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Estimation of Direct and Indirect Causal
Effects in Longitudinal Studies

Mark J. van der Laan and Maya L. Petersen

Abstract

The causal effect of a treatment on an outcome is generally mediated by several
intermediate variables. Estimation of the component of the causal effect of a treat-
ment that is mediated by a given intermediate variable (the indirect effect of the
treatment), and the component that is not mediated by that intermediate variable
(the direct effect of the treatment) is often relevant to mechanistic understanding
and to the design of clinical and public health interventions. Under the assumption
of no-unmeasured confounders, Robins & Greenland (1992) and Pearl (2000), de-
velop two identifiability results for direct and indirect causal effects. They define
an individual direct effect as the counterfactual effect of a treatment on an out-
come when the intermediate variable is set at the value it would have had if the
individual had not been treated, and the population direct effect as the mean of
these individual counterfactual direct effects. The identifiability result developed
by Robins & Greenland (1992) relies on an additional “No-Interaction Assump-
tion”, while the identifiability result developed by Pearl (2000) relies on a partic-
ular assumption about conditional independence in the population being sampled.
Both assumptions are considered very restrictive. As a result, estimation of direct
and indirect effects has been considered infeasible in many settings. We show
that the identifiability result of Pearl (2000), also holds under a new conditional
independence assumption which states that, within strata of baseline covariates,
the individual direct effect at a fixed level of the intermediate variable is indepen-
dent of the no-treatment counterfactual intermediate variable. We argue that our
assumption is typically less restrictive than both the assumption of Pearl (2000),
and the “No-interaction Assumption” of Robins & Greenland (1992). We also
generalize the current definition of the direct (and indirect) effect of a treatment
as the population mean of individual counterfactual direct (and indirect) effects to
1) a general parameter of the population distribution of individual counterfactual



direct (and indirect) effects, and 2) change of a general parameter of the popu-
lation distribution of the appropriate counterfactual treatment-specific outcome.
Subsequently, we generalize our identifiability result for the mean to identifiabil-
ity results for these generally defined direct effects. We also discuss methods for
modelling, testing, and estimation, and we illustrate our results throughout using
an example drawn from the treatment of HIV infection.



1 Introduction.

Consider a longitudinal study in which one collects on each randomly sampled
subject the chronological data structure Z(0), L(0), A(0), . . . , Z(K), L(K), A(K), Z(K+
1), Y = L(K+1), where L(j) is a time-dependent covariate measured at time
j, A(j) is a time-dependent treatment, Z(j) is a time-dependent covariate of
interest, j = 0, . . . , K + 1, and Y is the final outcome of interest measured
at time K + 1, which denotes the end of the study. Let W ≡ (Z(0), L(0))
denote the baseline covariates measured before the assignment of the initial
treatment A(0). The simplest special case (corresponding with K = 0) of
this data structure is O = (W, A, Z, Y ), where W denotes baseline covari-
ates, A denotes treatment, Z denotes an intermediate outcome, and Y is the
final outcome of interest. In this article we are concerned with answering
questions such as “What is the direct causal effect of A on Y ?” and “What
is the indirect causal effect of A on Y through Z?”.

We will rely throughout the paper on an example drawn from our research
on the treatment of Human Immunodeficiency Virus (HIV) to illustrate our
notation and results. Antiretroviral therapy suppresses the replication of
HIV, reflected in a reduced plasma HIV RNA level (viral load). As a result
of reduced viral replication, a patient’s CD4 T-cell count increases, restoring
immunologic function. Antiretroviral therapy may also increase CD4 T-cell
counts in ways not mediated by changes in viral load(Deeks et al. (2000)).
This example is illustrated in Figure 1. We are interested in the question
“What is the direct causal effect of antiretroviral therapy on CD4 T- cell
count (not mediated by changes in viral load)?”. Identifying such a direct
effect would have important implications for understanding both the me-
chanics of antiretroviral action and the appropriate clinical response to viral
resistance, which can reduce or eliminate the effect of treatment on viral
load.

Using the notation described above, in our example A denotes antiretro-
viral therapy, Z denotes viral load, Y denotes CD4 T-cell count at the end of
the study, and W denotes any baseline covariates (such as age, sex, injection
drug use status, etc...). For simplicity, for the majority of the paper we treat
antiretroviral therapy as binary (treated or not) and assume that therapy,
viral load, outcome and covariates are each measured at a single point in
time. However, the example can be easily generalized to more complex data
structures.

Under the assumption of no-unmeasured confounders, Robins and Green-
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Y: Final CD4 
T-cell count 

A: Antiretroviral 
Treatment 

Z: Viral Load 

Pathway contributing to direct effect of treatment on CD4 T-
cell count (not mediated by viral load) 
 
Pathway contributing to indirect effect of treatment on CD4 T-
cell count (mediated by viral load) 

 

Figure 1:
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land (1992) and Pearl (2000) develop two identifiability results for direct (and
indirect) causal effects. They define an individual direct effect as the counter-
factual effect of a treatment on an outcome when the intermediate variable
is set at the value it would have had if the individual had not been treated.
The population direct effect is defined as the mean of these individual coun-
terfactual direct effects. The identifiability result developed by Robins and
Greenland (1992) relies on an additional “No-Interaction Assumption”, while
the identifiability result developed by Pearl (2000) relies on a particular as-
sumption about conditional independence in the population being sampled.
Both assumptions are considered very restrictive and unrealistic. As a result,
estimation of the direct and indirect effects of treatment has been considered
infeasible in many settings. We show that the identifiability result of Pearl
(2000) also holds under a new conditional independence assumption which
states that, within strata of baseline covariates, the individual direct causal
effect at a fixed level of the intermediate variable is independent of the no-
treatment counterfactual intermediate variable. Using both theoretical ar-
guments and the HIV example presented, we discuss the interpretation and
plausibility of our assumption in comparison to the assumptions of Robins
and Greenland (1992) and Pearl (2000). We also discuss methods for mod-
elling, testing, and estimation.

We also generalize the current definition of the direct (and indirect) ef-
fect of a treatment as the population mean of individual counterfactual direct
(and indirect) effects to 1) a general parameter of the population distribution
of individual counterfactual direct (and indirect) effects, and 2) change of a
general parameter of the population distribution of the appropriate counter-
factual treatment-specific outcome. Subsequently, we generalize our identifi-
ability result for the mean to identifiability results for these generally defined
direct effects. One could name these two categories of direct effects as “pa-
rameter of change” and “change of parameter”, respectively, where we note
that in the special case of the mean these two definitions agree with each
other.

This article is organized as follows. In Section 2 we review the statistical
counterfactual framework as used by Robins and Greenland (1992), Robins
(2003), and present their definitions of direct and indirect effects on the mean.
In Section 3 we present our new conditional independence assumption and the
corresponding identifiability results for direct causal effects. We also provide
a detailed discussion of our assumption and comparison with the previously
used assumptions for identifying the direct and indirect effect on the mean.

