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Regression Trees for Longitudinal Data

Madan Gopal Kundu and Jaroslaw Harezlak

Abstract

Often when a longitudinal change is studied in a population of interest we find
that changes over time are heterogeneous (in terms of time and/or covariates’ ef-
fect) and a traditional linear mixed effect model [Laird and Ware, 1982] on the
entire population assuming common parametric form for covariates and time may
not be applicable to the entire population. This is usually the case in studies when
there are many possible predictors influencing the response trajectory. For exam-
ple, Raudenbush [2001] used depression as an example to argue that it is incorrect
to assume that all the people in a given population would be experiencing either
increasing or decreasing levels of depression. In such cases, a group-averaged
trajectory can mask important subgroup differences. Our aim is to identify and
characterize longitudinally homogeneous subgroups based on the combination of
baseline covariates. We achieve this goal by constructing regression tree through
binary partitioning. We propose two steps procedure for binary partitioning: 1)
first, choose the most significant partitioning variable and 2) then choose the best
split by repetitive evaluation of a goodness of fit criterion at all the splits of chosen
partitioning variable. To remedy for the problem of multiple testing, we propose
a single test to identify the instability of parameter(s) in longitudinal models for
a given partitioning variable. We obtain asymptotic results and examine finite
sample behavior of our method through simulation studies. Finally, we apply our
method to study the changes in brain metabolite levels of HIV infected patients.
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Abstract

Often when a longitudinal change is studied in a population of interest we find that changes
over time are heterogeneous (in terms of time and/or covariates’ effect) and a traditional linear
mixed effect model [18] on the entire population assuming common parametric form for covariates
and time may not be applicable to the entire population. This is usually the case in studies when
there are many possible predictors influencing the response trajectory. For example, Raudenbush
[28] used depression as an example to argue that it is incorrect to assume that all the people in a
given population would be experiencing either increasing or decreasing levels of depression. In such
cases, a group-averaged trajectory can mask important subgroup differences. Our aim is to identify
and characterize longitudinally homogeneous subgroups based on the combination of baseline
covariates. We achieve this goal by constructing regression tree through binary partitioning.
We propose two steps procedure for binary partitioning: 1) first, choose the most significant
partitioning variable and 2) then choose the best split by repetitive evaluation of a goodness of fit
criterion at all the splits of chosen partitioning variable. To remedy for the problem of multiple
testing, we propose a single test to identify the instability of parameter(s) in longitudinal models
for a given partitioning variable. We obtain asymptotic results and examine finite sample behavior
of our method through simulation studies. Finally, we apply our method to study the changes in
brain metabolite levels of HIV infected patients.

Keywords: Regression trees, Instability test, Longitudinal data, Mixed models, Score process, Brow-
nian Bridge

1 Introduction

In longitudinal studies, repeated measurements of the outcome variable are often collected at irreg-
ular and possibly subject-specific time points. Parametric regression methods for analyzing such
data have been developed by Laird and Ware [18] and Liang and Zeger [20] among others, and have
been summarized by Diggle et al. [10]. Often the population under consideration is heterogeneous in
terms of trend and covariate effect. Under such situation traditional mixed effect models (such as,
linear mixed effect model) assuming a common parametric form for covariates and time might not
be an appropriate option. If the population under consideration is diverse and there exists several
distinct subgroups within it, the true parameter value(s) for longitudinal mixed effect model may
vary between these subgroups. For example, Raudenbush [28] used a longitudinal depression study
as an example to argue that it is incorrect to assume that all the people in a given population will
be experiencing either increasing or decreasing levels of depression. In such instances, an assumption
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Figure 1: Sample longitudinal tree. The population consists of 3 subgroups and they differ in their
longitudinal profiles. These subgroups are defined by the partitioning variables gender and age.

of common parametric form will mask important subgroup differences and will lead to erroneous
conclusions. In our work, our interest is to identify meaningful and interpretable subgroups with
differential longitudinal trajectories and/or differential covariate effect(s) on the response variable
from such a heterogeneous population. We propose a regression tree construction technique with
longitudinal data that (1) controls type I error at each split, and (2) is applicable in cases when
measurements are taken at subject specific time-points.

When the longitudinal profile in a population depends on some baseline attributes, the most com-
mon strategy is to include these attributes (and their interaction terms) as covariates in the model.
However, this strategy has some inherent drawbacks: (a) it can lead to overfitting due to inclusion
of all possible interaction terms, especially when the number of potential baseline attributes is large,
(b) functional form of the association with baseline attributes need to be known and correctly spec-
ified, and (c) it cannot capture nonlinear effect of baseline attributes. Our goal is to determine the
most parsimonious model consisting of a number of homogeneous subgroups from a heterogeneous
population profile without strict parametric restrictions or prior information. One of the popular
technique to construct homogeneous subgroups is latent class modeling (LCM) [25]. LCM is a statis-
tical method used to identify a set of discrete, mutually exclusive latent classes of individuals based
on their responses. An alternative approach is to construct regression tree with longitudinal data[29].
Advantages of regression tree technique over LCM are: (1) it characterizes the subgroups in terms
of partitioning variables and (2) number of subgroups need not to be known a-priori. In general, the
thrust of any tree techniques is the extraction of meaningful subgroups characterized by common
covariate values and homogeneous outcome. For longitudinal data, this homogeneity can pertain to
the mean and/or covariance structure [29].

Throughout this article, we refer to the regression tree with longitudinal data as ‘Longitudinal tree’.
Figure 1 displays a toy example for a longitudinal tree. This regression tree represents a heterogeneous
population with three distinct subgroups in terms of their longitudinal profiles. These subgroups can
be characterized by gender and age. Here, gender and age are baseline attributes. These base-
line attributes are commonly referred as partitioning variables, because they partition heterogeneous
population into homogeneous subgroups. In each of the three subgroups, the longitudinal trajec-
tory depends on the covariates w1, · · · , wq, but these subgroups are heterogeneous in terms of the
true coefficients associated with their longitudinal profiles. Consider the following form of a linear
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longitudinal mixed effect model

yit = βx0 + βx1 t+ w>itβ
x + z>itbi + εit (1.1)

where i is the subject index and y, t and w denote the outcome variable, time and the vector of
measurements on scalar covariates w1, · · · , wq, respectively. Let XG1 , · · · , XGs include all poten-
tial baseline attributes that might influence the longitudinal trajectory in (1.1). The superscript
x is added to the coefficients β0, β1 and β to reflect their possible dependence on these baseline
attributes. Denote θx> = (βx0 , β

x
1 ,β

x>). With such a model, ‘homogeneity’ refers to the situation
when the coefficients’ true values remain the same for all the individuals in the entire population, i.e.
θx = θ. When the longitudinal changes in the population of interest are heterogenous there exists
distinct subgroups differing in terms of the true values of the coefficients, i.e. θx 6= θ. XG1 , · · · , XGs

are the partitioning variable used in the regression tree construction.

