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Abstract

In this paper, we study the impact of unmeasured confounding on inference about a two-

way interaction in a mean regression model with identity, log or logit link function. Necessary

and su¢ cient conditions are established for a two-way interaction to be nonparametrically

identi�ed from the observed data, despite unmeasured confounding for the factors de�ning

the interaction. A lung cancer data application illustrates the results.

1 Introduction

An important scienti�c goal of many studies in the health sciences is increasingly to determine

whether an interaction between two factors under study is present in the e¤ect that they produce

on the mean of the outcome. For instance, genetic epidemiology studies routinely aim to establish

the presence of an interaction between a genetic factor and an environmental factor or two genetic

factors, in the e¤ect that they produce on the risk of a disease outcome. In such observational stud-
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ies, to avoid reporting of a spurious interaction, and to ensure that an estimated interaction has a

meaningful causal interpretation, e¤orts are usually made to minimize bias due to confounding of

either factor de�ning the interaction. Thus, to minimize confounding bias, investigators strive to

measure and to account in regression analysis for as many potential confounders of the environ-

mental factors as practically possible, and to control for population strati�cation for the genetic

factors. However, whether unmeasured confounding is absent in a given observational study can

rarely be established with certainty, and it is typically recommended that one supplement data

analyses with a sensitivity analysis to assess the degree to which inferences are robust to possible

unmeasured confounding. A variety of sensitivity analysis techniques for unmeasured confounding

when total e¤ects are in view, are now well developed in the causal inference literature (Rosem-

baum, 1995, Lin et al, 1998, Robins, 1999, VanderWeele and Arah, 2011, Tchetgen Tchetgen and

Robins, 2012). Similar techniques have also appeared in recent literature on causal mediation

analysis (Imai et al, 2010, VanderWeele, 2010, Tchetgen Tchetgen, 2011). In the context of infer-

ence about a two-way interaction, VanderWeele et al (2011) develop a sensitivity analysis technique

to assess the extent to which unmeasured confounding in one or both factors involved in an inter-

action operating on an additive or multiplicative scale, can alter inference. As a corollary to their

proposed sensitivity analysis framework, VanderWeele et al (2011) establish su¢ cient conditions

for nonparametric identi�cation of a causal additive or multiplicative interaction in the presence of

unmeasured confounding. Their identi�cation result is particularly striking upon noting that iden-

ti�cation of causal e¤ects in the presence of unmeasured confounding typically entails fairly strong

assumptions, such as say, the availability of an instrumental variable. The results of VanderWeele

et al (2011) reveal that the situation is quite di¤erent when causal interactions are in view, and

that considerable progress can be made under weaker assumptions. For instance, an important

implication of their results is that if the two exposures are independent, and a confounder of the
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�rst factor is unobserved, but is known to be independent and not to additively interact with the

second factor, then the additive interaction of the two factors is nonparametrically identi�ed.

In the current paper, the authors extend the results of VanderWeele et al (2011) in signi�cant

directions. First and foremost, necessary and su¢ cient conditions are given for nonparametric

identi�cation of a two-way interaction on the additive and multiplicative scales, thus generalizing

previous su¢ cient conditions given in VanderWeele et al (2011). Subsequently, related conditions

are given for a two-way interaction on the logit scale, a setting not considered in previous literature.

Because out results are nonparametric they apply to the entire literature on statistical methods

for the estimation of an interaction. Some recent cutting-edge methods stand out in this rich

literature, that are primarily concerned with robust adjustment for measured confounding in the

context of inference about an interaction, and are given by Vansteelandt et al (2008), Tchetgen

Tchetgen and Robins (2010), Tchetgen Tchetgen (2011), Bhattacharjee et al (2010) and Tchetgen

Tchetgen (2012). While the aforementioned papers are primarily concerned with robustness to

model mis-speci�cation, the current paper concerns robustness to unmeasured confounding and

therefore complements the previous literature.

