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A Bayesian regression tree approach to
identify the effect of nanoparticles properties

on toxicity profiles

Cecile Low-Kam, Haiyuan Zhang, Zhaoxia Ji, Tian Xia, Jeffrey I. Zinc, Andre
Nel, and Donatello Telesca

Abstract

We introduce a Bayesian multiple regression tree model to characterize relation-
ships between physico-chemical properties of nanoparticles and their in-vitro tox-
icity over multiple doses and times of exposure. Unlike conventional models that
rely on data summaries, our model solves the low sample size issue and avoids
arbitrary loss of information by combining all measurements from a general ex-
posure experiment across doses, times of exposure, and replicates. The proposed
technique integrates Bayesian trees for modeling threshold effects and interac-
tions, and penalized B-splines for dose and time-response surfaces smoothing.
The resulting posterior distribution is sampled via a Markov Chain Monte Carlo
algorithm. This method allows for inference on a number of quantities of po-
tential interest to substantive nanotoxicology, such as the importance of physico-
chemical properties and their marginal effect on toxicity. We illustrate the appli-
cation of our method to the analysis of a library of 24 nano metal oxides.
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Abstract

We introduce a Bayesian multiple regression tree model to characterize relationships between

physico-chemical properties of nanoparticles and their in-vitro toxicity over multiple doses and

times of exposure. Unlike conventional models that rely on data summaries, our model solves

the low sample size issue and avoids arbitrary loss of information by combining all measurements

from a general exposure experiment across doses, times of exposure, and replicates. The proposed

technique integrates Bayesian trees for modeling threshold effects and interactions, and penalized

B-splines for dose and time-response surfaces smoothing. The resulting posterior distribution is

sampled via a Markov Chain Monte Carlo algorithm. This method allows for inference on a num-

ber of quantities of potential interest to substantive nanotoxicology, such as the importance of

physico-chemical properties and their marginal effect on toxicity. We illustrate the application of

our method to the analysis of a library of 24 nano metal oxides.
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1 Introduction

The increasing use of engineered nanomaterials (ENM) in hundreds of consumer products has re-

cently risen concern about their potential effect on the environment and human health in particular.

In nanotoxicology, in vitro dose-escalation assays describe how cell lines or simple organisms are

affected by increased exposure to nanoparticles. These assays help determine hazardous materials

and exposure levels. Standard dose-escalation studies are sometimes completed by more general

exposure escalation protocols, where a biological outcome is measured against both increasing con-

centrations and durations of exposure.

Cost and timing issues often only allow for a small number of particles to be comprehensively

screened in any study. Therefore, both one and two-dimensional escalation experiments are often

characterized by small sample size, intended as number of particles. Furthermore, data often

exhibits natural clusters related to varying levels of particles bio-activity. The two case studies

presented in Section 6 provide an overview of the structure of typical datasets obtained with both

experimental protocols.

Beyond dose response analysis, nanomaterial libraries are often designed to investigate how a

range of physical and chemical properties (size, shape, composition, surface characteristics) may

influence ENM’s interactions with biological systems. The nano-informatics literature reports sev-

eral Quantitative Structure-Activity Relationship (QSAR) models. This exercise is often conceived

as a framework for predictive toxicology, under the assumption that nanoparticles with similar

properties are likely to have similar effects. Most of existing QSAR models summarize or integrate

experimental data across times, doses and replicates as a preprocessing step, before applying tra-

ditional data mining or statistical algorithms for regression. For example, Liu et al. (2011) use a

modified Student’s t-statistic to discretize outputs in two classes (toxic or non-toxic) and a logistic

regression model. Zhang et al. (2012) use the area under the dose-response curve as a global sum-

mary of toxicity and they model dependence on predictors via a regression tree. Both approaches,

while reasonably sensible, ignore the uncertainty associated with data summaries and can lead to

unwarranted conclusions as well as unnecessary loss of information. On the other hand, the use of

regression trees is inherently appealing as they are able to model non-linear effects and interactions

with adaptive parsimony, without compromising interpretation. We aim to extend these regression
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Figure 1: Dose-response curves for LDH assay.

models to account for structured multivariate outcomes, defined as toxicity profiles of nanoparticles,

measured over a general exposure escalation domain.