In constructing a longitudinal tree through binary partitioning, one way to choose a partition is via
maximizing improvement in goodness of fit criterion. For example, Abdolell et al. [1] chose deviance
as goodness of fit criterion. They evaluated deviance at each split of a given partitioning variable
and selected the partition with maximum reduction in deviance for the binary splitting. However,
repetitive evaluation of goodness-of-fit criterion leads to the multiple testing problem. In order to
avoid it, we follow a different strategy to identify the best split for partitioning. For the simplicity
sake, we first explain our approach assuming that there is only a single partitioning variable, say
XG, with G cut-off points. In such case, we identify the best split in a two-step process as follows:

• Step 1. Perform an overall test to detect any evidence of heterogeneity of longitudinal model
parameters across G cut-off points of XG.

• Step 2. Given that there is a ‘significant’ evidence for heterogeneity, the split that provides
maximal improvement in goodness of fit criterion is chosen as a partitioning point for the tree
construction.

Note that we perform only a single statistical test in step 1. Step 2 is conditional on the outcome
of step 1 and no additional statistical tests are done. Since single overall test replaces the multiple
testing, we avoid the problem of multiplicity. Throughout this article, we refer to the overall test
performed in step 1 as a test for instability. In the situations when more than one partitioning
variable is present, we repeat the instability test for each variable and apply multiplicity correction
based on the number of variables tested. We continue to the second step using the ‘most significant’
partitioning variable. Details of this algorithm are presented in Section 4.

In order to construct a test for instability, we borrow an idea from the time-series literature. In
time-series context often the goal is to evaluate whether the parameter of a regression model is stable
across different time points. This is often known as a test for structural change or constancy of
parameters [e.g., 6, 27, 13]. We apply very similar idea to evaluate whether the true values of the
parameter remains the same across the cut-off values of a partitioning variable in a mixed effects
longitudinal model of interest.

In this paper we utilize the parameter instability test in multiple ways. First, in the case of contin-
uous partitioning variables, the proposed test uses the results on score process derived by Hjort and
Koning [13] in conjunction with the properties of Brownian motion and Brownian Bridge. Second,
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for categorical partitioning variables with a small number of cut-off points, a test for parameter insta-
bility is derived in a straightforward way by employing asymptotic normality of the score functions.
We derive the asymptotic properties of the instability test and explore its size and power through
an extensive simulation study. Finally, we use these instability tests to construct an algorithm for
regression trees with longitudinal data.

Among the tree based methods, classification and regression tree (CART) method [5, 31, 7] is prob-
ably the most popular one. Zeileis et al. [33] have extended the concept of CART methodology in
the context of fitting cross-sectional regression models. Binary partitioning for longitudinal data has
been proposed first by Segal [29]. However, Segal’s implementation is restricted to longitudinal data
with a regular structure, that is all the subjects have an equal number of repeated observations at the
same time points [35]. In the Zhang [34]’s work, the multivariate adaptive splines are used to analyze
longitudinal data. Their method, multivariate adaptive splines for the analysis of longitudinal data
(MASAL), can be used to generate regression trees for longitudinal data. Abdolell et al. [1] have
used deviance as a goodness-of-fit criterion for binary partitioning. They controlled the level of Type
I error via permutation test taking into account testing multiplicity. However, permutation tests are
computer intensive and the time taken to fit the models is intimidatingly high even for medium-sized
data. Sela and Simonoff [30] as well as Galimberti and Montanari [12] merged the subgroup dif-
ferences with the random individual differences. They constructed the regression tree through an
iterative two-step process. In the first step, they obtained the random effects’ estimates and in the
second step, they constructed the regression tree ignoring the longitudinal structure. They repeat
these two steps until the estimates of the random effect converge in the first step. Our proposed
method of constructing a regression tree with longitudinal data provides an improvement over the
existing methods in the following aspects: (1) it maintains the level of Type I error at each split, (2)
it is applicable to the cases of measurements taken at subject-specific time points, (3) it does not
merge group differences with the random subject effect components and (4) it reduces computational
time.

The remainder of this paper is organized as follows. In Section 2 the longitudinal mixed effect models
of interest are summarized. Tests for parameter instability for continuous and categorical partitioning
variable cases are discussed separately in Section 3. Algorithm for constructing regression trees along
with measures of improvement and a pruning technique are discussed in Section 4. Results from the
simulation studies examining the performance of the instability test and the regression tree as a whole
are reported in Section 5. An application of the longitudinal regression tree method is illustrated on
the metabolite data collected from the chronically HIV-infected patients in Section 6. We present
our conclusions in Section 7.

2 Preliminary

Let {yit,wit} be a set of measurements recorded on the ith subject (i = 1, . . . , N) at time t =
(t1, . . . , tni), where y is a continuous scalar outcome; and w is the vector of measurements on scalar
covariates w1, · · · , wq. We assume that the functional form of dependence of y on these covariates is

already known. In addition, for each individual, we observe a vector of attributes (XG1
i , · · · , XGS

i )
measured at baseline. We assume that XG1 , · · · , XGs includes all the potential baseline attributes
that might influence the longitudinal trajectory of y and its association with covariates w1, · · · , wq.
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Further, we don’t have any idea about the functional form of influence of these baseline attributes.
We use the variables XG1 , · · · , XGS as the candidate partitioning variables to construct a longitudi-
nal regression tree to discover meaningful and interpretable subgroups with differential changes in y
characterized by the XG1 , · · · , XGS .