2 Notation and de�nitions

We will let X1 and X2 denote our two exposures of interest; these could represent genetic and envi-

ronmental factors respectively, or both could either be genetic factors, or environmental exposures;

the results derived below apply quite broadly and are not restricted to studies of gene-environment

interaction. Let Y denote the outcome of interest. Both exposures and the outcome can be contin-

uous, count or binary. De�ning causal interactions is facilitated by counterfactual notation which

we introduce next. We let Yx1;x2 denote the counterfactual or potential outcome for Y for each
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individual if possibly contrary to fact, the �rst exposure had been set to x1 and the second to

x2: We proceed with the usual consistency assumption that the only observed counterfactual is

Yx1;x2 = Y which holds almost surely if fX1 = x1; X2 = x2g: Throughout, we suppose that data

arises from an observational study, and therefore, the exposures are not randomized and their

causal e¤ects are potentially subject to confounding. However, we hypothesize a set of variables

fU;Cg su¢ ces to control for confounding, where C is observed, one or more confounders U are

unobserved, but C by itself does not su¢ ce to control for confounding. Formally, we assume that

Yx1;x2 ?? fX1; X2gj fU;Cg but Yx1;x2 6?? fX1; X2gjC:

Let � (x1; x2; c; u) = E (Yx1;x2j C = c; U = u) = E (Y j X1 = x1; X2 = x2; C = c; U = u) denote

the mean of Yx1;x2 in the stratum fU = u;C = cg; and de�ne the interaction function of inferential

interest:

 (x1; x2; c; u)

= g�1 f� (x1; x2; u; c)g � g�1 f� (x�1; x2; u; c)g � g�1 f� (x1; x�2; u; c)g+ g�1 f� (x�1; x�2; u; c)g

where (x�1; x
�
2) is a �xed reference value which we suppress in  to simplify notation, g

�1 is either

the identity, log or logit link function. Therefore,  (x1; x2; c; u) = 0 implies that the controlled

direct e¤ect of X1 on Y on the g�1 scale, when X2 is set to x2 is constant across values of x2;

and vice-versa for x1. Throughout, we make the crucial assumption that the interaction function

 (x1; x2; c; u) does not depend on the unmeasured confounder U; that is

e (x1; x2; c) =  (x1; x2; c; u) (1)
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When g�1 is the identity link, assumption (1) implies that

e (x1; x2; c) = E �Yx1;x2 � Yx�1;x2 � Yx1;x�2 + Yx�1;x�2 j C = c �
= E

�
Yx1;x2 � Yx�1;x2 � Yx1;x�2 + Yx�1;x�2 j C = c; U = u

�

is homogeneous in the unmeasured confounder. Although these quantities are not in general identi-

�ed without data on U:We note that assumption (1) does not place any restriction on the observed

data likelihood, and therefore, the assumption is perfectly compatible with a nonparametric model

for the mean of [Y jX1; X2; C]:

g�1 fE (Y j X1 = x1; X2 = x2; C = c )g = �1 (x1; c) + �2 (x2; c) + �3 (x1; x2; c) + �4 (c)

where �1; �2 and �4 encode the main e¤ects of X1; X2 and C respectively, and �3 encodes the

statistical interaction

g�1 fE (Y j X1 = x1; X2 = x2; C = c )g � g�1 fE (Y j X1 = x
�
1; X2 = x2; C = c )g (2)

� g�1 fE (Y j X1 = x1; X2 = x
�
2; C = c )g+ g�1 fE (Y j X1 = x

�
1; X2 = x

�
2; C = c )g

between X1 and X2 as a function of C: Then, irrespective of assumption (1); the only restriction on

�1; �2; �3, and �4 is the anchoring condition, which states without loss of generality, 0 = �1 (x�1; c)

= �2 (x
�
2; c) = �3 (x

�
1; x2; c) = �3 (x1; x

�
2; c) = �4 (c

�) for a �xed reference value c�: Furthermore,

�3 (x1; x2; c) 6= e (x1; x2; c) without additional assumptions, because without data on U , the causal
interaction of interest e is generally not identi�ed by the statistical interaction �3: A trivial con-

5 Hosted by The Berkeley Electronic Press



dition that entails �3 = e is � (x1; x2; u; c) = � (x1; x2; u�; c) for all u, where u� is a �xed reference
value, i.e. U does not predict the mean of Y and therefore does not confound the joint causal e¤ect

of (X1; X2) on Y: Below, we consider necessary and su¢ cient conditions (which are non-trivial),

such that �3 = e and yet U is an unobserved confounder for the joint causal e¤ect of (X1; X2) on
Y .