Multivariate extensions of the regression tree methodology have been proposed by Segal (1992).

In this paper, the original tree-building algorithm of Breiman et al. (1984) is modified to handle

multivariate responses for commonly used covariance matrices, such as independence or autoregres-

sive structures. Segal and Xiao (2011) extend this last approach to random forests, which combine

multiple trees. De’ath (2002) proposes a similar method for an independent covariance structure.

Yu and Lambert (1999) develop regression tree models for functional data, by representing each

individual response as a linear combination of spline basis functions, and then proceeding with the

estimated coefficients as new multivariate data to perform multivariate regression trees.

An alternative for longitudinal responses consists in combining a tree model and a linear model:

Sela and Simonoff (2012) replace the fixed effects of the traditional linear mixed effects model by

3
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a regression tree. The linear random effects are unchanged. Yu et al. (2010) fit a semi-parametric

model, containing a linear part and a tree part, for multivariate outcomes in genetics. The linear

part is used to model main effects of some genetic or environmental exposures. The non-parametric

tree part approximates the joint effect of these exposures. Finally, Galimberti and Montanari (2002)

develop regression tree models for longitudinal data with time-dependent covariates. In this setting,

measures for a same individual can belong to different terminal nodes.

Other extensions of standard regression trees include Bayesian approaches, where tree parame-

ters become random variables. Chipman et al. (1997) introduce a Bayesian regression tree model

for univariate responses. The method is based on a prior distribution and a Metropolis-Hastings

algorithm which generates candidate trees and identifies the most promising ones. This methodol-

ogy has since been extended to so-called treed models, where a parametric model is fitted in each

terminal node (Chipman et al. (2002)), for multivariate responses (Pang (2009)), to a sum-of-trees

model (Chipman et al. (2010)), and to incorporate spatial random effects for merging datasets

(Müller et al. (2007)), among others.

Building on previous contributions, we propose a new method to analyze the relationship between

nanoparticles physio-chemical properties and their toxicity in exposure escalation experiments. We

extend the Bayesian methodology of Chipman et al. (1997) to allow for dose and time response kinet-

ics in terminal nodes. A global covariance structure accounts for correlation between measurements

at different doses and times for a same particle. Our approach is able to model non-linear effects

and potential interactions of physio-chemical properties without making parametric assumptions

about toxicity profiles. It also addresses the issues associated with conventional QSAR models by

combining evidence across measurements for all doses and times in a general experimental design. .

The proposed model is particularly versatile as it provides scores of importance for physio-chemical

properties, and visual assessment of the marginal effect of these properties on toxicity.

The rest of this paper is organized as follows: Section 2 describes the regression model for dose-

response data and Section 3 the corresponding prior model. The resulting posterior distribution

and the associated MCMC algorithm are presented in Section 4. The model is extended to the case

of dose and time response surfaces in Section 5. The method is applied to a library of 24 metal

oxides in Section 6. Finally, Section 7 concludes this paper and discuss its possible extensions.
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2 Regression Tree Formulation

2.1 Sampling Model

We first consider the case of a typical dose escalation experiment, where a biological outcome is

measured over a protocol of increased particle concentration. This case will be expanded in Section

5 to include more general exposure escalation designs.

