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Accommodating Covariates in ROC Analysis

Holly Janes, Gary Longton, and Margaret Pepe
Fred Hutchinson Cancer Research Center

Seattle, Washington, USA
hjanes@scharp.org

Abstract

Classification accuracy is the ability of a marker or diagnostic test to discriminate between two
groups of individuals, cases and controls, and is commonly summarized using the receiver operating
characteristic (ROC) curve. In studies of classification accuracy, there are often covariates that should
be incorporated into the ROC analysis. We describe three different ways of using covariate informa-
tion. For factors that affect marker observations among controls, we present a method for covariate
adjustment. For factors that affect discrimination (ie the ROC curve), we describe methods for mod-
elling the ROC curve as a function of covariates. Finally, for factors that contribute to discrimination,
we propose combining the marker and covariate information, and ask how much discriminatory accu-
racy improves with the addition of the marker to the covariates (incremental value). These methods
follow naturally when representing the ROC curve as a summary of the distribution of case marker
observations, standardized with respect to the control distribution.

1 Introduction

The classification accuracy of a marker (Y ) is most commonly described by the receiver operating charac-

teristic (ROC) curve, a plot of the true positive rate (TPR) versus the false positive rate (FPR) for the

set of rules which classify an individual as “test-positive” if Y ≥ c, where the threshold c is varied over all

possible values (Pepe et al., 2001; Baker, 2003). Equivalently, the ROC curve can be represented as the

cumulative distribution function (CDF) of the case marker observations, standardized with respect to the

control distribution (Pepe and Cai, 2004; Pepe and Longton, 2005). The standardized marker observa-

tions, or percentile values, are written as pvD = F (YD) where F is the right-continuous CDF of Y among

controls. The ROC curve at a FPR of f is

ROC(f) = P (1− pvD ≤ f).
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In many settings, covariates should be incorporated into the ROC analysis. First, there are covariates

which impact the marker distribution among controls. For example, “center effects” in multi-center studies

may affect marker observations. In Section 2, we describe methods for adjusting the ROC curve for such

covariates. The associated Stata programs are called roccurve and comproc. Other covariates may

affect the inherent discriminatory accuracy of the marker (ie the ROC curve). For example, disease

severity often impacts marker accuracy, with less severe cases being more difficult to distinguish from

controls. In Section 3 we describe an ROC regression method which allows the ROC curve to depend on

covariates. The associated Stata program is called rocreg. Finally, there are covariates which contribute to

discrimination. For example, baseline risk factors for disease provide some ability to discriminate between

cases and controls. A common question is how much discriminatory accuracy the marker adds to the known

classifiers (ie incremental value). In Section 4 we describe methods for evaluating incremental value.

This paper is a companion to another article in this journal (Pepe et al., 2007) which describes the use

of the programs roccurve and comproc for estimating and comparing ROC curves without incorporating

covariate information.

2 The Covariate-Adjusted ROC Curve

2.1 Motivation and Concept

Consider a covariate, Z, which affects the distribution of the marker among controls. Figure 1 shows

hypothetical data for a continuous marker Y , binary outcome D, and binary covariate Z. The data can

be downloaded from the Diagnostic and Biomarker Statistical Center (DABS) website

(http://www.fhcrc.org/labs/pepe/dabs). Suppose for concreteness that Z is an indicator of study center.

Observe that marker observations among controls (D = 0) tend to be higher in center 1 as compared

with center 0, but that the inherent accuracy of the marker (the ROC curve) is the same in the two

centers. Consider the pooled ROC curve for Y which combines all case observations together and all

control observations together, regardless of study center. Observe in Figure 1 that when the proportion

of cases varies across centers (scenario 1), the pooled ROC curve for Y is overly optimistic relative to the

ROC curve for Y in each center. Even when Z is independent of the outcome (ie the proportion of cases is
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held constant across centers; scenario 2), the pooled ROC curve is biased; this time it is attenuated with

respect to the center-specific ROC curve. This suggests that covariates which impact marker observations

among controls should be statistically adjusted in the ROC analysis.