3 Identi�cation of additive interactions

The results presented in this section give simple su¢ cient and necessary conditions such that �3 =

e when g�1 is the identity link. Proofs are relegated to the appendix.
Theorem 1 Suppose that g�1 is the identity link, Yx1;x2 ?? fX1; X2gj fU;Cg ; and assumption (1)

holds; then �3 (x1; x2; c) = e (x1; x2; c) if and only if e� (x1; x2; c) is additive in x1 and x2 within
levels of c; where e� (x1; x2; c) = E f� (X1; X2; u; c)� � (X1; X2; u�; c) jX1 = x1; X2 = x2; C = cg.
An equivalent formulation of the result states that �3 = e if and only if there exist three func-

tions e�1 (x1; c) ; e�2 (x2; c) ; and e�4 (c) of (x1; c); (x2; c) and c respectively, such that R � (x1; x2; u; c)�
� (x1; x2; u

�; c) dF (ujx1; x2; c) = e�1 (x1; c) + e�2 (x2; c) + e�4 (c) ;
where F (AjD) is the cumulative distribution function of [AjD]:

Then, it is straightforward to verify that

�4 (c) = e�4 (c) + � (x�1; x�2; u�; c) ;
and

�1 (x1; c) = e�1 (x1; c) + � (x1; x�2; u�; c)� � (x�1; x�2; u�; c) ;
�2 (x2; c) = e�2 (x2; c) + � (x�1; x2; u�; c)� � (x�1; x�2; u�; c)
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are biased for the causal main e¤ects of X1 and X2 respectively, but according to the theorem,

collapsing over U does not introduce a spurious interaction between X1 and X2; and therefore

�3 (x1; x2; c) = e (x1; x2; c). To illustrate Theorem 1, it is instructive to relate the result to Corollary
1B of VanderWeele et al (2011). The corollary is reproduced here in the current notation for

convenience.

Corollary 2 (VanderWeele et al, 2011): Suppose that the e¤ects of X1 and X2 on Y are uncon-

founded conditional on (C;U) and we have X1 ?? (X2; U) jC then if U does not interact with X1

on the additive scale in the sense that � (x1; x2; u; c) � � (x1; x2; u�; c) is constant across x1 then

�3 (x1; x2; c) = e (x1; x2; c) :
One can show that Corollary 1 implies that e� (x1; x2; c) is additive in x1 and x2 within levels

of c and therefore the condition of Theorem 1 is satis�ed. However, Theorem 1 states that the

condition for Corollary 1 may be relaxed without altering the conclusion. Furthermore, we note

that the conditions of the corollary imply condition (1) ; but the latter condition is less restric-

tive and thus more general, than required by the corollary. To illustrate, suppose that instead

X1 ?? U jX2; C but X1 and X2 are conditionally dependent given C whether one conditions on

U or not. Then, Theorem 1 states that �3 = e while Corollary 1 does not lead to this conclu-
sion. Theorem 1 also indicates alternative conditions such that the interaction parameter e is
identi�ed. For instance, suppose that � (x1; x2; u; c)�� (x1; x2; u�; c) is constant across (x1; x2) but

X1; X2 and U are dependent within levels of C: Then, Theorem 1 implies that �3 = e providedR
f� (x�1; x�2; u; c)� � (x�1; x�2; u�; c)g dFU jX1;X2;C (ujx1; x2; c) is additive in x1 and x2: In the special

case of a binary U; the above condition reduces to Pr(U = 1jx1; x2; c) is additive in x1 and x2

within levels of c:
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VanderWeele et al (2011) also consider in their Corollary 1C, a result similar to Corollary 1

under the assumption thatX1 andX2 are independent, and that there is an unmeasured confounder

U1 of X1 and similarly, that there is another unmeasured confounder U2 of X2; such that U1 and

U2 are both binary. They establish that if in addition, X1 and U2 do not interact, X2 and U1

do not interact, and U1 and U2 do not interact, then �3 (x1; x2; c) = e (x1; x2; c) : This result is
particularly relevant if we imagine X1 to be a genetic factor and X2 to be an environmental factor,

so that unmeasured confounders of the environmental exposure neither interact not confound the

genetic variant, and similarly, the unmeasured confounders of the genetic factor neither interact nor

confound the environmental exposure, and the unmeasured confounders do not interact. Theorem

1 indicates that one could still identify a gene-environment interaction under an alternative set of

assumptions that would allow for (U1; U2; X1; X2) to be dependent. In fact, it is straightforward

to verify that the condition for Theorem 1 would hold if both U1 and U2 did not interact with

either X1 or X2; provided that
R
f� (x�1; x�2; u1; u2; c)� � (x�1; x�2; u�1; u�2; c)g dFU jX1;X2;C (ujx1; x2; c)

were additive in x1 and x2 within levels of c:

4 Identi�cation of multiplicative interactions

On the multiplicative scale, (1) implies that when g�1 is the log-link, e (x1; x2; c) is
log

E (Yx1;x2j U = u;C = c )
E
�
Yx�1;x2j U = u;C = c

�=E �Yx1;x�2 j U = u;C = c �
E
�
Yx�1;x�2 j U = u;C = c

�
= log

E (Yx1;x2j C = c )
E
�
Yx�1;x2j C = c

�=E �Yx1;x�2 j C = c �
E
�
Yx�1;x�2 jC = c

�
neither of which are in general identi�ed without data on U: The following theorem presents simple

su¢ cient and necessary conditions for �3 = e
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Theorem 3 Suppose that g�1 is the log link, Yx1;x2 ?? fX1; X2gj fU;Cg ; and assumption (1)

holds; then �3 (x1; x2; c) = e (x1; x2; c) if and only if e�y (x1; x2; c) is additive in x1 and x2 within
levels of c; where �y (x1; x2; c) = logE f� (X1; X2; u; c) =� (X1; X2; u�; c) jX1 = x1; X2 = x2; C = cg.

Similar to the additive scale, an equivalent formulation of the above theorem states that �3 = e
if and only if there exist three functions �y1 (x1; c) ; �

y
2 (x2; c) ; and �

y
4 (c) of (x1; c); (x2; c) and

c respectively, such that log
R
� (x1; x2; u; c) =� (x1; x2; u

�; c) dFU jX1;X2;C (ujx1; x2; c) = �y1 (x1; c) +

�y2 (x2; c) + �
y
4 (c) :

Then, it is straightforward to verify that �4 (c) = �
y
4 (c) + log � (x

�
1; x

�
2; u

�; c) ; and �1 (x1; c) =

�y1 (x1; c)+log f� (x1; x�2; u�; c) =� (x�1; x�2; u�; c)g, �2 (x2; c) = �
y
2 (x2; c)+log f� (x�1; x2; u�; c) =� (x�1; x�2; u�; c)g

are biased for the causal main e¤ects of X1 and X2 respectively, but according to the theorem,

collapsing over U does not introduce a spurious interaction between X1 and X2; and therefore

�3 (x1; x2; c) = e (x1; x2; c). To illustrate Theorem 2, it is instructive to relate the result to Corol-

lary 2B of VanderWeele et al (2011). The corollary is reproduced here in the current notation for

convenience.

Corollary 4 (VanderWeele et al, 2011): Suppose that the e¤ects of X1 and X2 on Y are un-

confounded conditional on (C;U) and we have X1 ?? (X2; U) jC then if U does not interact with

X1 on the multiplicative scale in the sense that � (x1; x2; u; c) =� (x1; x2; u�; c) is constant across x1

then �3 (x1; x2; c) = e (x1; x2; c) :
One can show that Corollary 2 implies that e�y (x1; x2; c) is additive in x1 and x2 within lev-

els of c and therefore the condition of Theorem 1 is satis�ed. However, Theorem 2 states that

the condition for Corollary 2 may be relaxed without altering the conclusion. To illustrate, sup-

pose that instead X1 ?? U jX2; C but X1 and X2 are conditionally dependent given C whether

one conditions on U or not. Then, Theorem 2 states that �3 = e while Corollary 2 does not
9 Hosted by The Berkeley Electronic Press



lead to this conclusion. Theorem 2 also indicates alternative conditions such that e is iden-
ti�ed. For instance, suppose that � (x1; x2; u; c) =� (x1; x2; u�; c) is constant across (x1; x2) but

X1; X2 and U are dependent within levels of C: Then, theorem 2 implies that �3 = e pro-
vided log

R
E f� (x�1; x�2; u; c) =� (x�1; x�2; u�; c) jX1 = x1; X2 = x2; C = cg dFU jX1;X2;C (ujx1; x2; c) is

additive in x1 and x2:

VanderWeele et al (2011) also consider in their Corollary 2C, a result similar to Corollary

2 under the assumption that X1 and X2 are independent, and that there is an unmeasured

confounder U1 of X1 and similarly, that there is another unmeasured confounder U2 of X2;

such that U1 and U2 are both binary and independent of each other. They establish that if