Let yik(d) denote a real valued response associated with exposure to nanoparticle i and replicate

k at dose d, for i ∈ {1, ..., I}, k ∈ {1, ..., K} and d ∈ [0, D]. We assume that y has been appropriately

normalized and purified of experimental artifacts. Current experimental protocols only allow for

the observation of the outcome y as it varies in association with a discrete prescription of dose-

escalation. However, for notational convenience and without loss of generality, we maintain that

y shall be observed for any dose level d ranging from no exposure (d = 0) to a maximal particle

concentration level (d = D). Let also x′
i = (xi1, ..., xip) be a p-dimensional vector of continuous

physio-chemical characteristics or predictors associated to particle i. We assume

yik(d) = f(xi, d) + εik(d); (1)

where f is a random mean function, depending on the dose level d and particle characteristics xi,

and εik ∼ N(0, σ2
d).

More precisely, f is defined by a regression tree T on the predictor space, and a functional

model for dose-response curves in the terminal nodes of T . Full details about the proposed mean

structure are described in the following section.

Given f , we assume that outcomes are independent across particles and, for any particle i, we

assume

Cov
(

εik(d), εik′(d′)
)

= σ2ϕ
|d−d′|
D , (2)

with ϕD ∈ [0, 1]. In this setting, two outcomes associated with the same particle at similar doses are

assumed to be more correlated than measurements taken at distant doses, for any replicate. The

major advantage of this assumption is related to a reduced representation of a high dimensional

covariance matrix, which is now fully characterized in terms of a 1-dimensional variance parameter

σ2 and a 1-dimensional correlation ϕD.
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2.2 Mean Structure

The binary tree T recursively splits the predictor space into two subspaces, according to criteria

of the form x·j ≤ a vs x·j > a, for a ∈ R and j ∈ {1, ..., p}. Each split defines two new nodes of

the tree, corresponding to two newly created subspaces of predictors. Let n be the set of terminal

nodes of tree T .

We model the dose-response curves in each terminal node as a linear combination of spline basis

functions. Unlike parametric models such as log-logistic, spline functions do not assume a particular

shape for the curve. This makes our model fully applicable to sub-lethal biological assays, which

are not expected to follow a sigmoidal dose-response dynamic. Moreover, this functional structure

is easily extended to two-dimensional response surfaces (Section 5). Let B1(.), ..., BmD +δ(.) denote

mD + δ uniform B-spline basis functions of order δ on [0, D], with mD fixed knots. Following

Eilers and Marx (1996), we avoid choosing the location of spline interior knots by deliberately

overfitting curves with a number of knots coinciding with the dose-escalation design grid. Adaptive

smoothness is determined by using a penalty on adjacent coefficients, via a smoothing prior that

will be presented in Section 3.

If xi is in the subset corresponding to the rth terminal node of T ,

f(xi, d) =
mD+δ
∑

ℓ=1

βrℓBℓ(d). (3)

We will denote with βr = (βr1, ..., βr mD+δ)′, the vector of splines coefficients defining the expected

dose-response trajectory in the rth terminal node. Furthermore we let β define the random set of

spline coefficients, including βr from all terminal nodes (r = 1, . . . , n).

The assumed covariance structure, in addition to tree splits and terminal nodes parameters, en-

tirely define the distribution of the responses yik(d). The Bayesian model is completed by prior

distributions on T , β, σ2 and ϕD.

3 Prior Model

We first introduce the general dependence structure of the prior, before describing each parameter’s

prior distribution. We follow Chipman et al. (2010), and assume that the tree is independent of

6
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variance components σ2 and ϕD:

p(T ,β, σ2, ϕD) = p(T ,β) p(σ2) p(ϕD) (4)

= p(β | T )p(T ) p(σ2) p(ϕD), (5)

Moreover, conditionally on T , terminal node parameters are assumed independent:

p(β | T ) =
n
∏

r=1

p(βr | T ). (6)

Therefore, the prior is fully determined by a tree prior p(T ), terminal node parameters priors

p(βr | T ) and variance parameters priors p(σ2) and p(ϕD).

3.1 Tree Prior

The tree prior p(T ) is implicitly described by the stochastic tree-generating process of Chipman

et al. (1997), where each new tree is generated according to:

i. the probability for a node at depth q to be non-terminal, given by α(1 + q)−ν , (q = 1, 2, . . .),

ii. the probability for a node to split at a predictor x·j, (j = 1, . . . , p), given by the discrete

uniform distribution on the set of available predictors,

iii. given the predictor x·j, the probability for a node to split at a value a, given by the discrete

uniform distribution on the set of available splitting values.