3
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In Section 4 we show how one can estimate these direct causal effects with
current statistical methods based on marginal structural models, as detailed
in Robins (1997) and van der Laan and Robins (2002). In this section we also
present a modelling strategy and corresponding test of the null hypothesis
of “no direct effect”. In Section 5 we generalize the definition of direct and
indirect effects, and generalize our identifiability results. Finally, in Section
6 we discuss the extensions of our identifiability result to general longitudinal
data structures, including the case that the outcome of interest is a survival
time.

2 Definition of a direct effect: Review

We follow the statistical framework and definitions of direct and indirect ef-
fects as presented in Robins and Greenland (1992) and Robins (2003). This
statistical framework represents the observed data as a missing data struc-
ture, where the full data is a collection of counterfactual data structures
corresponding with set values of the treatment and intermediate variables.
In other words, in the full data we would observe, for each individual, the
value of the intermediate variable over time resulting from each possible treat-
ment history, and the value of the covariate process over time, including the
outcome, resulting from each combination of possible treatment history and
possible intermediate variable history. Instead, our observed data is only
a subset of this full data, consisting of a single treatment history and the
corresponding intermediate variable and covariate processes.

2.1 Causal effects of joint treatment and intermediate
covariate process.

Given a time-dependent process X(t), we will adopt the notation X̄(t) =
(X(s) : s ≤ t).
Counterfactuals only controlling treatment: Let Ā = Ā(K) = (A(0), . . . , A(K))
denote the multivariate treatment regime, or the treatment history through
time K, and let A denote all possible treatment histories. For each ā ∈ A,
let Xā(j) ≡ (Zā(j), Lā(j)) denote the treatment-specific process one would
have observed if the subject would have followed treatment regime Ā = ā,
j = 0, . . . , K + 1. It is assumed that Xā(j) = Xā(j−1)(j); in other words, the
values of the intermediate variable and covariates are not affected by treat-
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ment that occurs after they are measured (we assume that A(j) is measured
after X(j)). It is further assumed that the observed X(j) = (Z(j), L(j))
equals the treatment specific (Zā(j), Lā(j)) corresponding with the treatment
the subject actually took: that is, L(j) = LĀ(j−1)(j), and Z(j) = ZĀ(j−1)(j),
j = 0, . . . , K + 1. Under this so called consistency assumption, we have the
following relation between the collection of counterfactual data structures
and the observed data:

O = (Ā(K), L̄Ā(K + 1)).

In the special case O = (W, A, Z, Y ) we have O = (W, A, ZA, YA), where
(Za, Ya) represents the treatment-specific counterfactual outcome of (Z, Y ).

In our example, A denotes all possible antiretroviral treatments, and con-
sists of a = 0 (untreated) and a = 1 (treated). The counterfactual viral load
and CD4 T-cell count that would have been observed under no treatment is
denoted X0 ≡ (Z0, Y0), and the viral load and CD4 T-cell count that would
have been observed under treatment is denoted X1 ≡ (Z1, Y1). We assume
that the viral load and CD4 count we observe for a treated subject are equiv-
alent to the subject’s counterfactual viral load and CD4 T-cell count under
treatment, and that the viral load and CD4 T-cell count we observe for an
untreated subject are equivalent to the counterfactual viral load and CD4 T-
cell count under no treatment (the consistency assumption). Observed data
for a given subject can then be represented as the subject’s observed treat-
ment, the counterfactual CD4 T-cell count and viral load under the observed
treatment, and any additional baseline covariates W .
Definition of a causal effect of treatment: One can now define a causal
effect of treatment on (e.g.) the outcome Y in terms of a particular differ-
ence between the distribution of Yā and the distribution of Y0. Applying
this definition to our example, the causal effect of antiretroviral treatment
is defined as the difference in the distribution of final CD4 T-cell count that
would have been observed if our study population were treated and the dis-
tribution of CD4 T-cell count that would have been observed if our study
population were untreated. The causal effect of a treatment can be further
defined as conditional on baseline covariates V ⊂ L(0) (for example, marginal
structural models (Robins (1997), Robins (2000), van der Laan and Robins
(2002) define a causal effect in this manner), or on an observed past (for ex-
ample, structural nested mean models (Robins (1989), Robins (1994) define
a casual effect in this manner).
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Alternatively, one can define the causal effect of treatment as a particular
parameter of the distribution of individual causal effects Yā − Y0. For exam-
ple, structural nested models focus on modelling the distribution of individual
causal effects (Robins (1997), van der Laan and Robins (2002)). Applied to
our example, the causal effect of antiretroviral treatment is defined as some
parameter (such as the mean or median) of the individual difference in CD4
T-cell count that would have been observed for each subject in the study if
he/she had been treated vs. untreated.
Identifiability of the counterfactual treatment-specific distributions:
The distribution of X̄ā = (Z̄ā, Ȳā) is identified by the G-computation formula
(or Inverse Probability of Treatment Weighted, or IPTW, and Double-Robust
Inverse Probability of Treatment Weighted, or DR-IPTW, estimating func-
tion) under the assumption that A(j) is sequentially randomized (SRA) and
that experimental treatment assumption (ETA) holds for the conditional
density of A(j), given the observed past. The SRA assumption states here
that A(j) is conditionally independent of X = (X̄ā : ā ∈ A), given the ob-
served past (Ā(j − 1), X̄Ā(j−1)(j)), j = 0, . . . , K + 1. In our example, the
SRA states that whether an individual is treated or not is independent of
his/her counterfactual CD4 T-cell count and viral load, given observed co-
variates, or in other words, there are no unmeasured variables that predict
both treatment and CD4 T-cell count, or both treatment and viral load (i.e.,
no unmeasured confounders). We refer to van der Laan and Robins (2002),
Gill and Robins (2001), Yu and van der Laan (2002) for a definition of the
experimental treatment assignment assumption, and the precise statement
of the identifiability result based on the G-computation formula for discrete
as well as continuous data.
Counterfactuals controlling both treatment and intermediate co-
variate process: The definition of direct and indirect causal effects requires,
beyond the definition of treatment-specific counterfactual processes Z̄ā, the
definition of counterfactuals for Y in which Z̄ is also controlled. That is, one
views (Ā, Z̄) as a joint treatment process which can potentially be controlled
by the experimenter. Let Z denote the set of all possible values for Z̄. For
each ā ∈ A and z̄ ∈ Z, let L̄ā,z̄ ≡ (Lā,z̄(j) : j = 0, . . . , K + 1) denote the
treatment-specific L-process one would have observed if the subject would
have followed treatment regime Ā = ā, and if his/her Z-process would have
been controlled at Z̄ = z̄.