X1 and U2 do not interact, X2 and U1 do not interact, and U1 and U2 do not interact, then

�3 (x1; x2; c) = e (x1; x2; c) : Their Corollary 2C requires U1 and U2 be binary, but it can be veri-
�ed that the condition of Theorem 2 would hold under their assumption even if U1 and U2 were not

binary, and therefore that the gene-environment interaction would still be identi�ed for (U1; U2)

of more general support, as long as the unmeasured confounders satis�ed the other conditions

of their Corollary 2C described above. Moreover, Theorem 2 also indicates that one could still

identify a gene-environment interaction under an alternative set of assumptions that would allow

for (U1; U2; X1; X2) to be dependent. In fact, it is straightforward to verify that the condition

for Theorem 2 would hold if both U1 and U2 did not interact with either X1 or X2; provided

that log
R
f� (x�1; x�2; u1; u2; c) =� (x�1; x�2; u�1; u�2; c)g dFU jX1;X2;C (ujx1; x2; c) were additive in x1 and

x2 within levels of c:
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5 Identi�cation of odds ratio interactions

In this section, we consider odds ratio interactions and take g�1 to be the logit link. We present

general results that allow for a polytomous Y . In this vein, we consider the odds ratio interaction

given by eg (y; x1; x2; c) =
log

(
ODDS (Yx1;x2 = yj u; c )
ODDS

�
Yx�1;x2 = yj u; c

�=ODDS �Yx1;x�2 = y j u; c �
ODDS

�
Yx�1;x�2 = yj u; c

� ) (3)

= log

�
ODDS (Y = yj x1; x2; u; c )
ODDS (Y = y j x�1; x2; u; c )

=
ODDS (Y = y j x1; x�2; u; c )
ODDS (Y = yj x�1; x�2; u; c )

�

where ODDS(A = ajd ) = Pr(A = ajD = d)=Pr(A = a�jD = d); with a� a reference value. Note

that the equation above reduces to (1) when Y is binary and y = 1, and thus eg (1; x1; x2; c) =
e (x1; x2; c) : The following theorem presents simple su¢ cient and necessary conditions such that

�g3 (y; x1; x2; c) = e (y; x1; x2; c) ; where we de�ne �g3 (y; x1; x2; c) =
log

�
ODDS (Y = yj x1; x2; c )
ODDS (Y = y j x�1; x2; c )

=
ODDS (Y = yj x1; x�2; c )
ODDS (Y = yj x�1; x�2; c )

�

which reduces to �3(x1; x2; c) when Y is binary and y = 1:

Suppose that Yx1;x2 ?? fX1; X2gj fU;Cg ; and eg (y; x1; x2; c) is given by equation (3), then �g3 (y; x1; x2; c) =
eg (y; x1; x2; c) if and only if �z (y; x1; x2; c) is additive in x1 and x2 within levels of c and y; where
�z (y; x1; x2; c) =

log

Z �
ODDS (Y = yjx1; x2; u; c )
ODDS (Y = yjx1; x2; u�; c )

�
dF (ujx1; x2; c; y�)

To illustrate the theorem, consider the case of Y binary, so that y� = 0. Then, if either

the conditional odds ratio relating X1 to Y; ORY;X1 (x1jx�2; u; c) =ODDS(Y = 1j x1; x�2; u; c ) =
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ODDS(Y = 1jx�1; x�2; u; c ) is constant across levels of u; or the conditional odds ratio relating

X2 to Y; ORY;X2 (x2jx�1; u; c) =ODDS(Y = 1j x�1; x2; u; c ) =ODDS(Y = 1j x�1; x�2; u; c ) is constant

across levels of u, the following corollary uses Theorem 3 to obtain additional conditions such that

eg (y; x1; x2; c) = �g3 (y; x1; x2; c) :
Corollary 5 Suppose that Yx1;x2 ?? fX1; X2gj fU;Cg ; and eg (y; x1; x2; c) is given by equation (3),
then �g3 (y; x1; x2; c) = eg (y; x1; x2; c) if at least one of the following conditions holds:
1. ORY;X1 (x1jx�2; u; c) is constant across levels of u and U ?? X1jX2; Y = 0; C:

2. ORY;X1 (x1jx�2; u; c) and ORY;X2 (x2jx�1; u; c) are both constant across levels of u; and

logE fORY;U (U jx�1; x�2; c) jx1; x2; c; Y = 0g = log
Z
ORY;U (ujx�1; x�2; c) dF (ujx1; x2; c; Y = 0)

is additive in x1 and x2:

3. U = (U1; U2) such that ORY;X1 (x1jx�2; u; c) is constant across levels of u2, ORY;X2 (x2jx�1; u; c)

is constant across levels of u1;ORY;U1 (u1jx�1; x�2; u2; c) is constant across levels of u2; U1 ??