Probability i. is a decreasing function of q, making deeper nodes less likely to split and favoring

“bushy” trees. Chipman et al. (1997) give guidelines to choose parameters α and ν by plotting the

marginal prior distribution of the number of terminal nodes. In ii. and iii., predictors and splits

are available if they lead to non-empty child nodes.

3.2 Terminal Node Splines Coefficients Prior

We follow Lang and Brezger (2004) and consider a conditionally conjugate P-spline prior:

βr | T , τ2 ∝ exp
(

−
1

2τ2
β′

rKββr

)

, (7)
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where τ2 is an additional smoothing variance parameter and
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is a penalty matrix of size (mD + δ) × (mD + δ), corresponding to a first order random walk. Note

that this prior is improper as matrix Kβ is not of full rank. To obtain a proper prior and enable

comparisons between trees of different sizes, in practice, we replace the first and last element of the

diagonal with 1 + η, where η is a small constant.

The model is completed by assigning a conjugate Inverse-Gamma hyperprior to the smoothing

parameter τ2 | T ∼ IG(aτ , bτ ).

3.3 Variance Components Priors

We assume σ2 ∼ IG(aσ, bσ). For ϕD, we choose the conjugate prior described in (Rowe (2003)) for

autoregressive covariance matrices, with truncated support on [0, 1]. Let 0 = d1 < ... < dnD
= D

be the dose-escalation design sequence:

p(ϕD) ∝
(

1 − ϕ2
D

)−
nD−1

2 exp

(

−
λ01 − ϕDλ02 + ϕ2

Dλ03

2
(

1 − ϕ2
D

)

)

I{ϕD ∈ [0, 1]}, (9)

where I is the indicator function, Λ = (Λvv′)1≤v,v′≤nD
is a hyperparameter matrix, and (λ01, λ02, λ03)

are defined through its diagonal, subdiagonal and superdiagonal elements as:

λ01 =
nD
∑

v=1

Λvv , (10)

λ02 =
nD−1
∑

v=1

(Λvv+1 + Λv+1v) , (11)

and

λ03 =
nD−1
∑

d=2

Λvv . (12)

In practice, we choose Λ = IdnD
, the identity matrix of size nD × nD, to put more weight on low

values of ϕD and assume weak prior correlations between responses at different doses. This last

distribution completes the prior model. We now turn to posterior inference on parameters, given

the observations.

8

http://biostats.bepress.com/cobra/art102



4 Posterior inference through MCMC simulation

We are interested in the posterior distribution

p
(

T ,β, σ2, ϕD, τ2 | y
)

. (13)

The rest of this section describes a Markov chain Monte Carlo algorithm to sample from this

distribution, as the number of potential trees prevents direct calculations. The algorithm is adapted

from the Gibbs sampler of Chipman et al. (2010), with changes due to the specific structure of our

model.

At each iteration, the algorithm performs a joint update of (T , β), conditionally on the rest of

the parameters, followed by standard Gibbs component-wise updates of each variance parameter.

The joint tree and terminal nodes splines coefficients update is decomposed into

T | y, σ2, ϕD, τ2; (14)

followed by

βr | T ,y, σ2, ϕD, τ2; (15)

for r ∈ {1, ..., n}.

The draw of T in (14) is performed by the Metropolis-Hastings algorithm of Chipman et al.

(1997), which simulates a Markov chain of trees that converges to the posterior distribution p(T |

y, σ2, ϕD, τ2). The proposal density suggests a new tree based on four moves: grow a terminal

node, prune a pair of terminal nodes, change the split rule of an internal node, and swap the splits

of an internal node and one of its children’s. To improve mixing, Wu et al. (2007) add a new move

that allows for larger changes in trees but leaves the partition of observations in terminal nodes

unchanged.