It is assumed that Lā,z̄(j) = Lā(j−1),z̄(j−1)(j). In other words, the covariate
process is not affected by either treatment or level of the intermediate variable
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occurring after the covariate process is measured. In addition, it is assumed
that the observed L(j) equals the treatment-specific Lā,z̄(j) corresponding
with the treatment and covariate process the subject actually followed: that
is, L(j) = LĀ(j−1),Z̄(j−1)(j), j = 0, . . . , K + 1. Under this latter consistency
assumption, and the previous definition of Z̄ā and corresponding consistency
assumption Z̄ = Z̄Ā, we have the following relation between the complete
collection of counterfactual data structures X ≡ (Z̄ā, L̄ā,z̄ : ā, z̄) (i.e., the
full data structure one would have liked to observe) and the observed data
structure:

O = (Ā(K), Z̄ = Z̄Ā(K + 1), L̄Ā,Z̄(K + 1)).

In particular, Yā,z̄ = Lā,z̄(K + 1) denotes the counterfactual outcome one
would have observed if the subject would have followed treatment regime
Ā = ā, and if his/her Z-process would have been controlled at Z̄ = z̄.
The counterfactuals Yā and Yā,z̄ can be related to each other by assuming
Yā = Yā,Z̄ā

, and, more general, L̄ā = L̄ā,Z̄ā
.

Applying this notation to our example, we define Ya,z as the counter-
factual outcome (CD4 T-cell count) that would have been observed if the
individual had followed antiretroviral treatment regime a, and had his/her
viral load controlled at z. The full data for a given individual are composed
of baseline covariates and the counterfactual outcomes (CD4 T-cell counts)
under possible viral loads and treatments and the viral loads under possible
treatments. In the observed data, only one viral load can be observed for any
given individual. Further, under the consistency assumption, the viral load
and CD4 T-cell count observed are the counterfactual viral load and CD4
T-cell count under the observed treatment; both viral load and CD4 T-cell
count observed for a given individual will correspond to

the counterfactual viral load and CD4 T-cell count for the treatment the
subject actually took.
Identifiability of counterfactual joint “treatment” -specific distri-
butions: The distribution of Lā,z̄ is identified (e.g., by the G-computation
formula) from the data if the joint “treatment” (A(j), Z(j)) is condition-
ally independent of the collection of counterfactuals X, given the observed
past Ā(j − 1), Z̄(j − 1), L̄(j − 1), j = 1, . . . , K, and an experimental joint
treatment assignment assumption (ETA) holds for the conditional density of
(A(j), Z(j)), given the observed past (see van der Laan and Robins (2002)).
The first assumption is referred to as the sequential randomization assump-
tion (SRA) of the treatment (A(j), Z(j)). If one is only concerned with
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identifiability of the distribution of Yā,z̄, then this sequential randomization
assumption can be weakened to just assuming that (A(j), Z(j)) is condition-
ally independent of the collection of counterfactuals (Yā,z̄ : ā, z̄), given the
observed past Ā(j−1), Z̄(j−1), L̄(j−1), j = 1, . . . , K. In our example, this
is equivalent to assuming that, within subgroups defined by baseline covari-
ates W, there are no unmeasured variables that predict both antiretroviral
treatment and viral load, as well as the outcome, CD4 T-cell count.

2.2 Direct and indirect causal effects.

Robins and Greenland (1992)), Robins (2003), and Pearl (2000) provide the
following definition of a direct effect

DE(ā) = E(Yā,Z̄0
− Y0,Z̄0

). (1)

We refer to Yā,Z̄0
− Y0,Z̄0

as the individual direct effect. A direct effect
is thus defined as the population mean of individual direct effects, where
an individual direct effect is the difference between the outcome when an
individual is treated and the intermediate variable is set at its value under
no treatment, and the outcome when the same individual is not treated. In
our example, we could calculate an individual’s direct effect using the full
data by taking the difference between the individual’s counterfactual CD4 T-
cell count under treatment, with viral load set to its untreated value, and the
same individual’s CD4 T-cell count under no treatment. The direct effect for
the study population would then be calculated by taking the mean of these
individual direct effects.

Similarly, Robins and Greenland (1992)), Robins (2003), and Pearl (2000)
define an indirect effect as

IDE(ā) = E
(
Yā,Z̄ā

− Yā,Z̄0

)
. (2)

We also note that (see e.g., Robins (2003))

TE ≡ E(Yā − Y0) = E(Yā,Z̄ā
− Y0,Z̄0

)

= E(Yā,Z̄ā
− Yā,Z̄0

) + E(Yā,Z̄0
− Y0,Z̄0

)

= IDE + DE. (3)

In order to avoid too much repetition, in this article we will focus on testing
and estimation of direct causal effects. A similar approach can be followed
for inference regarding indirect causal effects.
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Note the difference between E(Yā,Z̄0
−Y0,Z̄0

) and E(Yā,z̄−Y0,z̄). The former
expression evaluates the mean of the treatment effect in the population when
the intermediate variable follows the trajectory it would have had for each
individual under no treatment. The latter expression evaluates the mean
of the treatment effect in the population when the intermediate variable is
set to a constant pre-specified level/trajectory for all the individuals in the
population.

In some settings, particularly if the intermediate variable z̄ is amenable
to public health intervention, E(Yā,z̄ − Y0,z̄) may be a parameter of interest
in its own right. For example, a physical exercise program may reduce heart
disease both directly and because it encourages individuals to stop smoking.
One might be interested in asking: “What would be the effect of exercise
on heart disease if the whole population were to stop smoking?”. Such a
question could be addressed by evaluating E(Yā,z̄ − Y0,z̄), treating exercise
and smoking as a joint treatment, and would not require any additional
assumptions beyond the SRA and ETA to be identifiable from the observed

data.
In other settings, however, E(Yā,z̄ − Y0,z̄) is less interesting. In our HIV

example, the question “What would the effect of antiretroviral treatment
be if viral load in the population were controlled at a specified level?” has
no meaningful clinical or public health interpretation; no interventions other
than antiretroviral treatment are available to control viral load. However, it
is still interesting to ask the hypothetical mechanistic question “What would
the effect of antiretroviral treatment on CD4 T-cell count be if treatment
had no effect on viral load; in other words, if viral load remained at the
level it would have had for each individual in the absence of treatment?”.
The definition of direct effect proposed by Robins and Greenland (1992)),
Robins (2003), and Pearl (2000), which treats the intermediate variable as
an additional counterfactual random variable, addresses this type of question.