We propose a covariate-adjusted measure of classification accuracy called the covariate-adjusted ROC

curve, or AROC (Janes and Pepe, 2006; Janes and Pepe, 2007). Conceptually, this is a stratified measure

of marker performance. It is defined as

AROC(f) = P (1− pvDZ ≤ f)

where pvDZ = FZ(YDZ) represents a case marker observation standardized with respect to the control

population with the same value of Z. When the performance of the marker is the same across populations

with different values of Z, as in Figure 1, the AROC is the common covariate-specific ROC curve. More

generally, it is a weighted average of covariate-specific ROC curves (Janes and Pepe, 2006). Equivalently,

the AROC is the ROC curve for Y when Z-specific thresholds are used for classification. The threshold

cZ is chosen such that FPRZ(cZ) = f is common across levels of Z.

2.2 Estimating the AROC

Estimation of the AROC proceeds in two steps: 1) estimate FZ , the distribution of the marker in controls

as a function of Z. Calculate the case percentile values, pvDZi
= FZi

(YDZi
); and 2) estimate their CDF.

Estimating FZ begins with specifying how Z acts on the distribution of Y among controls. For example,

a linear model could be specified,

Y = β0 + β1Z + ε.

The random error, ε, could be assumed to be normally distributed, ε ∼ N(0, σ2), which would lead to case

percentile values

p̂vDZ = Φ((Y − β̂0 − β̂1Z)/σ̂),

where Φ is the standard normal CDF and β̂0, β̂1, and σ̂ are estimates from the linear model. Alternatively,

the error distribution could be estimated empirically using the residuals from the linear model as in
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Heagerty and Pepe (1999). This would lead to percentile values

p̂vDZ = F̂ (Y − β̂0 − β̂1Z).

In addition to allowing Z to act linearly on marker observations among controls, the roccurve command

allows for stratifying on Z. Here again the distribution of Y among controls conditional on Z can be

estimated empirically or by assuming a normal distribution.

Once the percentile values have been calculated, their CDF must be estimated. This estimation step

is described in more detail in the companion paper (Pepe et al., 2007). Briefly, the CDF can be estimated

empirically, or a parametric distribution can be assumed. The roccurve program allows parametric forms

ROC(f) = P (1− pvDZ ≤ f) = g(α0 + α1g
−1(f))

where g = Φ is the standard normal CDF or g(·) = exp(·)/(1+exp(·)) is the logistic function. These forms

give rise to binormal (Dorfman and Alf, 1969) and bilogistic (Ogilvie and Creelman, 1968) ROC curves.

In order to fit the ROC model, a discrete set of FPR points, f1, . . . , fnp is chosen. These points may

span the interval (0, 1) or a subinterval of interest, (a, b). For each case observation, a set of np records

is created. The kth record includes the binary outcome Uki = I[1 − p̂vDZi
≤ fk] and covariate g−1(fk).

A binary regression model with link g, outcome U , and covariate g−1(f) provides estimates of (α0, α1)

(Alonzo and Pepe, 2002).

We bootstrap the data to obtain standard errors for the estimated AROC. The data should be resam-

pled according to the design of the study; for a case-control study this means resampling separately within

case and control strata. If the data are clustered, the clusters should be the resampling units.

Consider as an example, data from a neonatal audiology study designed to evaluate the accuracy with

which three audiology tests identify hearing impairment in newborns (Norton et al., 2000). The data can

be downloaded from the DABS website or loaded directly into Stata using

use http://www.fhcrc.org/science/labs/pepe/book/data/nnhs2

Note that test results for hearing-unimpaired ears may depend on the age and gender of the child. Figure

2 shows the estimated age- and gender-adjusted ROC curves for the marker DPOAE. Several estimation
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options are shown. The first estimator assumes a linear model for marker measurements among controls,

Y = β0 + β1Zage + β2Zgender + ε,

where the error distribution is estimated empirically. The CDF of the estimated placement values,

p̂vDZi
= F̂ (Yi − β̂0 − β̂1Zagei

− β̂2Zgenderi
),

is estimated empirically. The second estimator adds the assumption that ε is normally distributed, and

the third estimator additionally assumes that the ROC curve is binormal. Clustered bootstrapping is used

for inference to account for correlation amongst observations (ears) for the same individual. Observe that

the ROC fit is somewhat sensitive to the normality assumption at the high end of the marker distribution.