The target distribution can be decomposed as follows:

p(T | y, σ2, ϕD, τ2) ∝ p(T )
∫

p(y | β, T , σ2, ϕD, τ2)p(β | T , σ2, ϕD, τ2)dβ. (16)

The full expression for the integral in the expression above is given in Equation (B.23) of Appendix

?? of Supplementary Material, and is obtained in a closed form by conjugacy of the prior on

9
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β = {β1, ....,βn}. Therefore, the draw of T in (14) does not require a reversible-jump procedure

for spaces of varying dimensions, even if nodes are added or deleted. The proposal density of

the Metropolis-Hastings algorithm can be conveniently coupled with p(T ) to simplify calculations

(Chipman et al. (1997)). Full conditional distributions for β1, ...,βn in (15) and variance parameters

σ2, ϕD and τ2 are also available in supplementary Appendix ??.

Given posterior samples, predictive statistics are easily obtained via Monte Carlo simulation of

p(y∗
i | y), for i = 1, . . . , I. More precisely, let x∗

i = xi. At each iteration ℓ = 1, ..., N , the

MCMC algorithm performs a draw from p
(

T ,β, σ2, ϕD, τ2 | y
)

, followed by a draw of y(ℓ)∗
i from

p(y(ℓ)∗
i |T ,β, σ2, ϕD, τ2), a multivariate normal distribution. In our case studies (§6), for example,

we compare posterior summaries from the predictive distribution p(y∗
ik(d) | y) to observed dose-

response data yik(d), to assess model adequacy and calibration.

Posterior inference based on Monte Carlo samples, is also used to derive inferential summaries

about non-trivial functionals of the parameter/model space. Let T (1), ..., T (N) be the regression

trees generated by the MCMC algorithm. For all j = 1, . . . , p and ℓ = 1, . . . , N , let z
(ℓ)
j be the

number of splits of tree T (ℓ) using variable x.j. Then
∑N

ℓ=1 z
(ℓ)
j gives an importance score for physio-

chemical property x.j (Chipman et al. (2010)). These scores can be used as a preliminary step

for variable selection, for a better structural interpretation of the impact of each physio-chemical

property on toxicity.

Similarly, the marginal effect of a physio-chemical property x.j can be represented by the partial

dependence function of Friedman (2001): let x1j , ..., xSj be a grid of new values for x.j. Then the

partial dependence function is defined at all s = 1, ..., S as

f(xsj, d, t) =
1
I

I
∑

i=1

f ((xi1, ..., xij−1, xsj, xij+1, ..., xip) , d, t) , (17)

where xij′ is the ith observation of x.j′ in the data. For all doses, the average of this function

over Monte Carlo draws, is then used as an estimate of the marginal effect of x.j. This partial

dependence function can also be extended to account for the joint marginal effect of two variables.

10
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5 Extending the model to two-dimensional toxicity profiles

More general exposure escalation protocols involve the observation of a biological outcome y in

association with a prescription of dose escalation d ∈ [0, D], observed for a series of exposure times

t ∈ [t0, T ]. Letting k, (k = 1, . . . , K) be a replication index, we define yik(d, t) as the outcome of

interest, evaluated at dose d, time t. The model in (1) can be extended as follows:

yik(d, t) = f(xi, d, t) + εik(d, t), (18)

where f is a random mean response surface and εik(d, t) ∼ N(0, σ2
dt). In order to account for

dependence between doses and durations of exposure, for each particle i, we assume

Cov
(

εik(d, t), εik′(d′, t′)
)

= σ2 ϕ
|d−d′|
D ϕ

|t−t′|
T ,

where ϕD ∈ [0, 1] and ϕT ∈ [0, 1] are autocorrelation parameters.