A direct (and indirect) causal effect, as defined here, cannot be identified
from the observed data without making additional non-testable assumptions
beyond the SRA and ETA. The main cause of this lack of identifiability is the
fact that, given the full collection of counterfactuals X = (Yā,z̄, Zā : ā, z̄) for
a given subject, evaluation of Yā,Z0 requires combining counterfactuals under
two different treatment regimes: that is, one first selects the counterfactual
Z0 corresponding with no-treatment, and subsequently, one selects the coun-
terfactual Yā,z̄ corresponding with z̄ = Z0, but with treatment ā. Since one
never observes these two counterfactuals simultaneously, any parameter of
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this distribution is non-identifiable without making additional assumptions
(Robins (2003)).

To illustrate the need for additional assumptions to ensure the identi-
fiability of direct effects, as compared to total effects, consider our exam-
ple. As stated above, our full data consist of the counterfactual outcomes
(CD4 T-cell counts) under all possible treatments and viral loads, the coun-
terfactual viral load under all possible treatments, and baseline covariates
(X ≡ (Ya,z, Za, W : a, z)). From this full data, we can compute the two
counterfactual outcomes used to define the direct effect: CD4 T-cell count if
the individual was untreated, and viral load was controlled at its untreated
value (Y0,Z0 = Y0), and CD4 T-cell count if the individual was treated, and
viral load was controlled at its untreated value (Y1,Z0). As in any causal
inference problem, we only observe the counterfactual outcome for a given
individual under a single treatment, Y1 or Y0. Estimation of the direct effect
of treatment is further complicated by the fact that we never observe one of
the counterfactual outcomes, (Y1,Z0) used to define the direct effect, because
this counterfactual outcome corresponds to two different treatments in the
same individual.

3 Identifiability result for direct causal effect.

In the next subsections we will present the corresponding formal identifiabil-
ity result, provide understanding of our proposed conditional independence
assumption (4), and compare it with the assumptions proposed in the current
literature.

3.1 Identifying assumption for direct causal effect.

We propose the following assumption for identification of the direct causal
effect:

Yā,z̄ − Y0,z̄ ⊥ Z̄0 | W for all ā and z̄, (4)

We will refer to Yā,z̄ − Y0,z̄ as the individual direct effect at a fixed z̄. In
words, this assumption states that, within strata of baseline covariates, the
direct effect of treatment at a fixed level of the intermediate variable does not
depend on an individual’s counterfactual level of the intermediate variable
under no treatment.
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An alternative way of formulating our assumption (4) is that there exists
a function m such that

Yā,z̄ = Y0,z̄ + m(ā, z̄, W, e), (5)

where e is a random variable which is conditionally independent of Z̄0, given
W . This assumption would hold, in particular, if e is an exogenous variable
independent of the subject. We note that this assumption puts no constraints
on E(Yā,z̄ | W ), and it is a non-testable assumption. For example, one
might have that Yā,z̄ = Y0,z̄ + g(ā, z̄, W ) + e, where the variations e are not
predictive of the subject’s progression of disease (as measured by Z̄0) under
no-treatment.

In words, this assumption states that the individual direct causal effect
Yā,z̄ − Y0,z̄ is a deterministic function of ā, z̄, the baseline covariates W , and
an “exogenous” error. That is, within a subpopulation defined by a strata
of W , the variation of Yā,z̄ − Y0,z̄ among subjects is completely explained
by random fluctations independent of the subject’s characteristics related to
Z̄0. In order to make this a reasonable assumption, it is important that one
measures enough baseline covariates explaining this variation in direct effects
at a fixed z̄.

In the context of the HIV example, we assume that, within strata of
baseline covariates, the direct effect of antiretroviral treatment on CD4 T-
cell count, controlling viral load at a fixed level z, does not depend on what
an individual’s viral load would have been under no treatment. For example,
if one were to control viral load at a high level among a group of individuals
with identical baseline covariates, the effect of treatment on CD4 T-cell count
would not vary based on an individual’s viral load under no treatment. Thus,
we must include in our baseline covariates any variables that are associated
with viral load under no treatment and also predict the magnitude of the
individual direct effect at a fixed viral load. Note that, in our example, Ya,z−
Y0,z is a hypothetical construct; as discussed above, there is no intervention
that allows us to control viral load while changing antiretroviral treatment.

Under this assumption, we have

DE = EW E(Yā,Z̄0
− Y0,Z̄0

| W )

= EW EZ̄0|W E(Yā,Z̄0
− Y0,Z̄0

| Z̄0, W )

= EW

∫
E(Yā,z̄ − Y0,z̄ | Z̄0 = z̄, W )dFZ0|W (z̄)
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= EW

∫
E(Yā,z̄ − Y0,z̄ | W )dFZ0|W (z̄) by (4)

≡ D̃E, (6)where the right-hand side is identifiable from the observed data
distribution.

We will present this identifiability result as a theorem.

Theorem 1 Let DE(ā) = E(Yā,Z̄0
− Y0,Z̄0

). Assume that (4) holds. Then,

DE(ā) = D̃E(ā)

≡ EW

∫
{E(Yā,z̄ | W )− E(Y0,z̄ | W )} dFZ0|W (z̄). (7)

In subsection 3.2, we compare our identifiability result with the identifiability
results of Robins (2003) and Pearl (2000).

3.2 Comparison with identifying assumptions of Robins
and Pearl.

Comparison with Pearl (2001): Pearl (2001) shows (using the structural
equation framework) that, if

Yā,z̄ ⊥ Z̄0 | W for all z̄, (8)

then
EYā,Z̄0

= EW E(Yā,z̄ | W )dFZ̄0|W (z̄).

This can be shown in precisely the same manner as we did in (6) above.
Clearly, this assumption also implies DE = D̃E (see (7)). Thus Pearl (2001)
identifiability mapping is the same as ours (7), but it was based on a different
assumption.

An alternative way of formulating this assumption (8) is that there exists
a function m such that

Yā,z̄ = m(ā, z̄, W, e), (9)

where e is a random variable which is conditionally independent of Z̄0, given
W .

It is of interest to compare our assumption (4) with (8). Comparison of
(5) with (9) helps one to understand that our assumption is less restrictive.
That is, we assume Yā,z̄ − Y0,z̄ is a function of (ā, z̄, W, e), while (8) assumes
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that Yā,z̄ is a function of (ā, z̄, W, e), for some random variable e condition-
ally independent of Z̄0, given W . Stated in words, Pearl (2001) assumes
that, within subgroups defined by baseline covariates, individual counter-
factual outcome is a deterministic function of treatment, the level of the
intermediate variable, and an exogenous error, but not of the counterfactual
outcome under no treatment. In contrast, our assumption states that, within
subgroups defined by baseline covariates, the magnitude of individual direct
effects at a fixed level of the intermediate variable is a deterministic function
of treatment, the level of the intermediate variable, and an exogenous error.
Under our assumption, at a fixed level of z, an individual’s counterfactual
outcome under a given treatment, Yā,z̄, can depend on the individual’s coun-
terfactual outcome under no treatment, Y0̄,z̄. Generally, Y0,z̄ explains a lot of
the variation in Yā,z̄, suggesting that our assumption is more reasonable.