We next describe how to estimate these curves using the roccurve command.

2.3 The roccurve Command

2.3.1 Syntax

The syntax for the roccurve command is

roccurve disease var test varlist [if] [in] [, options]

where disease var is the name of the binary outcome, D = 1 for a case and D = 0 for a control, and

test varlist is the list of markers.

2.3.2 Options

The general roccurve options are described in detail in the companion paper (Pepe et al., 2007). Here we

focus on options that relate to covariate adjustment.

Marker Standardization

The covariates to be used for adjustment are specified using the option adjcov(varlist). The option

adjmodel(model) specifies how the covariates are to be used for adjustment; the default is stratified, where
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the control marker distribution is stratified on the covariates. The other option is linear ; here the covariates

are assumed to act linearly on the control marker distribution.

Standardized marker values are calculated according to specification in the option pvcmethod(method).

Options include empirical (the default), where the control marker distribution is estimated empirically con-

ditional on the covariates, and normal, where the control marker is assumed to have a normal distribution

conditional on the covariates.

ROC Calculation

rocmethod(method) specifies whether the empirical or parametric model for the ROC curve is used. The

link option is required for a parametric ROC model; a binormal model is fit with link(probit) and a

bilogistic model with link(logistic). In the case of a parametric ROC model, the option interval(a b np)

can be used to specify that the model is fit at np points over the restricted FPR interval (a, b).

Sampling Variability

Boostrapping is used for inference. By default the data are resampled conditional on the binary outcome.

The option noccsamp specifies that data be resampled without regard to the outcome. The option nostsamp

specifies that sampling be done without regard to covariate strata; by default, when covariates are used

for stratification, bootstrap samples are drawn from within covariate strata. The cluster(varlist) option

can be used to bootstrap clustered data.

Other Options

Other options include: tiecorr, which corrects for ties between case and control observations; various plot

options; and options for saving the estimated TPRs, FPRs, and percentile values as new variables. These

are all discussed in more detail in the companion article (Pepe et al., 2007).

Example

The following code produced the plots shown in Figure 2:

use http://www.fhcrc.org/science/labs/pepe/book/data/nnhs2

roccurve d y1, adjcov(currage gender) adjm(linear) cl(id) noccsamp

roccurve d y1, adjcov(currage gender) adjm(linear) pvc(normal) cl(id) noccsamp

roccurve d y1, adjcov(currage gender) adjm(linear) pvc(normal) rocm(parametric) cl(id)

noccsamp
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2.3.3 ROC Summary Indices

Summary measures of the ROC curve serve as metrics for comparing markers. The area under the covariate-

adjusted ROC curve, AAUC =
∫ 1

0
AROC(f) df , can be interpreted as the probability that, for a random

case and control marker observation with the same covariate value, the case observation is higher than

the control. This is a cute but clinically irrelevant summary of marker performance, as the task is not to

determine which of a pair of subjects is the case. Moreover, the AAUC summarizes the entire ROC curve,

when frequently only a portion (eg low FPRs) is of interest.

A more clinically meaningful summary measure of the covariate-adjusted ROC curve is the AROC

curve (TPR) at a fixed FPR = f of interest. This can be interpreted as the percent of cases detected

when the covariate-specific FPRs are held at f . Alternatively, the FPR corresponding to a specific TPR

= AROC−1(t) could be reported. This is the common covariate-specific FPR associated with a proportion

t of cases detected.

The partial area under the AROC, pAAUC(f0) =
∫ f0

0
AROC(f) df , can be viewed as a compromise

between the AAUC and the AROC at a specified point. It has the advantage of focusing on a portion of

the AROC, but it lacks a clinically relevant interpretation.