U2j (X1; X2; Y = 0; C) ; U2 ?? X1j (X2; Y = 0; C) ; U1 ?? X2j (X1 = x�1; Y = 0; C) :

Condition (i) of the Corollary is similar to the conditions of Corollaries 1B and 2B of Vander-

Weele for the identity and log links. The �rst condition states that the main e¤ect of X1 on Y is

constant across levels of U , in other words, there is no X1 � U interaction on the logit scale. The

second condition is akin to the independence assumption involved in our extension of Corollaries

1B and 2B given in the previous sections, but the assumption is distinct in that it requires the

independence U and X1 conditional on X2 and C; among the una¤ected, i.e. among individuals

with Y = 0: In a case-control study, the second assumption entails the conditional independence
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of U and X1 in the controls; if as often the case in case-control studies, the outcome is rare in

the underlying target population across levels of (X1; X2; U; C); then, the independence assump-

tion is approximately correct conditional on (X1; X2; U; C) only. Intuitively, when the outcome is

rare, the logit link is well approximated by the log link and thus the results for identi�cation of

multiplicative interactions apply.

Condition (ii) states that if U interacts with neither X1 nor X2 on the logit scale, then the

independence assumption of condition (i) can be replaced with an assumption about the functional

form of a certain conditional expectation. Speci�cally, the result states that theX1�X2 interaction

function is nonparametrically identi�ed if there exist functions �z (x1; c) ; �z (x2; c) and �z (c) ; such

that the conditional mean of the odds ratio relating U to Y given (X1; X2; C) amongst individuals

with Y = 0 ; i.e. E fORY;U (U jx�1; x�2; c) jx1; x2; c; Y = 0g can be expressed expf�z (x1; c)+�z (x2; c)+

�z (c)g:

Condition (iii) extends Corollaries 1C and 2C of VanderWeele et al (2011) for the additive and

log scale, to the logit scale. It states that e (x1; x2; c) is identi�ed if X1 and X2 do not interact with

U in their e¤ects on Y ; U1 and U2 do not interact in their e¤ects on Y; U2 and X1 are independent

given (X2; C) in the una¤ected, U1 and X2 are independent given (X1; C) in the una¤ected; and U1

and U2 are independent given (X1; X2; C) in the una¤ected. Similar to condition (i), under a rare

disease assumption, Condition (iii) reduces to the conditions of Corollary 2C of VanderWeele et al

(2011), in which case the above independence statements also hold in the underlying population,

and not just for the una¤ected. Note however that Condition (iii) of Corollary 4 applies more

broadly irrespective of whether the disease is rare or not.
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6 A data illustration

In an investigation of the joint e¤ects of exposure to asbestos and smoking habits on lung cancer

risk, Hilt et al. (1986) considered data from the Norwegian Cancer Registry, on men aged 40

years and above in Telemark, Norway. Let X1 denote an indicator for whether an individual ever

smoked, X2 is an indicator for whether an individual had any previous asbestos exposure and Y

is an indicator for the occurrence of lung cancer within 10 years. Hilt et al. (1986) estimated the

following risk of lung cancer for the di¤erent of the exposures:

p11 =
141

3130
; p10 =

118

12303
; p01 =

5

749
; p00 =

6

5057
;

where px1x2 = Pr(Y = 1jx1; x2): Assuming that there are no variables that confound the e¤ects

of smoking and asbestos exposure on lung cancer, the following point estimates of interaction are

obtained on the additive scale:

Additive interaction:
141

3130
� 118

12303
� 5

749
+

6

5057
= 0:03 (s:e: = 4:85� 10�3)

The analysis indicates a signi�cant additive statistical interaction, however this analysis would in

general not be given a causal interpretation, because the assumption of no unmeasured confounding

is likely inappropriate in this context. The results of VanderWeele et al (2011) required that the

two exposures be independent for the interaction measure to be unbiased. Our results here do

not require that assumption. Theorem 1 states that the estimated additive interaction can be

interpreted causally as long as the mean (wrt to the unmeasured confounders) of the association

between unmeasured confounders and lung cancer risk is an additive function of smoking behavior

and asbestos exposure. Similarly, Theorem 2 and 3 provide necessary and su¢ cient conditions for
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valid inference of a causal interaction on the multiplicative and odds ratio interaction.