Suppose that assumption (8) holds at two treatment values ā and 0.
In that case, we have that both counterfactual outcomes Yā,z̄ and Y0,z̄ are
conditionally independent of Z0, given W . One would now expect that the
difference Yā,z̄−Y0,z̄ is also conditionally independent of Z̄0, given W : in fact,
mathematically it follows that Yā,z̄−Y0,z̄ is uncorrelated with any real valued
function of Z̄0, given W . This suggests that in most examples in which (8)
holds, one will also have that our assumption holds. On the other hand, it
is easy to construct examples in which our assumption holds, while (8) fails
to hold.

Returning to our HIV example, consider the case that Z̄0 is the viral load
of an HIV-infected person under no treatment, and Yā,z̄ is the CD4 T-cell
count measured at the end of the study under a particular treatment regime
ā and a controlled viral load z̄. Current understanding of HIV treatment
suggests that the subject’s counterfactual CD4 T-cell count Yā,z̄ is unlikely
to be a deterministic function of the treatment regime, viral load, measured
baseline factors, and an exogenous error. That is, one suspects that subjects
have very different baseline CD4 T-cell count Y0,z̄-values, which are them-
selves extremely predictive of the counterfactual CD4 T-cell count Yā,z̄

under treatment regime ā, and are not explained by baseline covariates W .
In other words, within subpopulations defined by baseline covariates W and
a fixed viral load z, an individual’s CD4 T-cell count on therapy is likely to
depend on what that individual’s CD4 T-cell count would have been under no
therapy. In this case the assumption of Pearl (2001) does not hold. However,
it seems less unreasonable to assume that, within subpopulations defined by
baseline factors W , all this variation in Yā,z̄ is explained by Y0,z̄, in the sense
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that Yā,z̄ − Y0,z̄ is a deterministic function of ā, z̄, W and an “exogenous”
error. In other words, within subpopulations defined by baseline covariates
and fixed viral load z, the magnitude of the direct effect of antiretroviral
therapy on an individual does not depend on what that individual’s CD4
T-cell count would have been under no therapy.

Comparison with Robins (2003): We refer to Robins (2003) for fur-
ther discussion of the limitations of assumption (8). Robins proposes an
alternative identifying assumption, which he calls the No-Interaction As-
sumption:

Yā,z̄ − Y0,z̄ is a random function B(ā) that does not depend on z̄. (10)

In words, this assumption states that the individual direct effect at a fixed
level z does not depend on the level at which z is fixed. Clearly, under this
assumption we have Yā,Z̄0

− Y0,Z̄0
= Yā,z̄ − Y0,z̄ for any z̄ so that

E(Yā,Z̄0
− Y0,Z̄0

) = E(Yā,z̄ − Y0,z̄), (11)

where the latter quantity does not depend on z.
A detailed mechanistic discussion of this assumption is given in Robins

and Greenland (1992). As noted by Pearl (2001), this assumption is satisfied
in the usual linear SEM model and has been used to identify direct and
indirect effects in the structural equation literature.

The “No-interaction Assumption” implies, in particular, that EYā,z̄ =
m1(ā) + m2(z̄) for some functions m1 and m2, or in other words, that the
marginal causal effects of the treatment and the intermediate variable on
outcome are additive. This assumption can be tested by testing for an in-
teraction term in a marginal structural model. In most applications one
expects these interactions to be present, and, in fact, the interactions them-
selves often correspond with interesting and important statistical hypotheses.
Consequently, the “No-Interaction Assumption” is very restrictive as well.

Applied to our HIV example, Robins’ assumption implies that the indi-
vidual direct effect of antiretroviral treatment at a controlled viral load does
not depend on the level at which viral load is controlled. In other words,
it implies that the direct effect of treatment on CD4 T-cell count would be
the same if viral load were controlled at a high level (the study population
was virologically failing) or controlled at a low level (the study population
was virologically succeeding). This assumption is unlikely to be met, and is
an interesting research question in itself. In particular, some antiretroviral
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drugs are hypothesized to act directly on CD4 T-cells by inhibiting their
apoptosis (programmed cell death) (Phenix et al. (2000)). Higher levels of
ongoing CD4 T-cell apoptosis may be induced by higher viral loads (Muthu-
mani et al. (2003)). Thus, we could hypothesize that, if therapy has an anti-
apoptotic direct effect on CD4 T-cell count (ie, not mediated by changes in
viral load), such an effect may larger among individuals with higher viral
loads and higher levels of apoptosis. In such a case, Robins’ assumption does
not hold. In contrast, our assumption simply requires that the magnitude of
the individual direct effect at a fixed viral load be independent of what the
individual’s viral load would have been under no treatment.

Robins (2003)’ identifiability mapping (11) corresponds with ours using
an empty W (and thus with Pearl (2000)’s), since the integration w.r.t. FZ̄0

does not affect the integral. We conclude that all three identifiability map-
pings agree with each other (except that Robins (2003) avoids integration
w.r.t. FZ̄0

by making the “No-Interaction assumption”), but that the model
assumptions which were used to validate the identifiability mapping are dif-
ferent. Our result shows that the identifiability mapping of Pearl (2001)
holds under a much less restrictive union-assumption: that is, the identifia-
bility result presented in Theorem 1 holds if either our assumption holds, or
the (8) assumption holds, or the “No-Interaction Assumption” holds.

It is interesting to note that our assumption corresponds with making
the assumption (8) as in Pearl (2001), but replacing Yā,z̄ by the difference
Yā,z̄−Y0,z̄. Thus our assumption can be viewed as a combination of the ideas
presented in the two assumptions (8) and (10).

3.3 Discussion of assumption in terms of structural
equation models.

In this subsection we will provide examples of structural equation models
in which our assumption (4) holds. For example, consider the following
semiparametric structural equation model for the data generating mechanism
of the simplest single time-point version O = (W, A, Z, Y ) of our longitudinal
data structure:

W = f1(U, e1), e1 exogenous, U unobserved characteristics

A = f2(W, e2), e2 exogenous

Z = f3(U,A, W, e3), e3 exogenous
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Y = g(A, Z, W, e41) + f4(U,W,Z, e42), e41, e42 exogenous. (12)

In this model the functions f1, f2, f3, f4, g are arbitrary, and U can also
follow an arbitrary distribution. Note that, beyond the assumption that A
is randomized conditional on W (second equation), the main assumption of
this model is that the effect of A on Y is additive w.r.t. to U (last equation).
That is, this model does not allow an interaction between A and U , but it
does allow an interaction of A with Z and W . Under these assumptions
we have that Ya,z − Y0,z = g(a, z, W, e41) + f4(U,W, z, e42)− g(0, z, W, e41)−
f4(U,W, z, e42) = g(a, z, W, e41) − g(0, z, W, e41), and Z0 = f3(U, 0, W, e3).
Thus, if e41 is independent of e3, given W , or g(a, z, W, e41) − g(0, z, W, e41)
does not depend on e41 (that is, the error is additive), then assumption (4)
holds. On the other hand, assumption (8) fails in this case. In the above
structural equation model Z is confounded by unmeasured confounders. If
we do not allow this, then (8) also holds.