The AROC summary measures are estimated in the same way as their counterparts for the traditional

ROC curve. The AAUC estimate is the sample average of the case standardized marker values,

ÂAUC =

nD∑
i=1

p̂vDZi
/nD, (1)

where the sum is over the nD case observations. When the case percentile values are estimated non-

parametrically (ie with stratification on Z), this is a weighted average of empirical AUCs in each covariate

stratum. The estimated pAAUC is also an average of standardized marker values (Dodd and Pepe, 2003),

̂pAAUC(f0) =

nD∑
i=1

max(p̂vDZi
− (1− f0), 0)/nD. (2)

When the control marker distribution is estimated empirically, corrections are made for ties between case

and control marker observations, as discussed in the companion paper (Pepe et al., 2007).
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Estimates of AAUC and pAAUC values for parametric ROC models generally require numerical in-

tegration and are not produced by our programs. Instead the parameters are estimated using empirical

averages of percentile values, as in equations (1) and (2). Similarly, we estimate AROC curves at fixed

FPR = f by calculating the proportion of percentile values that are greater than 1 − f , rather than the

value estimated by a parametric ROC model.

2.4 Comparing Covariate-Adjusted ROC Curves

Comparisons between AROC curves can be made using any of the summary indices discussed above. A

confidence interval for the difference in summary measures is calculated using the bootstrap. A Wald

statistic, which divides the observed difference by its standard error, is compared to the standard normal

distribution to obtain a p-value. Standard errors are obtained by bootstrapping. The comproc command

is used to compare AROC curves.

2.5 The comproc Command

2.5.1 Syntax

The syntax of the comproc command is

comproc disease var test var1 [test var2] [if] [in] [, options]

where disease var is the binary outcome and test var1 and test var2 are the two markers to be com-

pared. If only one marker is specified, the requested summary statistics are returned but no comparisons

are made.

2.5.2 Options

Marker standardization and bootstrap options are the same as with the roccurve command. The choices

of summary measures are: auc, the area under the AROC; pauc(f ), the partial area under the AROC;

roc(f ), the TPR corresponding to a FPR of f ; and rocinv(t), the FPR corresponding to a TPR of t. The

tiecorr option can be used to correct for ties between case and control marker observations. It is used

by default if pauc(f ) is among the summary measures specified.
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2.5.3 Example

Consider again the audiology data. Figure 3 shows the ROC curves for the markers DPOAE and TEOAE,

both adjusted for age and gender. The covariates are assumed to act linearly on control marker observa-

tions, and the marker distributions and ROC curves are estimated empirically. The comproc command

yields estimates of the associated ROC curves at a FPR of f = 0.20, as well as pAAUC(0.20) and AAUC,

as shown below. We conclude that there is no evidence of a difference in the percent cases detected when

the FPR is 20%. Comparisons based on the pAAUC(0.20) and AAUC yield a similar conclusion.

The comproc command applied to the audiology data yields the following results:

. comproc d y1 y2, roc(0.2) pauc(0.2) auc adjcov(currage gender) adjm(linear) cl(id) noccsamp

Comparison of test measures
test 1: DPOAE 65 at 2kHz
test 2: TEOAE 80 at 2kHz

percentile value calculation method: empirical
percentile value tie correction: yes

Covariate adjustment
method: linear model

covariates: currage
Gender

************

covariate adjustment - linear model, controls only
model results for marker: DPOAE 65 at 2kHz

Source | SS df MS Number of obs = 4907
-------------+------------------------------ F( 2, 4904) = 20.13

Model | 2418.56541 2 1209.2827 Prob > F = 0.0000
Residual | 294662.363 4904 60.0861263 R-squared = 0.0081

-------------+------------------------------ Adj R-squared = 0.0077
Total | 297080.929 4906 60.5546125 Root MSE = 7.7515

------------------------------------------------------------------------------
y1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
currage | -.2032456 .0323905 -6.27 0.000 -.2667455 -.1397458
gender | .2471744 .2229119 1.11 0.268 -.1898327 .6841815
_cons | -1.486659 1.288611 -1.15 0.249 -4.012913 1.039596

