing unknown expectations with their empir-

ical version, and upon substituting gOR (M;EjX; b�1) for the unknown weight OR (M;EjX) : The

resulting estimator of � is, under the assumptions of theorem 2, and the additional assumption that

model (10) is correctly speci�ed, consistent and asymptotically normal under standard regularity

conditions. For inference, we recommend using the nonparametric bootstrap.

We should note that the estimator described in the previous paragraph can easily be obtained

using standard Cox regression software, such as proc phreg in SAS, which provides an option for

user-speci�ed weights. Natural indirect e¤ect estimates naturally follow from the relation (18) :

Our exposition has again given priority to natural direct e¤ects over indirect e¤ects in the sense

that a model is chosen for the latter in terms of models for direct and total e¤ects. Similarly
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to mean models, it is possible to prioritize the indirect e¤ect and the total e¤ect and to express

models for the direct e¤ect in terms of these models. Details for estimation are omitted but are

easily deduced from the exposition.

3.2.1 A data example

We brie�y illustrate the methods described in this section with a reanalysis of a study by Caplehorn

and Bell (1991) which compares two methadone treatment clinics for heroin addicts to assess

patient time remaining under methadone treatment. A patient�s survival time was determined as

the time, in days until the person dropped out of the clinic or was censored. The two clinics di¤ered

according to their live-in policies for patients. Here we wish to infer the degree to which patients�

methadone dosage mediates di¤erences in retention of patients in the two clinics. In addition to

the exposure (E = indicator of which methadone treatment clinic the patient attended), mediator

(M = a continuous variable for the patient�s maximum methadone dose (mg/day)) and outcome

(Y = time until the patient dropped out of the clinic or was censored), a covariate is also available

(X = indicates whether the patient had a prison record). Note that the continuous mediator is

easily incorporated in the logistic regression (10) : For estimation, we used

gHRtot (x;�tot) e+gHR0 (x;�0) = �tote+ �T0 x

gHRdir (x; �dir) e+gHR0 (x;�0) = �dire+ �T0 x

therefore the natural indirect e¤ect is �tot � �dir, and we estimated models (16) and (17) via

logistic regression maximum likelihood. The odds ratio parameter �1 was estimated to be b�1 =-
0.02 (s.e.=0.009), indicating a signi�cant di¤erence between clinics in terms of patient�s methadone

dosage.
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Insert Table 2 here.

Table 2 summarizes results based on 266 patients included in the Caplehorn study (37% of

whom were censored). The analysis establishes the presence of a large clinic total e¤ect on the

hazards ratio scale, and suggests that most of this e¤ect is not mediated by methadone dose and

is direct. Nonetheless, these results should be interpreted with caution and should only be taken

as an illustrative example of the methodology, because it may not be realistic to assume that X

contains all patients baseline correlates of E;M and Y (beyond a prison record) in this data set;

as required for sequential ignorability to hold.

3.3 Doubly robust estimation

Throughout, we have assumed that gOR (m; 1jx; b�1) consistently estimates OR (M;EjX), which

requires that models gOR and ÔDDS are both correct. Modeling error of either of these models

will in general produce biased and therefore erroneous mediation inferences about the e¤ects of E.

Here we propose to increase the robustness of the proposed methodology when gOR is correctly

speci�ed. To do so, we propose to use, the doubly robust estimator of odds ratios proposed by

Tchetgen Tchetgen and colleagues (Tchetgen Tchetgen et al, 2010). In addition to ÔDDS, the

doubly robust approach also uses an estimate of the working model fM jE;X(M jE = 0; X;�) of the

density of M in the unexposed, within levels of X: However, the doubly robust approach produces

a consistent and asymptotically normal estimate of gOR provided that at least one of ÔDDS or

fM jE;X(M jE = 0; X;�) is correctly speci�ed, but both models do not necessarily need to hold.