The response surface f in the terminal nodes of T is modeled by a tensor product of two one-

dimensional P-splines (Lang and Brezger (2004)). Let B1(.), ..., BmD +δ(.) be defined as in §2.2 and

B1(.), ..., BmT +ζ(.) denote mT +ζ B-spline basis functions of order ζ on [t0, T ], with mT fixed knots.

Then, if xi is in the subset corresponding to the rth terminal node of Tj ,

f(xi, d, t) =
mD+δ
∑

ℓ=1

mT +ζ
∑

m=1

βrℓmBℓ(d)Bm(t), (19)

where βr = (βr11, ..., βr(mD +δ)(mT +ζ))
′ is a vector of spline coefficients associated to the rth terminal

node.

The prior model has the same global dependence structure as in §3, but now includes an addi-

tional independent term ϕT for time-covariance. Let t0 = t1 < ... < tnT
= T be the design serie of

exposure times. We adapt prior (9) to preserve conjugacy as follows:

p(ϕD) ∝
(

1 − ϕ2
D

)−
nT (nD−1)

2 exp

(

−
λ01 − ϕDλ02 + ϕ2

Dλ03

2
(

1 − ϕ2
D

)

)

I{ϕD ∈ [0, 1]}, (20)

and introduce a similar distribution for ϕT :

p(ϕT ) ∝
(

1 − ϕ2
T

)−
nD(nT −1)

2 exp

(

−
γ01 − ϕT γ02 + ϕ2

T γ03

2
(

1 − ϕ2
T

)

)

I{ϕT ∈ [0, 1]}, (21)

where γ01, γ02 and γ03 are obtained by summing elements of the diagonal, subdiagonal and super-

diagonal of matrix parameter prior Γ, constructed following the guidelines introduced in §3.3.
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Figure 2: Heatmap for PI assay.

For terminal nodes splines coefficients priors, we use the spatial extension of Besag and Kooper-

berg (1995) of the first order random walk prior based on the four nearest neighbours of splines

coefficients, with appropriate changes for corners and edges:

βr|T , τ2 ∝ exp
(

−
1

2τ2
β′

rKββr

)

, (22)

where Kβ is a penalty band matrix of size (mD + δ)(mT + ζ) × (mD + δ)(mT + ζ), which extends

matrix (8) to the two-dimensional case. For posterior inference, we add a step to generate ϕT to

the the Gibbs sampler of Section 4.

12
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6 Applications

6.1 Case Studies Background

In this section, we illustrate our approach with experimental results from a case study reported

by Zhang and others (2012), measuring toxicity of 24 metal oxides on human bronchial epithelial

(BEAS-2B) cells. After 24h, Lactate Dehydrogenase (LDH) release was used to measure the death

rate of cells exposed to eleven doses of metal oxides (from 0 to 200µg/mL), evenly spaced on the

logarithmic scale. Cell death is commonly used to screen for ENM cytotoxicity without reference

to a specific mechanism. Figure 1 shows the LDH dose-responses curves for the 24 metal oxide

nanoparticles. Propidium Iodide (PI) fluorescence was used to indicate the percentage of cells

experiencing oxidative stress through cellular surface membrane permeability, across the same ten

doses and after six times of exposure (from 1 to 6h, at every hour). Figure 2 shows a heatmap

representation for the PI assay, for all metal oxides, doses, times and replicates, where responses

are color-coded from yellow (low) to red (high). In both assays, seven metal oxides (Co3O4, CoO,

Cr2O3, CuO, Mn2O3, Ni2O3 and ZnO) display a notable rise for the higher doses, suggesting

toxicity.

All metal oxides are characterized by six physio-chemical properties of potential interest to

explain toxicity profiles: particle size in media, a measure of the crystalline structure (b(Å)),

lattice energy (∆Hlattice), which measures the strength of the bonds in the particles, the enthalpy

of formation (∆HMen+), which is a combined measure of the energy required to convert a solid

to a gas and the energy required to remove n electrons from that gas, metal dissolution rate, and

conduction band energy, noted Ec (the energy to free electrons from binding with atoms).