When the longitudinal profile is homogeneous in the entire population, we can fit the following
traditional linear mixed effect model for all N individuals [18]

yit = β0 + β1t+ w>itβ + z>itbi + εit, (2.1)

where εit ∼ N(0, σ2) and bi is the vector of random effects pertaining to subject i and distributed
as N(0, σ2D). By ‘homogeneity’ we mean that the true value of θ> = (β0, β1,β

>) remains the same
for all the individuals. In fact, (2.1) is the simplified version of model in (1.1) under homogeneity.

We follow the common assumptions made in longitudinal modeling that zit is a subset of [w>it t]>;
εit and bi are independent; εit and εi′t′ are independent whenever i 6= i′ or t 6= t′ or both, and bi and
bi′ are independent if i 6= i′. Here, w>itβ is the fixed effect term and z>itbi is the standard random
effects term. For the ith subject, we rewrite the Eq. (2.1) as follows

yi = wiθ + zibi + εi, (2.2)

where y>i = (yi1, · · · , yini), wi is the design matrix consisting of the intercept, time (t) and covariates
(w). ni is the number of observations obtained from the ith individual. The score function for
estimating θ under (2.2) is [see e.g., 9]

u(yi,θ) =
d

dθ
l(yi,θ) =

1

σ2
w>i V

−1
i (yi −wiθ)

where Vi = I + ziDz>i and ei = yi −wiθ. Further, its variance is

Var [u(yi,θ)] = J(θ) = −E
[
d

dθ
u(yi,θ)

]
=

1

σ2
w>i V

−1
i wi

Likelihood estimate of θ obtained using all the observation from N subjects is valid only if all
the individuals under considerations are homogeneous. If the individuals are not homogeneous in
terms of θ then the likelihood estimate obtained considering all the subjects together are misleading;
the extent and direction of ambiguity in the estimate will depend on the nature and proportion of
heterogeneity in the sampled individuals. Therefore, it is important to decide first whether the true
value of θ remains the same for all the subjects or not. In the next section, we describe a way to test
whether the true value of θ remains the same across all the values of a given partitioning variable.

3 Test for parameter instability

In this section, we utilize the ideas introduced by Hjort and Koning [13] to test for the constancy
of model parameters over time in time-series context. Our goal is to test whether the true value of
θ remains the same across all distinct values of a given partitioning variable. We refer to this test
as a test for parameter instability. The testing strategy is described in this section with a single
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partitioning variable. For multiple partitioning variables, the test needs to be repeated for each of
them with an adjustment for multiple testing.

Let XG ∈ {XG1 , · · · , XGS} be any partitioning variable with G ordered cut-off points c(g), g =

1, · · · , G; c(1) ≤ · · · ≤ c(G) and θ(g) be the true value of θ when XG = c(g). Assume that there are

mg subject with XG = c(g). We denote the cumulative number of subjects with XG ≤ c(g) by Mg.

That is, Mg =
∑g

j=1mj and MG =
∑G

j=1mj = N . We want to conduct an omnibus test,

H0 : θ(g) = θ0 H1 : θ(g) 6= θ0.

Here, H0 indicates the situation when parameter θ remains constant (that is, homogeneity) and H1

corresponds to the situation of parameter instability (that is, heterogeneity) . The two tests described
in this section utilize the following properties of score function under H0:

• A1: EH0 [u(yi,θ0)] = 0;

• A2: VarH0 [u(yi,θ0)] = J(θ0) = J;

• A3: u(yi, θ̂)|H0 →d N [0, Ĵ],

where θ̂ is the maximum likelihood estimate of θ and Ĵ = J(θ̂). We discuss the instability test
separately for the categorical and continuous variables XG.

3.1 Instability test with a categorical partitioning variable

It is straightforward to obtain a test for parameter instability using the properties A1–A3 when the
partitioning variable, XG, is categorical with a small number of categories (that is, G � N). Since
the score functions u(yi, θ̂) are independent, we have under H0, the following quantity

χ2
cat =

G∑
g=1

[
N∑
i=1

I(XG
i = c(g))u(yi, θ̂)

]> [
mgĴ

]−1 [ N∑
i=1

I(XG
i = c(g))u(yi, θ̂)

]
is asymptotically distributed as χ2 with (G− 1)p degrees of freedom where p is the dimension of θ.
Here, I(·) is the indicator function. The reduction in p degrees of freedom is due to the estimation
of p dimensional θ from the data.

3.2 Instability test with continuous partitioning variable

Here, we first review the results obtained by Hjort and Koning [13] and then we propose the test for
instability with a single continuous partitioning variable. We begin by defining the following score
process

WN (t,θ0) = N−1/2
Mg∑
i=1

u(yi,θ0) t ∈ [tg, tg+1)

where tg =
Mg

N
. Using multivariate version of Donsker’s theorem and Cramér-Wold theorem [see

e.g. 3] it can be shown that
WN (t,θ0)→d Z(t)
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where Z(t) is the zero-mean Gaussian process with cov[Z(t),Z(s)] = min(t, s)J(θ0). Note that Z is
a linear transformation of p independent Brownian motions. Since, θ0 is unknown in practice, we
define the following estimated score process replacing θ0 by θ̂

WN (t, θ̂) = N−1/2
Mg∑
i=1

u(yi, θ̂)

By applying Taylor series expansion it is straightforward to show that

WN (t, θ̂)
.
= WN (t,θ0)− tWN (1,θ0)

where An
.
= Bn means that An −Bn tends to zero in probability. In the case of linear mixed effects

models, this relationship is exact as the second derivative of the score function is equal to 0. That
is, WN (t, θ̂) = WN (t,θ0)− tWN (1,θ0). Consequently,

WN (t, θ̂)→d Z0(t) = Z(t)− t · Z(1)

The limit process Z0(t) is a p-dimensional process with covariance function cov[Z0(t),Z0(s)] = s(1−
t)J(θ0) for s < t. We can go on to the construction of canonical monitoring process MN (t, θ̂), and
under H0,

MN (t, θ̂) = Ĵ−1/2WN (t, θ̂)→d W0(t)

where W0(t) = (W 0
1 (t), · · · ,W 0

p (t)) is a vector with p independent standard Brownian Bridges as

component processes. In other words, kth component of MN (t, θ̂) is distributed as a standard
Brownian Bridge, W 0(t). That is,