For brevity, suppose that M is binary and let

loggOR (M;EjX;�1) = �1ME
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and let b� denote an estimator of �, say the MLE under model (13) : Let W = w(X) be a user-

speci�ed function of X: Then, by a result due to Tchetgen Tchetgen et al (2010) , it is possible to

show that c�1 (w) is doubly robust and converges to �1 provided that either bqM = fM jE;X(M jE =

0; X; b�) is consistent, or bqE = n1 + ÔDDS (X; b�0)�1o�1 = Pr(E = 1jM = 0; X; b�0) is consistent,
where c�1 (w) =:
log

PnW fEM (1� bqM) (1� bqE)g
Pn [W fM (1� E) (1� bqM) bqE + (1�M)EbqM (1� bqE)� (1� E) (1�M) (1� bqE) (1� bqM)g]

In practice, the choiceW = 1 is convenient; the optimal choice ofW can be obtained from a result

due to Tchetgen Tchetgen et al (2010). The doubly robust methodology generalizes to polytomous

and continuous possibly vector valued M and E, and similar methodology is available for more

general models gOR (M;EjX;�1) ; although closed-form estimators are generally not available in

such more general settings and one must resort to the methodology detailed in Tchetgen Tchetgen

et al (2010).

4 Conclusion

The main contribution of the present paper is to present a simple yet general framework for

making inferences about conditional natural direct and indirect causal e¤ects that can be used to

decompose total e¤ects estimated in regression models commonly encountered in practice. The

proposed IORW approach involves inverse odds ratio weights that relate exposure and mediator

variables and therefore can be implemented in most standard regression software, provided that

a weight can be speci�ed. An important limitation of the proposed approach is that, similar to

existing causal mediation methods, it is assumed that the mediator is measured without error. In
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future work, it will be crucial to examine the extent to which a violation of this assumption might

alter mediation inferences and to develop alternative methodology to appropriately account for

possible measurement error of the mediator.
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Table 1. Estimated causal e¤ects for a continuous outcome and a binary outcome using the

JOBS II data

Average e¤ect Continuous Y Binary Y

identity link logit link

IORW� BK/I�� IORW

 tot �0:047 (0:031) �0:047 (0:036) 0:279 (0:161)

�dir �0:033 (0:031) �0:032 (0:039) 0:280 (0:160)

 tot � �dir �0:014 (0:006) �0:016(0:007) �0:001 (0:026)
*inverse-odds ratio estimate (nonparametric bootstrap standard error)

**Baron and Kenny/Imai estimate (nonparametric boostrap standard error)

Table 2. Estimated causal e¤ects for a failure time outcome in the Methadone example

Log(hazards ratio)  tot �dir  tot � �dir

IORW� 1:10 (0:23) 1:07 (0:24) 0:07 (0:09)

*inverse-odds ratio estimate (nonparametric bootstrap standard error)
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APPENDIX

De�nition of b
 and b�
b
 = Pn�@U (��; b�1)

@��
jb�
��1

;

b� = Pn �U �b�; b�1�+ Pn�@U (��; ��1)
@��T

jb�1
�
Pn
h
Seff�1

(b�)Seff�1
(b�)Ti�1 Seff�1

(b�) �
2 ;
where v
2 = vvT ; and

Seff�1
(b�) = S�1 (b�)� Pn �S�1 (b�)ST�0 (b�)�Pn �S�0 (b�)ST�0 (b�)��1 S�0 (b�)

where
�
ST�0 (b�) ; ST�1 (b�)�T is the score function of � in model (10) :

De�nition of b�x
Let cW =

�cW T
1 ;
cW T
2

�
where

cW1 = �Pn
�
�tot

�
E;X; b � @E (Y jE = e;X = x; �)

@ �T
j b 
��1

�tot

�
E;X; b �nY � E�Y jE = e;X = x; b �o

cW2 = b
� �U �b�; b�1�+ Pn�@U (��; ��1)
@��T

jb�1
�
Pn
h
Seff�1

(b�)Seff�1
(b�)Ti�1 Seff�1

(b�) �

and de�ne

b� = Pn ncWcW T
o

then a consistent estimator of the variance-covariance matrix of 
ind
�
x; b tot; b�dir� is obtained by

a straightforward application of the delta method which yields

b�x = �

ind

�
x; b tot; b�dir�T b� �


ind

�
x; b tot; b�dir�
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where

�

ind

�
x; b tot; b�dir� = �@
ind (x; �tot; ��dir)