By introducing a variable L(1) (affected by past (A(0), Z(0))) between a
Z(0) and Z(1), it can be shown that (4) holds under similar non-interaction
constraints, but now also on the equation for L(1). In this case, the as-
sumption (8) fails to hold even when (A(j), Z(j)) is sequentially randomized.
Consider the following structural equation model

W = f0(U, e)

A(0) = f1(e)

Z(0) = f2(W, A(0), e)

L(1) = f3(W, A(0), Z(0), U, e)

A(1) = f4(W, A(0), Z(0), L(1), e)

Z(1) = f5(W, A(0), A(1), Z(0), L(1), e)

Y = f6(W, A(0), A(1), Z(0), Z(1), L(1), U, e)

with the following constraints:

L(1) → f6(W, A(0), A(1), Z(0), Z(1), L(1), U, e) is linear
f3(W, a(0), z(0), U, e)− f3(W, 0, z(0), U, e) is a function of (W, a(0), z(0), e) only
f6(W, ā, z̄, L(1), U, e)− f6(W, 0, z̄, L(1), U, e) is a function of (W, ā, z̄, e) only.

Again, let e denote here an exogenous random variable. For example, f3(W, a(0), z(0), U, e) =
f31(W, a(0), z(0), e) + f32(W, z(0), U, e) (i.e., no-interaction between A and
U),and f6(W, ā, z̄, L(1), U, e) = f61(W, ā, z̄, e) + f62(W, z̄, L(1), U, e) (i.e., no-
interaction between A and (L(1), U)). In the same manner as above one can
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verify that our assumption (4) holds. On the other hand, if L(1) is a function
of U , then no restrictions on the functions f3 and f6 validate assumption (8).

Stated in Directed Acyclic Graph terminology, Pearl (2000) and Robins
(2003) point out that assumption (8) will hold if, and essentially only if, there
is no descendant of A that is also an ancestor of both Z and Y . In contrast,
our assumption (4) holds in many cases where this condition is not met. We
use a simple example, represented in Figure 2, to illustrate our point, relying
again on antiretroviral treatment of HIV.

Consider the following structural equation model

A = f1(e1)

R = f2(A, e2)

Z = f3(A, R, e3)

Y = f4(A, Z, R, e4) = f41(A, Z, e41) + f42(Z,R, e42)

Let A denote antiretroviral treatment, R denote viral resistance to treatment,
Z denote viral load, and Y denote CD4 T-cell count at the end of the study.
Again, let ei denote an exogenous random variable. Note that the model does
not allow an interaction between A and R, but it does allow an interaction of
A with Z and Z with R. In other words, the effects of antiretroviral therapy
and viral resistance on CD4 T-cell count are additive at a given viral load,
but they can differ depending on the level of viral load. Under these assump-
tions, we have that Ya,z −Y0,z = f41(a, z, e41) + f42(z, R, e42)− f41(0, z, e41)−
f42(z, R, e42) = f41(a, z, e41)−f41(0, z, e41) and Z0 = f3(0, R, e3). As above, if
f41(a, z, e41)− f41(0, z, e41) does not depend on e41 (the error is additive), or
if e41 is independent of e3 (the error of the individual direct effect at a fixed
viral load does not depend on the error of the viral load under no treatment),
then our assumption holds. However, the assumption of Pearl (2000) fails,
despite randomization of A and Z given the observed past.

For the sake of space, we will omit further discussion of the relation
between structural equation models and our assumption (4).

4 Estimation of direct causal effects with MSM’s.

Marginal structural models are models for marginal distributions of treatment-
specific counterfactuals, possibly conditional on baseline covariates (e.g.,
Robins (1997), Robins (2000), van der Laan and Robins (2002)). These
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Y: Final CD4 
T-cell count 

Z: Viral Load 

A: Antiretroviral 
Treatment 

R: Viral Resistance 

Pathway contributing to direct effect of treatment on CD4 T-cell 
count (not mediated by viral load) 
 
Pathway contributing to indirect effect of treatment on CD4 T-
cell count (mediated by viral load) 
 
Pathway contributing to both direct and indirect effect 

 

Figure 2:
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models provide us with a natural approach to statistical inference regarding
direct effects.

4.1 Test for no direct effect

Consider a marginal structural model E(Yā,z̄ | W ) = g(z̄, W | α)+γ(ā, z̄, W |
β) indexed by parameters (α, β), where γ(0, z̄, W | β) = 0 for all z̄, W, β.
Then E(Yā,z̄ − Y0,z̄ | W ) = γ(ā, z̄, W | β). For example, if a is univariate,
then one could pose the model

γ(a, z, W | β) = a ∗ (β0 + β1z + β2W ).

Under the assumptions SRA, ETA, and (4), in such a parameterization we
have that β = 0 implies that there is no direct effect. In addition, if β 6= 0,
then only a miraculous cancellation would cause the direct effect to equal
zero. Therefore, we believe that it is appropriate to test for no direct causal
effect by testing H0 : β = 0.

We can estimate the parameters of the marginal structural model with the
IPTW, DR-IPTW or G-computation estimators as presented in van der Laan
and Robins (2002). We recommend that the model g0(z̄, W | α) for E(Y0,z̄ |
W ) is made as flexible as sample size allows, possibly using cross-validation-
based model selection methods developed in van der Laan, Dudoit (2003).
This approach allows the model to be restrictive only on the parameter of
interest, but not on the nuisance parameters. This provides us now with an
estimator of β.

Given an estimate βn of the true parameter value β0, we can test the
null hypothesis H0 : β0 = 0 with the test statistic (βn − 0)/ŜE(βn), which is
asymptotically distributed as a N(0, 1)-random variable.

4.2 Estimation.

We now consider estimation of D̃E = EW

∫
{E(Yā,z̄ | W )−E(Y0,z̄ | W )}dFZ0|W (z̄).