MN (t, θ̂k)→d W
0(t)

The above weak convergence continues to hold for any ‘reasonable’ functionals (including supremum)
of MN (t, θ̂k) [see e.g. 8, pp 509, Theorem 1]. At this point, Hjort and Koning [13] proposed several
functionals of MN (t, θ̂k) as possible test statistics and suggested to approximate their distribution
functions through simulation for comparison purpose. For example, they stated

max
0≤t≤1

||MN (t, θ̂k)||2 →d max
0≤t≤1

||W 0(t)||2

and suggested to use max0≤t≤1 ||MN (t, θ̂k)||2 as test statistic. Instead we propose to use Dk as defined
below as a test statistic

Dk ≡ max
0≤t≤1

|MN (t, θ̂k)| = max
1≤j≤N−1

|MN (t, θ̂k)| →d max
0≤t≤1

|W 0(t)| ≡ D (3.1)

The primary reason for preferring max0≤t≤1 |MN (t, θ̂k)| over the
max0≤t≤1 ||MN (t, θ̂k)||2 is that the limiting distribution of the former is known. The use of Dk as a
test statistic eliminates the additional simulation work approximating the limiting distribution and
thus making the testing process much more computationally efficient. The resulting reduction in the
computation time is significant in the context of regression tree construction with the longitudinal
data. D has distribution function [3]

FD(x) = 1 + 2
∞∑
l=1

(−1)l exp (−2 l2x2).
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Although this expression involves an infinite series, this series converges very rapidly. Usually a few
terms suffice for very high accuracy. This result can be used to formulate a test for instability of
parameters at α level of significance as follows: (1) Calculate the value of the process Dk for each
parameter k = 1, · · · , p and obtain the raw p-values. (2) Adjust the p-values according to a chosen
multiple testing procedure. (3) Reject H0 if the adjusted p-value for any of the processes, Dk, is less
than α.

3.3 Instability test for multiple partitioning variables

The testing strategy discussed in Sections 3.1 and 3.2 for a single partitioning variable depends only
on the predictor variable type, either categorical or continuous. However, in practice, we expect to
have more than one partitioning variable. Let there be S partitioning variables: {XG1

1 , · · · , XGS
S }. In

that case we need to perform the instability test for each of the partitioning variables XG1
1 , · · · , XGS

S

subject to adjustment for multiplicity of type I errors. Let the p-values after multiplicity adjustment
be p1, · · · , pS , respectively and pmin = min {p1, · · · , pS}. Candidate partitioning variable with the
smallest p-value (pmin) is chosen as a partitioning variable if pmin is smaller than the nominal
significance level. For further discussion please see Section 4.

3.4 Power under the alternative hypothesis

We consider the following form of Pitman’s local alternatives in the vicinity of H0

θ(g) = θ0 + δ ◦ h
( c(g)
c(G)

) 1√
N

+O

(
1

N

)
(3.2)

where δ = (δ1, · · · , δp)> is the vector containing degrees of departure from the null hypothesis and
h = (h1, · · · , hp)> is the vector containing magnitudes of departure. The operation ◦ denotes the
point-wise multiplication, i.e.,

δ ◦ h
( c(g)
c(G)

)
=

[
δ1h1

( c(g)
c(G)

)
, · · · , δphp

( c(g)
c(G)

)]>
Theorem 3.1. Under (3.2), the limiting distribution for the χ2

cat is a non-central chi-square distri-
bution

χ2
cat −→d χ

′2

(G− 1)p,
G∑

g=1

λ2g


where

λg = J ·mgh
( c(g)
c(G)

)
· 1√

N

Theorem 3.2. Under (3.2), the limiting distribution for the canonical monitoring process is as
follows

MN (t, θ̂) −→d J1/2 · tg · δ ◦ (h̄g − h̄) + W0(t) t ∈ [tg, tg+1)

where,

h̄g =
1

Mg

g∑
j=1

mjh
( c(j)
c(G)

)
h̄ = h̄G

8
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Proofs of these theorems are provided in the Appendix. Briefly, we first approximate the density
function using Taylor series expansion and then proceed in the way analogous to the one discussed
in Section 3.2.

4 Longitudinal Regression Tree

4.1 Algorithm

Smaller p-values from the instability test indicate greater amount of evidence towards instability.
Intuitively, splits in the tree should be based on the partitioning variable that shows higher evidence
towards instability of the parameters. Therefore, we propose the following algorithm in order to
construct a regression tree for longitudinal data.

Step 1. Perform the instability test for each partitioning variable separately at a prespecified level
of significance α. The level of significance for performing instability test is subject to adjustment
for multiple comparisons in order to maintain the level of type I error at each non-terminal
node.

Step 2. Stop if no partitioning variable is significant at level α. Otherwise, choose the partitioning
variable with the smallest p-value and proceed to step 3.

Step 3. Consider all cut-off points of the chosen partitioning variable. At each cut-off point,
calculate the improvement in the goodness of fit criterion (e.g., deviance). With XG as the
chosen partitioning variable, the improvement in goodness of fit criterion can be obtained at
the cut-off point c(g) in the following steps:

a. Split the data in two parts. One group will include the observations from subjects with
XG ≤ c(g) and the other group will have the observations from subjects with XG > c(g).

b. Fit the longitudinal model on (i) all the individuals in the node, (ii) the individuals with
XG ≤ c(g) and (iii) the individuals with XG > c(g). Calculate the goodness of fit criterion
from each of these three models. Call them as GOFall, GOFI and GOFII , respectively.

c. Calculate the improvement in goodness of fit criterion as GOFI + GOFII −GOFall.

Step 4. Choose the cut-off value that provides the maximum improvement in goodness of fit
criterion and use this cut-off for binary splitting.

Step 5. Follow the Steps 1-4 for each non-terminal node.

The above strategy for construction of regression tree with longitudinal data has two major advan-
tages over the currently existing algorithms. First, the level of significance is maintained at each
node. Second, there are huge savings in computation time as we are evaluating the improvement in
selected goodness of fit criterion at the cut-off points of the chosen partitioning variable only.