In our analysis, we use cubic splines, i.e. δ = ζ = 4 and place interior knots at each intermediate

dose from 0.39 to 100 µg/mL. Therefore, nD = mD + 2 and nT = mT + 2. For the tree prior, we

adopt the default choice of Chipman et al. (2010), (α, ν) = (0.95, 2), which puts more weight on

trees of size 2 or 3. We place relatively diffuse priors Gamma(1, 1) on precision parameters 1/τ2

and 1/σ2. We choose Λ = IdnD
and Γ = IdnT

the identity matrices of size nD × nD and nT × nT ,

assuming no prior correlations between measurements at different doses and times. Finally, moves

“Grow”, “Prune”, “Change” and “Swap” of the Metropolis-Hastings tree-generating algorithm have

probabilities 0.1, 0.1, 0.6 and 0.2, respectively. In our experiments, the high probability of the

13
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Figure 3: LDH assay. (Left) Marginal effect of metal dissolution (log scale) and conduction band
energy on LDH. (Right) Variable importance scores for LDH assay.

“Change” move was sufficient to improve mixing and we did not add the complex move of Wu et al.

(2007).

The MCMC algorithm of Section 4 was implemented in C++ and uses the Boost uBLAS library

for efficient matrix manipulation (Walter and Koch (2010)). The rest of this section shows the

results obtained on LDH and PI assays, based on 20000 iterations after discarding 80000 iterations

for burn-in. Additional experimental results can be found in a supplement available from the

authors.

6.2 LDH dose-escalation assay

We first perform posterior predictive checks for model fitting. Figure 4 shows the expected posterior

predictive dose-response curves for two non-toxic metal oxides (CeO2 and Fe3O4), and two toxic

ones (Cr2O3 and ZnO), with the associated 90% intervals. All four intervals have good coverage of

the original data. The other 20 curves exhibit similar behavior and can be found in a supplementary

document.

Figure 3 (Right) shows the number of splits for the six physio-chemical properties over 20000
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trees. High scores (over 20000, i.e. at least one split per tree on average) for metal dissolution

and conduction band energy indicate that these two properties might play an important role in the

definition of toxicity.

Figure 3 (Left) shows the combined marginal effect of conduction band energy and dissolution

on LDH, color-coded from yellow (low) to red (high), for dose 200 µg/mL. The tree isolates a first

region of high toxicity, corresponding to ENM with high dissolution rates (ZnO and CuO). This

region corresponds to the first mechanism of toxicity identified by Zhang and others (2012): highly

soluble metal oxides, such as ZnO and CuO, are more likely to release metal ions and disturb the

cellular state.

A second region of toxicity on Figure 3 (Left) includes metal oxides Co3O4, CoO, Cr2O3, Mn2O3

and Ni2O3, with Ec values ranging from -4.33 eV for Mn2O3 to -4.59 eV for Ni2O3. This region

matches the second mechanism for toxicity described by Zhang and others (2012): the overlap of

the conduction band energy of the metal oxides with the biological redox potential of cells, ranging

from -4.12 to -4.84 eV. When these two energy levels are alike, transfer of electrons from metal

oxides to cells is facilitated, disturbing the intracellular state. Note that Figure 3 (Left) also shows

an additional split that isolates Mn2O3, whose toxicity for LDH assay is more comparable to ZnO

and CuO (see Figure 1). Similar figures for other doses are included in supplementary materials.

6.3 PI general exposure assay

Figure 6 illustrates the posterior predictive 90% surface intervals for two non-toxic metal oxides

(La2O3 and TiO2), and two toxic ones (Co3O4 and CuO), showing good posterior coverage over

all doses and times of exposure. Similar surfaces for the other 20 metal oxides are plotted in

supplementary materials.