@ ( T�tot ; �
T�
dir)

j
( b Ttot;b�Tdir)T

�

Variance-covariance of b�y = �b�yind; b y0� :
De�ne U

�
��;  �tot; �

y�� as U (��; ��) = U (��; ��dir; �
�
0) but replacing E (Ye;Me=0jX = x; ��) withn

E
�
Ye;Me=0jX = x; tot; �

y� =
�
�yind;  

y
0

��o
: Then let:

cW y
T

2 = Pn

8<:@U
�b�; b tot; �y��
@�y�T

jb�y
9=;
�1

�
h
U
�b�; b tot; b�y�

+ Pn

8<:@U
�
��; b tot; b�y�
@��T

jb�1
9=;Pn hSeff�1

(b�)Seff�1
(b�)Ti�1 Seff�1

(b�)
+Pn

8<:@U
�b�;  �tot; b�y�
@ �Ttot

j b tot
9=;cW1

35

Then, the variance-covariance matrix of the limiting distribution of
p
n
�b�yTind � �yTind;

b�yT0 � �yT0

�
is

consistently estimated by Pn
�cW y

2
cW y

T

2

�
.

Proof of Theorem 1
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Under the consistency, sequential ignorability and positivity assumptions, and assuming model

(7) is correctly speci�ed; we have that

E
�
OR (M;EjX)�1�dir (E;X; �

�) fY � b(E;X; ��)g jE;X
�

= �dir (E;X; �
�)E

�
fM jE;X (M = m0jE;X) fM jE;X (M jE = 0; X)
fM jE;X (M jE;X) fM jE;X (M = m0jE = 0; X)

fY � b(E;X; ��)g jE;X]

= �dir (E;X; �
�)

fM jE;X (M = m0jE;X)
fM jE;X (M = m0jE = 0; X)

�
�Z

fM jE;X (mjE = 0; X)E (Y jE;M = m;X) d� (m)� b(E;X; ��)

�
= 0

Proof of Theorem 1

Under the consistency, sequential ignorability and positivity assumptions, and assuming model

(7) is correctly speci�ed; we have for any function L = l(E;X)

E
�
OR (M;EjX)�1 l(E;X; y)dN�(y)

	
= E

�
fM jE;X (M = m0jE;X)

fM jE;X (M = m0jE = 0; X)
l(E;X)HYE;Me=0

jE;X (yjE;X)SYE;Me=0
jE;X (yjE;X)

�SCjE;M;X (yjE;X) dy
�

= E
�

fM jE;X (M = m0jE;X)
fM jE;X (M = m0jE = 0; X)

l(E;X)HYE;Me=0
jE;X (yjE;X)SYE;Me=0

jE;X (yjE;X)

�SCjE;M;X (yjE;X) dy
�

and
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E
�
OR (M;EjX)�1 l(E;X)R(y)

	
= E

�Z
fM jE;X (M = m0jE;X)

fM jE;X (M = m0jE = 0; X)
l(E;X)SYE;Me=0

jE;X (yjE;X)

SCjE;M;X (yjE;X) d� (m)
�

It is then straightforward using the above to establish the result, by noting that

�j (y; �
�) = E

h
OR (M;EjX)�1�ph (E;X; �

�)j exp
ngHRdir (X; �

�
dir)E +

gHR0 (X;��0)oR(y)i
=

Z Z
E
�

fM jE;X (M = m0jE;X)
fM jE;X (M = m0jE = 0; X)

�ph (E;X; �
�)j exp

ngHRdir (X; �
�
dir)E +gHR0 (X;��0)o

SYE;Me=0
jE;X (yjE;X)SCjE;M;X (yjE;X)

i

and

E
�
OR (M;EjX)�1�ph (E;X; �

�) dN�(y)
�

= E
�

fM jE;X (M = m0jE;X)
fM jE;X (M = m0jE = 0; X)

�ph (E;X; �
�) exp

ngHRdir (X; �
�
dir)E +

gHR0 (X;��0)o
�SCjE;M;X (yjE;X)SYE;Me=0

jE;X (yjE;X) dy
i
�HYE;Me=0

jE;X (yjE = 0; X = 0)
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