Let γ(ā, z̄, W | β) be a model for E(Yā,z̄ | W ) − E(Y0,z̄ | W ) so that

D̃E = EW E(γ(ā, Z̄0, W | β) | W ). One can now pose a marginal struc-
tural model E(Yā,z̄ | W ) = g0(z̄, W | α) + γ(ā, z̄, W | β). Above we dis-
cussed estimation of β. Alternatively, instead of first assuming a model
for E(Yā,z̄ | W ) − E(Y0,z̄ | W ), we could start out with posing a marginal
structural model E(Yā,z̄ | W ) = m(ā, z̄, W | λ), and estimate its unknown
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parameters as discussed above. This implies, in particular, a fit for E(Yā,z̄ |
W )− E(Y0,z̄ | W ) = m(ā, z̄, W | λ)−m(0, z̄, W | λ). Given this estimate of
γ(ā, z̄, W | β), it remains to estimate E(γ(ā, Z̄0, W | βn) | W ), where βn is
treated as fixed in this conditional expectation.

Various approaches can be considered for estimation of this conditional
expectation w.r.t. of Z̄0, given W . First, one could estimate the conditional
distribution of Z̄0, given W , with the G-computation estimator, IPTW-
estimator, or the DR-IPTW estimator according to a marginal structural
model for the distribution Zā and evaluate the fit of this marginal structural
model at ā = 0. In the special case that γ(ā, Z̄0, W | β) is linear in Z0, we
have

E(γ(ā, Z̄0, W | β) | W ) = γ(ā, E(Z̄0 | W ), W | β).

Thus, in this case it suffices to estimate E(Z̄0 | W ). However, even when
γ(ā, Z̄0, W | β) is non-linear, it is a sensible stategy to estimate each ā-specific
univariate counterfactual expectation E(γ(ā, Z̄0, W | β) | W ) separately, by
fitting a marginal structural model E(γ(ā, Zā∗, W | β) | W ) = m(ā∗, W | γ),
and evaluating its fit at ā∗ = 0. Subsequently, one can smooth each of these
ā∗-specific estimates according to a model for E(γ(ā, Z0, W | β) | W ).

4.3 A simple example.

As an example, consider the simple single time-point data structure W, A, Z, Y .
For simplicity, we assume that all variables are univariate. In the single time-
point case, one can use standard regression methods to test for and estimate
a direct effect. Of course, in order to have that D̃E = DE, we need to as-
sume that within strata of W , (A, Z) is randomized (there is no confounding
at the level of either treatment or the intermediate variable), and that the
direct effects Yaz − Y0z at fixed z are independent of Z0 (i.e., our assumption
(4)).

Consider now D̃E. Under the assumption that (A, Z) is randomized
w.r.t. W , we have E(Y | A = a, Z = z, W ) = E(Yaz | W ) (this is the
G-computation formula for E(Yaz | W )), and thus that

E(Yaz − Y0z | W ) = E(Y | A = a, Z = z, W )− E(Y | A = 0, Z = z, W ).

We now assume a linear regression model for

E(Y | A, Z, W ) = A(β0 +β1Z +β2W +β3ZW )+(α0 +α1Z +α2W +α3ZW ),
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so that we have the model

E(Yaz − Y0z | W ) = a(β0 + β1z + β2W + β3zW ). (13)

Thus, one can use standard linear regression software to test for no direct
effect, by testing H0 : β0 = β1 = β2 = β3 = 0.

In order to estimate the direct effect, we need to take the conditional
expectation of (13) over z w.r.t. the distribution of Z0, given W . For this
purpose, we assume a model m(a, W | λ) for E(Za | W ) = E(Z | A = a, W )
(this is the G-computation formula for E(Za | W )), indexed by parameters λ.
Thus, λ can be estimated with the least squares estimator for the regression
of Z on A, W . By the linearity of (13) in z, it follows that the direct effect
is now modeled as

DE = a {β0 + β1Em(0, W | λ) + β2EW + β3E{m(0, W | λ)W}} .

An estimate of DE is obtained by replacing the regression parameters (β, λ)
by their least squares estimators.

Applied to our HIV example, the expected CD4 T-cell count (Y ) given
treatment (A), viral load (Z), and baseline covariates (E(Y | A, Z, W )) is
modeled as a linear regression, whose terms can be separated into two compo-
nents: terms containing treatment, including all interactions between treat-
ment and other covariates (A(β0 + β1Z + β2W + β3ZW )), and terms not
containing treatment (α0 + α1Z + α2W + α3ZW ). We test for no direct
effect by testing the hypothesis that the coefficients for the terms containing
treatment in the multivariable regression model (the β’s) are all equal to
zero.

We now have a model for the direct effect at a fixed viral load z: E(Yaz−
Y0z | W ) = a(β0 + β1z + β2W + β3zW ). In order to estimate the direct
effect, it remains to estimate viral load under no treatment: that is, E(Z0 |
W ) = E(Z | A = 0, W ). Thus, we simply model the regression of viral load
on treatment and baseline covariates, and evaluate our model fit under no
treatment (a = 0). The direct effect E(YaZ0 − Y0Z0 | W = wi) for subject i
with baseline covariate value wi can now be estimated from the multivariable
regression model of CD4 T-cell count by setting viral load at its expected
value (i.e., E(Z | A = 0, W = wi)) under no treatment and summing the
coefficients of the terms containing treatment. Finally, the population direct
effect DE is now estimated by taking the empirical mean of these subject-
specific quantaties.
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5 General direct causal effects

The previous sections have employed the definition of direct effect used by
Robins and Greenland (1992) and Pearl (2000), where the direct effect is
defined as the mean of individual counterfactual direct effects. In this section
we present two generalizations of this definition, which we term “parameter
of change” and “change of parameter”, and extend our identifiability results
to these general definitions.

5.1 Generalizing the definition of a direct effect.

Parameter of Change: A direct causal effect of Ā on Y can be generally
defined as a parameter of the distribution of the individual direct effect Yā,Z̄0

−
Y0,Z̄0

, where Z̄0 is the counterfactual of Z̄ corresponding with setting Ā = 0:

DE = Φ(FYā,Z0
−Y0,Z0

).

For example, if one is concerned with estimation of the direct effect of treat-
ment on the mean of the outcome of interest, then DE(ā) = E(Yā,Z̄0

−Y0,Z̄0
).

The above definition of direct effect generalizes the definition of direct effect
(1) on the mean of Y , as presented and considered in Robins and Greenland
(1992), Robins (2003), and Pearl (2000).