Appendix

Proof of Theorem 1: We note that E (Y j X1 = x1; X2 = x2; C = c ) =

Z
� (x1; x2; u; c) dF (ujx1; x2; c)

=

Z
f� (x1; x2; u; c)� � (x1; x2; u�; c)g dF (ujx1; x2; c) + � (x1; x2; u�; c)� e (x1; x2; c)

+ e (x1; x2; c)
Next, recall that � (x1; x2; u; c) can be written

E (Y j X1 = x1; X2 = x2; C = c ) = �1 (x1; c) + �2 (x2; c) + �3 (x1; x2; c) + �4 (c)

therefore, e (x1; x2; c) is identi�ed if and only if �3 (x1; x2; c) = e (x1; x2; c), that is, if and only if
E (Y j X1 = x1; X2 = x2; C = c )� e (x1; x2; c) = �1 (x1; c) + �2 (x2; c) + �4 (c)

is additive in x1 and x2; or equivalently, if and only if

Z
f� (x1; x2; u; c)� � (x1; x2; u�; c)g dF (ujx1; x2; c) + � (x1; x2; u�; c)� e (x1; x2; c)
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is additive in x1 and x2. We �nally note that

� (x1; x2; u
�; c)� e (x1; x2; c)

= � (x1; x
�
2; u

�; c)� � (x�1; x�2; u�; c)

+ � (x�1; x2; u
�; c)� � (x�1; x�2; u�; c)

+ � (x1; x2; u
�; c)� � (x1; x�2; u�; c)� � (x�1; x2; u�; c) + � (x�1; x�2; u�; c)| {z }

=e(x1;x2;c)
+ � (x�1; x

�
2; u

�; c)� e (x1; x2; c)
is additive in x1 and x2 by assumption, thus e (x1; x2; c) is identi�ed if and only if R f� (x1; x2; u; c)� � (x1; x2; u�; c)g dF (ujx1; x2; c)
is additive in x1 and x2 proving the result.

Proof of Theorem 2: We note that E (Y j X1 = x1; X2 = x2; C = c ) =

Z
� (x1; x2; u; c) dF (ujx1; x2; c)

=

Z
� (x1; x2; u; c)

� (x1; x2; u�; c)
dF (ujx1; x2; c)�

� (x1; x2; u
�; c)

exp fe (x1; x2; c)g
� exp fe (x1; x2; c)g

Therefore, e (x1; x2; c) is identi�ed if and only if �3 (x1; x2; c) = e (x1; x2; c), that is, if and only if
logE (Y j X1 = x1; X2 = x2; C = c )� e (x1; x2; c) = �1 (x1; c) + �2 (x2; c) + �4 (c)
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is additive in x1 and x2; or equivalently, if and only if

log

Z
f� (x1; x2; u; c) =� (x1; x2; u�; c)g dF (ujx1; x2; c) + log � (x1; x2; u�; c)� e (x1; x2; c)

is additive in x1 and x2. We �nally note that

log � (x1; x2; u
�; c)� e (x1; x2; c)

= log � (x1; x
�
2; u

�; c)� log � (x�1; x�2; u�; c)

+ log � (x�1; x2; u
�; c)� log � (x�1; x�2; u�; c)

+

�
log � (x1; x2; u

�; c)� log � (x1; x�2; u�; c)� log � (x�1; x2; u�; c) + log � (x�1; x�2; u�; c)| {z }
�

=e(x1;x2;c)
+ log � (x�1; x

�
2; u

�; c)� e (x1; x2; c)
Thus, logE (Y j X1 = x1; X2 = x2; C = c ) � e (x1; x2; c) is additive in x1 and x2 by assumption,
and e (x1; x2; c) is identi�ed if and only if log R f� (x1; x2; u; c) =� (x1; x2; u�; c)g dF (ujx1; x2; c) is
additive in x1 and x2; proving the result.