9
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4.2 Improvement

A measure of improvement due to regression tree can be provided in terms of likelihood function
based criterion. For example, Akaike Information criterion (AIC) for a tree T can be obtained as

AICT = 2

|T |∑
k=1

lk − 2 · |T | · p

where |T | denotes the number of terminal nodes in T , lk is the log-likelihood in kth terminal node
and p is the number of estimated parameters in each node. If we denote the AIC obtained from the
traditional linear mixed effect model at root node (that is, common parametric form for covariates
and time for the entire population) by AIC0, the improvement due to regression tree can be measured
as

Improvement (T ) = AICT −AIC0

Since the overall model fitted to all the data is nested within the regression tree based model, a
likelihood ratio test or test for deviance can be constructed as well to evaluate the overall significance
of a given regression tree.

4.3 Pruning

The improvement in regression tree comes at a cost of adding complexity to the model. If we can
summarize complexity of a tree by number of terminal nodes, the cost adjusted AIC of a regression
tree T can be defined as follows

AICT (γ) = AICT − γ(|T | − 1), γ > 0

where γ be the average complexity for each terminal node. As a result, the tree T will be selected if

AICT − γ(|T | − 1) > AIC0

or

γ <
AICT −AIC0

|T | − 1
≡ γT (4.1)

That is, the tree T will be chosen as long as γT does not exceed some pre-set level of average
complexity, γ0; otherwise, we have to prune the tree T to bring γT below γ0.

5 Simulation

We have explored the performance of instability test for continuous partitioning variables and the
performance of proposed regression tree algorithm as a whole through simulation studies. The first
two simulation studies evaluate the performance of instability test with continuous partitioning vari-
able (as discussed in section 3.2). The third simulation study is aimed to explore the performance of
the regression tree algorithm in section 4.1.

5.1 Performance of instability test with continuous partitioning variable

Let XG be continuous partitioning variable with ordered cut-off points as c(1) ≤ · · · ≤ c(G). We first
investigated the size of the test and then obtained the size-corrected power.

10
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Table 1: Summary of the test statistic Dk based on 10, 000 Monte-Carlo samples generated according
to the model 5.1. The values in the parenthesis below the α in the first column are the critical values
from the limiting distribution and rejection is determined based on this critical value. The top row
for each α level reflects the size of the test obtained by the Monte-Carlo simulation.

N

α(%) 50 100 200 500 1000

1.25 % of rejection 0.54 0.56 0.89 1.02 0.95
(1.5930) (1− α)100th percentile 1.4760 1.4938 1.5366 1.5643 1.5504

1.67 % of rejection 0.75 0.85 1.10 1.33 1.29
(1.5472) (1− α)100th percentile 1.4447 1.4532 1.4891 1.5147 1.4986

2.50 % of rejection 1.20 1.46 1.77 2.04 1.94
(1.4802) (1− α)100th percentile 1.3722 1.3998 1.4180 1.4392 1.4412

5.00 % of rejection 2.78 3.35 3.48 4.07 4.19
(1.3581) (1− α)100th percentile 1.2497 1.2924 1.2934 1.3154 1.3287

10.00 % of rejection 5.66 7.14 7.19 8.37 8.53
(1.2238) (1− α)100th percentile 1.1236 1.1585 1.1629 1.1901 1.1857

20.00 % of rejection 13.05 14.73 15.83 16.97 17.14
(1.0728) (1− α)100th percentile 0.9859 1.0045 1.0194 1.0350 1.0373

5.1.1 Size of the test

In order to examine the size of the test we have considered a longitudinal model with single mean
parameter. We generated observations for N subjects at t = 0, 1, 2, 3 from the following model

XG = c(g) : yit = β0 + bi + εit (5.1)

with β0 = 2, bi ∼ N(0, 0.52) and εit ∼ N(0, 0.22). The observations for XG were generated for each
simulation separately from uniform(0,300). For each N , 10, 000 Monte-Carlo samples were generated
and the test statistic Dk (see Eq. (3.1)) was calculated for each sample separately. The null hypoth-
esis of parameter stability is rejected at α% level of significance when Dk exceeds the (1−α)×100th
percentile of the limiting distribution.

The observed percentiles and the percentage of rejected null hypotheses are summarized in Table 1.
We can make following observations: 1) the type I error of test does not exceed the nominal level,
2) the size of the test approaches to the desired significance level α with the increase in the sample
size N , and 3) the test is under-sized for smaller sample sizes. The severe problem with the size of
the test for smaller sample size can be explained as follows. Calculation of test statistic, Dk, involves
σ2 and Vi. However, in practice, the true values of σ2 and Vi are unknown and we replace them
by their estimates. A consistent estimator (e.g. ML- or REML-based) approaches the true value
with an increasing sample size. However, the estimates might be biased for smaller sample sizes. To
be precise, for smaller sample size, σ2 and Vi may remain underestimated and this leads to smaller
value of Dk which in turn results in a smaller size of the test. However, bias in estimation of σ2 and
Vi fades away with the increase in N and this increases the size of the test. We observe this trend
in Table 1 as the size of test approaches the nominal level of type I error with the increase in sample
size. However, the size of test remains smaller than nominal level even for the reasonably large N .
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Table 2: Estimated power (%) of instability test with continuous partitioning variable obtained in the
simulation described in Section 5.1. Figures corresponding to β1 and β0 represent the rejection per-
centage of H0 associated with β1 and β0, respectively. The ‘Overall’ figures represent the percentage
of at least one rejection out of the two.