Figure 5 (Left) shows the variable importance scores of the six physio-chemical properties over

20000 trees. Figure 5 (Right) illustrates the marginal effect of both conduction band energy and

dissolution on membrane damage, color-coded from yellow to red, for dose 200 µg/mL and time

6h. The tree model for PI assay also identifies the two areas of toxicity indicated in Zhang and oth-

ers (2012), corresponding to highly soluble metal oxides and nanoparticles whose conduction band

energy overlaps with cellular redox potential range. Additional figures for marginal effect of con-

duction band energy and metal dissolution, for all doses and times, are included in a supplementary
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Figure 4: Posterior predictive curves for CeO2, Fe3O4, Cr2O3 and ZnO. In color, the original data
points and the average across replicates. In black, the expected posterior predictive curve and 90%
interval.
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Figure 5: PI uptake. (Left) Marginal effect of metal dissolution (log scale) and conduction band
energy on PI. (Right) Variable importance scores.

document.

The similarity of variable importance scores and marginal effect of conduction band energy and

dissolution obtained for LDH and PI assays indicates a strong correlation between these assays for

nanoparticle toxicity assessment, as noted by Zhang and others (2012).

7 Discussion

We propose a Bayesian regression tree model to define relationships between physio-chemical prop-

erties of engineered nanomaterials and their functional toxicity profiles in dose-escalation assays.

As demonstrated by the case studies, the tree structure is adapted to account for flexible models of

structure-activity relationships, such as threshold effects and interactions. The proposed model in-

tegrates information across all doses and replicates, and therefore is adapted to small sample sizes

usually found in nanotoxicology datasets. The posterior distribution integrates over the model

space to provide straightforward inference on non-trivial functionals of parameters of interest. The

smoothing splines representation allows for easy extension of the model to two-dimensional toxicity

profiles of general exposure escalation assays as well as for modeling sub-lethal outcomes.
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Figure 6: Posterior predictive curves for La2O3, TiO2, Co3O4 and CuO. In color, the original data
points. In black, the expected posterior predictive surface and 90% interval.
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One potential pitfall of the method is the use of a single tree model, instead of ensemble methods

such as random forests (Breiman (2001)) or sum-of-trees models (Chipman et al. (2010)). Sum-of-

trees models are known to mix better and to incorpore more easily interactions and additive effects

(Chipman et al. (2010)). However, this could result in very heavy computations, as each tree has

to handle multidimensional structure in nodes and large penalization matrices. Another drawback

of the proposed methodology is the normality assumption on the measurement error, which does

not account for potential heterogeneity of responses across nanoparticles. This assumption can be

relaxed by introducing an nanoparticle-specific random variance inflation parameter, that results

marginally in a t-distribution for the errors (Patel et al. (2012)).

The main goal of this work is to provide a statistically sound framework for predictive nanotoxi-

cology. Typical QSAR models often rely on unwarranted or arbitrary data summaries, with hardly

assessed consequences on predictive reliability and inferential characterization of uncertainty. The

Bayesian framework, averaging over models and smoothing structures, is likely to provide a more

realistic account of structural uncertainty. Alternative inferential frameworks would require to split

the dataset in a learning set and testing set for external validation. However, the small sample

size and unbalanced structure of current nanotox data, could affect the predictive performance of

the model and require adapted resampling techniques, such as under-sampling or over-sampling.

An investigation aimed at comparing different inferential paradigms is beyond the scope of this

manuscript, but it is certainly very important and worth pursuing. For an example related to

linear model determination, see the paper by Celeux et al. (2012).

As seen in the case study, different toxicity mechanisms can be closely related. Therefore, an

important opportunity for model extensions would be to combine different biological assays in

a single analysis through multiple trees. The final goal being that of understanding if particles

physical and chemical properties have a differential effect on different cellular injury pathways.

These potential developments are indeed much needed. However, more sophisticated modeling

strategies will be more likely to be useful if technological advances will allow for feasible screening

of much larger nanomaterial libraries.
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8 Supplementary Material

Supplementary material and C++ code to perform the experiments and the simulation dataset are

available upon request to the author.
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