Proof of Theorem 3: One can easily verify that

ODDS (Y = yjx1; x2; c)

= E fODDS (Y = yjX1; X2; U; C) jY = y�; X1 = x1; X2 = x;C = cg
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Hence,

ODDS (Y = yjx1; x2; c)

= E
�
ODDS (Y = yjX1; X2; U; C)
ODDS (Y = yjx1; x2; u�; c)

jY = y�; X1 = x1; X2 = x;C = c
�

� ODDS (Y = yjx1; x2; u
�; c)

exp feg (y; x1; x2; c)g � exp feg (y; x1; x2; c)g
Therefore, eg (y; x1; x2; c) is identi�ed if and only if �3 (y; x1; x2; c) = e (y; x1; x2; c), where
logODDS (Y = yjx1; x2; c)� e (y; x1; x2; c) = �1 (y; x1; c) + �2 (y; x2; c) + �3 (y; x1; x2; c) + �4 (y; c)
such that 0=�1 (y; 0; c) = �2 (y; 0; c) = �3 (y; 0; x2; c) = �3 (y; x1; 0; c), and thus, eg (y; x1; x2; c) is
identi�ed if and only

logODDS (Y = yjx1; x2; c)� eg (y; x1; x2; c)
= �1 (y; x1; c) + �2 (y; x2; c) + �4 (y; c)

is additive in x1 and x2: Equivalently, eg (y; x1; x2; c) is identi�ed if and only if
logE

�
ODDS (Y = yjX1; X2; U; C)
ODDS (Y = yjx1; x2; u�; c)

jY = y�; X1 = x1; X2 = x;C = c
�
+log

ODDS (Y = yjx1; x2; u�; c)
exp feg (y; x1; x2; c)g
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is additive in x1 and x2. We �nally note that

logODDS (Y = yjx1; x2; u�; c)� e (x1; x2; c)
= logODDS (Y = yjx1; x�2; u�; c)� logODDS (Y = yjx�1; x�2; u�; c)

+ logODDS (Y = yjx�1; x2; u�; c)� logODDS (Y = yjx�1; x�2; u�; c)

+

8>><>>:
logODDS (Y = yjx1; x2; u�; c)� logODDS (Y = yjx1; x�2; u�; c)

� logODDS (Y = yjx�1; x2; u�; c) + logODDS (Y = yjx�1; x�2; u�; c)

9>>=>>;| {z }
=e(y;x1;x2;c)

+ logODDS (Y = yjx�1; x�2; u�; c)� eg (y; x1; x2; c)
therefore logODDS(Y = yjx1; x2; u�; c)� e (x1; x2; c) is additive in x1 and x2 by assumption, thus
eg (y; x1; x2; c) is identi�ed if and only if logE nODDS(Y=yjX1;X2;U;C)ODDS(Y=yjx1;x2;u�;c) jY = y

�; X1 = x1; X2 = x;C = c
o

is additive in x1 and x2; proving the result.

Proof of Corollary 4: To prove the result, it su¢ ces to note that under

(i)

logE
�
ODDS (Y = yjX1; X2; U; C)
ODDS (Y = yjx1; x2; u�; c)

jY = 0; X1 = x1; X2 = x;C = c
�

= logE
�
ORY;X2 (X2jx�1; U; C)
ORY;X2 (X2jx�1; u�; C)

ORY;U (U jx�1; x�2; C) jY = 0; X2 = x;C = c
�

is additive in x1 and x2;proving the �rst part of the result.

Next, under
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(ii)

logE
�
ODDS (Y = yjX1; X2; U; C)
ODDS (Y = yjx1; x2; u�; c)

jY = 0; X1 = x1; X2 = x;C = c
�

= logE fORY;U (U jx�1; x�2; C) jY = 0; X1 = x1; X2 = x;C = cg

proving the second part of the result. And �nally under

(iii)

logE
�
ODDS (Y = yjX1; X2; U; C)
ODDS (Y = yjx1; x2; u�; c)

jY = 0; X1 = x1; X2 = x;C = c
�

= logE
�
ORY;X1 (X1jx�2; U1; C)
ORY;X1 (X1jx�2; u�1; C)

ORY;U1 (U1jx�1; x�2; C) jY = 0; X1 = x1; C = c
�

+ logE
�
ORY;X2 (X2jx�1; U2; C)
ORY;X2 (X2jx�1; u�2; C)

ORY;U2 (U2jx�1; x�2; C) jY = 0; X2 = x;C = c
�

proving the result.
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