δ

N 0 0.25(−0.25) 0.50(−0.50) 0.75(−0.75) 1.00(−1.00) 1.2(−1.2)

β1 1.4 1.4(1.4) 1.6(1.6) 1.9(1.9) 2.3(2.3) 2.4(2.3)
50 β0 1.6 4.4(4.3) 16.9(16.6) 41.9(42.0) 70.2(70.6) 86.9(87.0)

Overall 2.9 5.6(5.5) 17.9(17.6) 42.6(42.5) 70.5(70.8) 87.0(87.1)

β1 1.5 1.6(1.6) 2.0(2.1) 2.5(2.6) 3.0(3.0) 3.2(3.2)
100 β0 1.7 (5.2(5.3) 18.7(19.7) 44.4(46.0) 72.9(73.9) 88.9(89.0)

Overall 3.1 6.6(6.7) 19.8(20.8) 45.0(46.6) 73.1(74.2) 89.0(89.1)

β1 1.8 1.9(1.8) 2.2(2.2) 2.7(2.7) 3.3(3.3) 3.5(3.4)
200 β0 1.9 5.6(5.3) 20.7(19.8) 47.5(46.8) 75.7(75.2) 90.1(89.8)

Overall 3.6 7.4(6.8) 21.9(21.0) 48.2(47.4) 76.0(75.4) 90.6(89.9)

β1 2.1 2.1(2.2) 2.7(2.5) 3.2(3.2) 3.6(3.7) 3.9(4.0)
500 β0 1.8 6.1(6.0) 21.4(20.1) 48.1(48.2) 76.6(76.6) 91.1(91.1)

Overall 3.7 7.8(7.8) 22.8(22.2) 48.8(49.1) 77.0(77.0) 91.3(91.2)

The reduced size has been also reported in other tests based on the Brownian Bridge process. For
example, Kolmogorov Smirnov test for normality (which also uses the Brownian Bridge as limiting
distribution) is conservative [21, 23, 4]. As N exceeds 500, the size of the test is close to the nominal
level of significance. As a remedy for smaller sample sizes, one might consider using a liberal α level
or small sample distribution for Dk obtained through simulation.

5.1.2 Power

We generate observations for N subjects at t = 0, 1, 2, 3 from the following model to evaluate perfor-
mance of instability test for XG

XG = c(g) : yit = β0(g) + β1(g)t+ bi + εit,

β0(g) = β0 β1(g) = β1 + δ ·
c(g)

c(G)

We set β0 = 1 and β1 = 2. bi, εit and XG were generated similarly as before in Section 5.1.1. In
this simulation, the parameter β1 is not stable unless δ = 0. We deal with two parameters: β0
and β1, thus we will have two Brownian bridge processes. We adjusted the p-values according to
the Hochberg’s step-up procedure [14]. We have chosen Hochberg’s step-up procedure because it is
relatively less conservative than the Bonferroni procedure [15]. However, in principle, any multiple
comparison procedure can be applied here.

The results based on 10,000 simulation are displayed in Table 2. As the absolute value of δ deviates
from zero, the power increases. The power of test is close to 80% and approaching the 90% mark as
|δ| > 1. The sign of δ does not influence the power of the test. Sizes of the test are very much in

12

http://biostats.bepress.com/cobra/art104



Figure 2: True tree structure for the simulation described in section 5.2

agreement with the first simulation study. As observed previously, the test is mildly conservative in
the current simulation scenario as the observed level of type I error is consistently slightly below the
nominal value α = 0.05.

5.2 Performance of regression tree for longitudinal data

In this simulation, our goal is to assess the improvement in estimation due to regression tree algorithm
when the population under consideration is truly heterogeneous. We have simulated observations for
N = 300 subjects and these subjects come from one of the four different subgroups. Description of
these subgroups is displayed in the form of a tree structure in Figure 2. The subgroups can be defined
in terms of the partitioning variables X1, X2 and X3. In rth subgroup (r = 1, · · · , 4), the values for
continuous response variable y were generated at t = 0, 1, 2, 3 according to following model:

yit = β0k + β1kt+ bi + εit; i = 1, · · · , fr,

where bi ∼ N(0, 4) and εit ∼ N(0, 1). As displayed in Figure 2, the true values of β1 were set at
2.5, 3.0, 3.5 and 4.0 and for β0, the true values were set at 6, 5, 4 and 3, for the four subgroups,
respectively. Further, observations were generated for f1 = 70 individuals in subgroup 1, f2 = 50
individuals in subgroup 2, f3 = 50 individuals in subgroup 3, and f4 = 130 individuals in subgroup
4. In order to study the performance of our algorithm constructing the longitudinal regression tree,
we calculated the mean absolute deviation (MAD) in β0 and β1 in rth subgroup for each simulation
as defined below

MAD(β̂0r) =
1

fr

∑
j∈Sr

|β0r − β̂0j | MAD(β̂1r) =
1

fr

∑
j∈Sr

|β1r − β̂1j |,

where β0r and β1r are the true values of β0 and β1 in the rth subgroup and β̂0j and β̂1j are the corre-
sponding estimates for the jth individual applyig longitudinal tree and then fitting mixed model in
each subgroup. Sr is the set of indices for all individuals in the rth subgroup while fr denotes their
number.
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Table 3: Description of the mixed models used in section 5.2 for the comparison with regression tree
algorithm (Model 1). All models include random intercepts to account for the subject-specific effects.

Predictors

Model 2 t
Model 3 t, X1, X2, X3

Model 4 t, X1, X2, X3, X1X2, X1X3, X2X3

Model 5 t, X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3

Model 6 t, X1, X2, X3, tX1, tX2, tX3

Model 7 t, X1, X2, X3, X1X2, X1X3, X2X3, tX1, tX2, tX3,
tX1X2, tX1X3, tX2X3

Model 8 t, X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3, tX1, tX2, tX3,
tX1X2, tX1X3, tX2X3, tX1X2X3

Table 4: Summary of the results for the simulation described in section 5.2
Subpop 1 Subpop 2 Subpop 3 Subpop 4 Overall

Par. mad0 mad1 mad0 mad1 mad0 mad1 mad0 mad1 mad0 mad1

Model 1 8? 0.291 0.083 0.309 0.093 0.315 0.088 0.159 0.033 0.241 0.064

Model 2 2 1.802 0.899 0.802 0.399 0.204 0.101 1.198 0.601 1.107 0.554
Model 3 5 1.439 0.899 0.615 0.399 0.320 0.101 0.893 0.601 0.879 0.554
Model 4 8 1.345 0.899 0.641 0.399 0.277 0.101 0.895 0.601 0.855 0.554
Model 5 9 1.345 0.899 0.628 0.399 0.281 0.101 0.896 0.601 0.854 0.554