Change of parameter: Alternatively, one can define a direct effect
as a particular difference between the distribution FYā,Z̄0

of Yā,Z̄0
and the

distribution FY0,Z̄0
of Y0,Z̄0

. Let

DE = Φ(FY0,Z̄0
, FYā,Z̄0

)

represent such a difference.
For example, if Φ maps a cumulative distribution into its mean, then this

reduces to DE(ā) = EYā,Z̄0
− EY0,Z̄0

which agrees with (1). A more general
real valued direct causal effect can be defined as

DE(ā) = Φ(FY0,Z̄0
, FYā,Z̄0

) = θ(FYā,Z̄0
)− θ(FY0,Z̄0

),

where θ(FYā,Z̄0
) denotes a real valued parameter of the distribution of Yā,Z̄0

.
Alternatively, one could define the direct causal effect in terms of a quantile-
quantile function:

DE(ā, y) = Φ(FY0,Z̄0
, FYā,Z̄0

)(y) ≡ y − F−1
Yā,Z̄0

FY0,Z̄0
(y).
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That is, the magnitude of the direct causal effect depends on the deviation
of the quantile-quantile function from the identity function. We remind the
reader that this quantile-quantile function maps a quantile (e.g., median) of
FY0,Z̄0

into the same quantile of FYā,Z̄0
.

5.2 Identification of direct effect as “parameter of change”.

The approach presented in Section 4 for estimating direct causal effects in the
mean sense under assumption (4) can be generalized to other definitions of di-
rect causal effects in the following manner. Suppose we define a direct causal
effect as a parameter of the distribution of Yā,Z0−Y0,Z0 : DE = Φ(FYā,Z0

−Y0,Z0
).

Under assumption (4) we have

FYā,Z0
−Y0,Z0

(·) = EW

∫
FYā,z̄−Y0,z̄ |W (·)dFZ0|W (z̄).

We will state this result as a formal theorem, which generalizes Theorem 1.

Theorem 2 Let DE = Φ(FYā,Z0
−Y0,Z0

). Suppose that Assumption (4) holds.
Then,

DE = D̃E

≡ Φ
(
EW

∫
FYā,z̄−Y0,z̄ |W (·)dFZ0|W (z̄)

)
(14)

With the exception of the mean-case, we still need an additional model as-
sumption (beyond SRA, ETA, and (4)) in order to identify D̃E. Specifically,
we need an assumption which allows one, within strata of W , to map the
identifiable (by the G-computation formula) marginal distributions of Yā,z̄

and Y0,z̄ into the distribution of Yā,z̄ − Y0,z̄. For example, we could assume
that Yā,z̄ is a deterministic function of Y0,z̄, ā, z̄, and W , which is equivalent
with assuming that

Y0,z̄ = F−1
Y0,z̄ |W FYā,z̄ |W (Yā,z̄). (15)

Under this assumption, within strata of W , the marginal distributions of
Y0,z̄ and Yā,z̄ identify the joint distribution of (Y0,z̄, Yā,z̄), and thereby the
distribution of Yā,z̄ − Y0,z̄. Specifically,

FYā,z̄−Y0,z̄(·) = FYā,z̄g
−1
ā,z̄,W (·),

where gā,z̄,W (x) ≡ x− F−1
Y0,z̄ |W FYā,z̄ |W (x).
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5.3 Identification of linear direct effects as “change of
parameter”.

Consider now the case that DE = Φ(Fā,Z0 , F0,Z0) = θ(Fā,Z0) − θ(F0,Z0), and
that θ(F ) is linear in F . Then we have:

DE = EW

∫
Φ(

(
FY0,z̄ |W,Z0=z̄, FYā,z̄ |W,Z0=z̄)

)
dFZ0|W (z̄).

This proves the following identifiability result.

Theorem 3 Let DE = Φ(Fā,Z0 , F0,Z0) = θ(Fā,Z0) − θ(F0,Z0), where θ(F ) is
linear in F . Consider the following assumption:

θ
(
FY0,z̄ |W,Z0=z̄

)
− θ

(
FYā,z̄ |W,Z0=z̄

)
= θ

(
FY0,z̄ |W

)
− θ

(
FYā,z̄ |W

)
. (16)

Then,

DE = D̃E

≡ EW

∫
θ

(
FY0,z̄ |W

)
− θ

(
FYā,z̄ |W

)
dFZ0|W (z̄) (17)

Clearly, Assumption 16 holds under the assumption (8) of Pearl (2000) and
Pearl (2001). The assumption (16) states in words that, within strata of
W , the value of Z0 should have an additive affect on the θ-parameter of the
distribution of Yā,z̄ which does not depend on ā.

6 Discussion

Our results establish that the assumptions underlying the identifiability of di-
rect and indirect causal effects are more realistic than those previously stated.
As a consequence, statistical estimation of direct and indirect effects in longi-
tudinal studies can be carried out within a reasonable statistical model. We
plan to estimate (and test for) direct effects in a number of ongoing longi-
tudinal studies, using marginal structural models and corresponding double
robust inverse probability of treatment weighted estimators, as outlined in
Section 4.

The statistical framework and results in this article immediately gener-
alize to the following most generally defined longitudinal data structure (see

24

http://biostats.bepress.com/ucbbiostat/paper155



van der Laan and Robins (2002)), which allows one to define the outcome Y
of interest as a survival time. Suppose that the observed data structure on
a randomly sampled subject is defined as O = (T, Ā(T ), Z̄(T ), L̄(T )), where
T is a possibly random endpoint such as a survival time, A(t) denotes treat-
ment at time t, Z(t) is the time-dependent intermediate covariate we control
for in the definition of direct and indirect effects, and L(t) denotes the re-
maining time-dependent measurements. Let R(t) = I(T ≤ t) so that T is
identified by this time-dependent process R(t). Suppose that the outcome Y
of interest is a function of this data structure: Y = f(R̄(T ), Z̄(T ), L̄(T ))
for some function f . For all treatment regimes ā, we define the treat-
ment specific end-point Tā, and the truncated treatment specific process
Zā(t) = Zā(min(t, Tā). For all joint regimes (ā, z̄), we define the counter-
factual end-points Tā,z̄, Rā,z̄(t) ≡ I(Tā,z̄ ≤ t), the truncated counterfactual

L-process Lā,z̄(t) = Lā,z̄(min(t, Tā,z̄)), and let Yā,z̄ = f
(
Tā,z̄, z̄, L̄ā,z̄(Tā,z̄)

)
be

the corresponding counterfactual outcome. Let R̄ā,z̄, L̄ā,z̄, and Z̄ā denote
the full sample paths of these counterfactual processes. One could define
L̄ā = L̄ā,Z̄ā

, and Yā = Yā,Z̄ā
. The full data structure is now defined as the

vector
X = (Z̄ā, L̄ā,z̄, R̄ā,z̄ : ā, z̄),

which thus includes Yā,z̄. The observed data structure can now be viewed as
a missing data structure on X:

O = (Ā, Z̄ ≡ Z̄Ā, L̄Ā,Z̄ , R̄Ā,Z̄).

All definitions of direct and indirect effect and corresponding identifiability
results can now be applied. For example, one can define a direct effect
E(Yā,Z̄0

− Y0,Z̄0
), and use the corresponding expressions.
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