Model 6 8 0.404 0.185 0.202 0.061 0.585 0.292 0.432 0.200 0.413 0.189
Model 7 14 0.286 0.070 0.306 0.114 0.300 0.105 0.291 0.074 0.294 0.085
Model 8 16 0.294 1.822 0.309 1.225 0.299 2.181 7.089 2.256 3.242 1.970

mad0= Average MAD(β̂0), mad1= Average MAD(β̂1), Par.: No.of parameters.
Model 1: Subgroups are extracted using regression tree algorithm and mixed model with time
slope and random intercept fitted separately in each subgroup.
Model 2 - 8: Description is given in Table 3
? - In Model 1, 81% of time regression tree with 4 subgroups were extracted.
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The simulation results are summarized in Table 4 based on 1000 simulations in each case. In each
simulation, regression tree was constructed with the following specifications: (1) the overall signifi-
cance level of instability test was set at 5%, (2) minimum node size for further split was set at 40, and
(3) minimum terminal node size was set at 20. Recall that we are considering four subgroups in the
current simulation. The tree algorithm extracted exactly four subgroups in 81% of the cases and five
subgroups in 16% of the cases. Only in 1.6% instances the tree algorithm extracted six subgroups
and there were only 1.3% instances when three subgroups were extracted. For the comparison pur-
poses, we considered seven linear mixed models (Model 2 - Model 8). These models are described in
Table 3. The application of the longitudinal regression tree algorithm (Model 1) shows comparatively
larger improvements in the estimation of the coefficients in all four subgroups. Both the MAD(β̂0)
and MAD(β̂1) are considerably smaller in Model 1 compared to the Models 2—8. The improvement
in estimation of coefficients in regression tree is attributed to its ability to extract homogeneous
subgroups and then fitting mixed model separately within each group. On the contrary, Models 2—8
assume either additive (Models 2—3) or an interaction (Models 4—8) mixed effect model for the en-
tire population assuming parametric form for both covariates and time. These models do not capture
the complexity for the heterogenous subgroups and overestimate it for the homogenous subgroups.

Inclusion of the interaction terms in the model does not necessarily take into account subgroup
heterogeneity in the presence of continuous partitioning variable. For example, in Models 4 and 5
common slope is assumed for the entire population, but include interaction terms in the baseline
effect; still, the absolute deviation in estimating β0 is almost 2.5 times higher compared to that of in
regression tree. Similarly, the Models 6 – 8 include interaction terms for both baseline and longitu-
dinal effects, but again the absolute deviations in estimating β0 and β1 are higher compared to what
we have obtained with the longitudinal regression tree.

Model 6 including the interaction terms with t and the partitioning variables is probably the most
commonly used model in practice. However, the application of the regression tree algorithm offers
a considerable improvement in the estimation compared to Model 6. Models 6 – 7 provide some
improvement over regression tree in some of the subgroups. However, these improvements are com-
paratively rare and largely influenced by the fact how the subgroups are defined. We would close this
section pointing out, apart from providing improvement in estimation, the regression tree algorithm
also identifies the meaningful subgroups defined by the partitioning variables which would remain
unidentified otherwise.

6 Application

We applied the longitudinal regression tree algorithm to study the changes in relative concentration
of glutamine and glutamate (Glx) relative to creatine (Cr) in a longitudinal study of late stage HIV
patients. Glx have been reported as an important metabolite for maintenance and promotion of
basic cell function such as protein synthesis, function of different organs including kidney, liver and
intestine and also plays important role in inter-organ transportation [e.g., see 26]. We considered a
total of

∑N
i=1 ni = 757 observations from N = 231 subjects. The longitudinal observations for each

subject were within 4 years from baseline. The number of observations per subject ranged from 2 to
7 with median number of observations equal to 3.
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Figure 3: Regression tree obtained from concentration of glutamine and glutamate (Glx) relative to
creatine (Cr) data along with the estimated parameters in each node as discussed in section 6. The
p-value in each node corresponds to the estimate of the slope β1.

For the construction of regression tree we used baseline measurements of several clinical and de-
mographic variables including sex, race, education, age, CD4 count, nadir CD4 count, duration of
HIV, years of highly active antiretroviral therapy (HAART), plasma HIV RNA count, antiretroviral
CNS penetration-effectiveness (CPE) score and AIDS dementia complex (ADC) stage as partitioning
variables. In each node we consider fitting the following model separately

yit = β0 + β1t+ bi + εit

where yit indicates the measurement of the relative concentration of Glx to Cr (Glx/Cr) from the ith
individual at time t (in years) and bi is the subject specific intercept. Regression tree was constructed
with the following specifications: (1) the significance level for individual instability test was set to
10%, (2) the minimum node size for further split was set to 50, and (3) the minimum terminal node
size was set to 25. Figure 3 displays the estimated longitudinal regression tree with the estimates
of β0 and β1 for each terminal node or subpopulation. We chose larger level of significance over the
standard 5% level due to our simulation studies finding showing that the proposed instability test is
conservative for smaller sample sizes.

The regression tree algorithm extracted 4 subgroups and these subgroups can be characterized by
the number of “Years on HAART therapy” and the “Nadir CD4 count”. Improvement in deviance
due to application of regression tree algorithm was 332 (log-likelihoods were −390 vs. −556; with
6 degrees of freedom). Figure 3 shows that individuals in Subgroup 3 characterized by HAART
therapy for prolonged period (≥ 1.86 years) in combination with nadir CD4 count greater than 23
experienced significant increase (p-value< 0.0001) in the relative concentration of Glx over time. We
also observe positive slope in Subpopulation 4, but it was smaller than that of in Subpopulation 3 and
was not significantly different from zero. On the contrary, patients with a combination of the smaller
nadir CD4 count and fewer years of HAART therapy in Subgroup 1 experience significant decrease
(p-value< 0.0001) in the Glx/Cr over time. Increase in nadir CD4 count had positive effect on the
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Figure 4: Visual representation of the fitted longitudinal profiles in each subgroup as estimated
by the proposed longitudinal regression tree algorithm (see Figure 3). Separate panels show the
estimated longitudinal profiles for the subgroups defined by the cutoff points for the “Nadir CD4
counts” (x-axis) and the cutoff points for the “Years of HAART therapy” (y-axis).
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progression of Glx/Cr, however, Glx/Cr continued to decrease as long as number of HAART therapy
remained less than 1.86 years. In summary, we have shown that prolonged period of HAART therapy
is the key factor that influences increase of Glx/Cr over time and greater nadir CD4 count gives boost
to this process. All these interpretable subgroups along with a significant improvement in overall
model fit show that the underlying population is heterogenous. Thus considering a traditional linear
mixed effect model for the entire population is not defensible. Figure 4 displays the longitudinal
profiles in each of the 4 subgroups.

7 Discussion

In this paper we proposed an algorithm for the construction of regression tree with longitudinal
data. The superiority of our method over the other similar algorithm is two folds. First, it maintains
the type I error at each splitting through performing a single instability test. Second, it reduces
the computation time substantially as we first choose the partitioning variable and then evaluate
the goodness of fit criterion at all cut-off points of the selected partitioning variable only. In this
way, we avoid the calculation of the goodness of fit criterion at the cut-off points of the partitioning
variables other than the chosen one. Our interest to construct regression tree from longitudinal data
is different from latent class modeling (LCM) in two aspects. Unlike LCM, the number of subgroups
is not known a priori in our case. Moreover, the subgroups determined by the tree algorithm can be
defined by the partitioning variables which is not the case with LCM.

The homogeneity of the longitudinal trajectories in the population under consideration is not always
justifiable. However, this is the basic assumption underlying the traditional linear mixed effects
model fitting. For example, in an observational study where patients are recruited at different stages
of the disease progression, it would be very hard to believe that all the patients enroll in the study
with similar baseline values for the disease marker or have similar rates of progression. This might
be true even for the controlled studies (e.g., clinical trials) with diverse population characteristics.
In such cases, the proposed regression tree algorithm can be useful to explore the diversity in a
population in terms of disease progression trajectories which would be otherwise remain uncovered.
There is a plethora of evidence for the heterogeneity of longitudinal profiles; for example Leuchter
et al. [19] reported heterogeneity in progression of depression in a double-blind randomized trial.
Other reported examples include heterogeneous trend in aggressive behavior among different classes
of students [17, 16], differential math achievement among different dropout groups [24], and varying
age-crime curve among different birth cohorts [22].

The most common strategy to incorporate the effect of baseline attributes in a traditional linear
mixed effect model is to include these attributes and their interaction terms as covariates in the
model. However, feasibility of this approach is limited to the situations where (1) there is a limited
number of baseline attributes, (2) the functional form of the attributes to be included in the model is
known and (3) the effect of continuous attributes is linear. On the contrary, the proposed longitudinal
tree algorithm enables us to discover the most parsimonious model for the homogenous subgroups in
a population without any functional form restriction. For example, in 5.2, the true model requires
only 8 parameters to be estimated whereas the traditional mixed effect model considering all possi-
ble interactions of the covariates (Model 8) requires 16 parameters to be estimated and yet performs
poorly compared to the Longitudinal tree (Model 1) (see Tables 4 and 3)
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Both the instability test and the tree algorithm discussed in this paper are based on the score pro-
cess. This increases the utility of the proposed method beyond the application to the mixed effects
longitudinal models studied in this paper. We can apply a similar algorithm in other scenarios as
long as we can obtain (or approximate) an expression for the score function and the Hessian matrix
in a tractable form. For example, we can apply our method in the generalized linear mixed effects
model (GLMM) where score function is difficult to obtain, but can be approximated. With the bi-
nary response it would be analogous to the construction of a classification tree with the longitudinal
data. Another extension, we currently work on is in the context of regression tree construction with
multiple response variables, both in cross-sectional and longitudinal setting.

One of the drawbacks of the proposed method is an underestimation of the nominal test size, especially
for the small sample sizes. As already mentioned in Section 5.1.1, this finding is consistent with other
score type tests that use Brownian Bridge as limiting process. One way to address this issue is by
increasing the nominal type I error level. A more principled approach to address this problem
would be to find the exact distribution through a simulation study. As an follow-up work, it would
be interesting to compare the results of the parameter instability test for continuous partitioning
variable (and, regression tree in general) between the exact and the limiting distributions. We end
our conclusions by discussing the possibility of sup-Wald type test [e.g. see 2] as an alternative to the
score test. In general, Wald test has higher power compared to score test [11], however, the former is
often criticised for not maintaining the type I error. Further, we are not aware of any result on the
convergence of the test statistic distribution used in sup-Wald type tests. Unavailability of limiting
distribution for sup-Wald type test makes it infeasible to use in construction of a longitudinal tree.

A Proofs

A.1 Proof of Theorem 3.1

Proof. Using Taylor series expansion we can write

f(y,θ(g))
.
= f(y,θ0)

{
1 + u(y,θ0)

>δ ◦ h
( c(g)
c(G)

) 1√
N

}
Consequently,

Eθg [u(y,θ0)] =

∫
u(y,θ0)f(y,θ(g))dy = Eθ0 [u(y,θ0)] + J · δ ◦ h

( c(g)
c(G)

) 1√
N

= J · δ ◦ h
( c(g)
c(G)

) 1√
N

(A.1)

It can be shown that

covH1 [WN (t,θ0)] = covH0 [WN (t,θ0)] +O

(
1

N

)
.
= J (A.2)

Proof of Theorem 3.1 follows from the definition of non-central chi-square distribution.
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A.2 Proof of Theorem 3.2

Proof. Using (A.1) and (A.2),

EH1 [WN (t,θ0)] = J
1

N

Mg∑
i=1

δ ◦ h
( c(g)
c(G)

)
= J · tg · δ ◦ h̄g t ∈ [tg, tg+1)

This time using the FCLT along with Cramer-Wold device we can show that

WN (t,θ0) −→d J · tg · δ ◦ h̄g + Z(t) t ∈ [tg, tg+1)

Therefore, for t ∈ [tg, tg+1),

WN (t, θ̂) = WN (t,θ0)− tg WN (1,θ0) + op(1) −→d J · tg · δ ◦ (h̄g − h̄) + {Z(t)− t · Z(1)}

Thus under H1,

MN (t, θ̂) = ĥ−1/2WN (t, θ̂) −→d J1/2 · tg · δ ◦ (h̄g − h̄) + W0(t) t ∈ [tg, tg+1)
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