------------------------------------------------------------------------------

************

covariate adjustment - linear model, controls only
model results for marker: TEOAE 80 at 2kHz

Source | SS df MS Number of obs = 4907
-------------+------------------------------ F( 2, 4904) = 22.38

Model | 2186.03352 2 1093.01676 Prob > F = 0.0000
Residual | 239493.534 4904 48.836365 R-squared = 0.0090

-------------+------------------------------ Adj R-squared = 0.0086
Total | 241679.567 4906 49.2620398 Root MSE = 6.9883

------------------------------------------------------------------------------
y2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
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currage | -.1694143 .0292013 -5.80 0.000 -.2266619 -.1121667
gender | .7014169 .2009638 3.49 0.000 .3074379 1.095396
_cons | -6.348757 1.161733 -5.46 0.000 -8.626274 -4.07124

------------------------------------------------------------------------------

************

bootstrap samples drawn
w/o respect to case/control status

# bootstrap samples: 1000

****************
AUC estimates and difference,

test 2 - test 1 (aucdelta)

Bootstrap results Number of obs = 5056
Replications = 1000

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
auc1 | .62941998 .0012784 .02614737 .5781721 .6806679 (N)

| .5801485 .6822647 (P)
| .5792913 .6796001 (BC)

auc2 | .60102814 .0012074 .02602367 .5500227 .6520336 (N)
| .5482875 .6519852 (P)
| .5461706 .6502448 (BC)

aucdelta | -.02839184 -.0000711 .02106133 -.0696713 .0128876 (N)
| -.0704235 .0123451 (P)
| -.0709442 .0119374 (BC)

------------------------------------------------------------------------------
(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: auc1 = auc2
z = -1.3 p = .18

****************
pAUC estimates and difference,

test 2 - test 1 (paucdelta)

partial AUC for f < .2

Bootstrap results Number of obs = 5056
Replications = 1000

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
pauc1 | .04624855 .0003545 .00638276 .0337386 .0587585 (N)

| .0333641 .0588343 (P)
| .0325859 .057963 (BC)

pauc2 | .04657379 .0002832 .00668708 .0334673 .0596802 (N)
| .0348397 .0605113 (P)
| .0349131 .0606537 (BC)

paucdelta | .00032524 -.0000712 .00457524 -.0086421 .0092926 (N)
| -.009055 .0098455 (P)
| -.0090245 .0098773 (BC)

------------------------------------------------------------------------------
(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: pauc1 = pauc2
z = .071 p = .94

****************
ROC estimates and difference,

test 2 - test 1 (rocdelta)

ROC(f) @ f = .2
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Bootstrap results Number of obs = 5056
Replications = 1000

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
roc1 | .3489933 -.0021812 .0426816 .2653389 .4326477 (N)

| .2657176 .4355442 (P)
| .2704403 .442953 (BC)

roc2 | .32885906 .004993 .04252651 .2455086 .4122095 (N)
| .2549657 .4216374 (P)
| .2465753 .4130435 (BC)

rocdelta | -.02013424 .0071742 .03815714 -.0949209 .0546524 (N)
| -.0864988 .0632911 (P)
| -.1032258 .0457516 (BC)

------------------------------------------------------------------------------
(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: roc1 = roc2
z = -.53 p = .6

3 ROC Regression

3.1 Motivation and Concept

Covariates such as disease severity and specimen storage time can do more than impact marker observations

among controls. They often also impact the inherent discriminatory accuracy of the marker (i.e. the

ROC curve). That is, they affect the separation between the case and control marker distributions. A

hypothetical example is shown in Figure 4. The data can be downloaded from the DABS website. Observe

that the separation between the case and control marker distributions is much greater when Z = 0 than

when Z = 1. The covariate also affects the distribution of the marker among controls, necessitating

covariate adjustment.

ROC regression is a methodology that models the marker’s ROC curve as a function of covariates

(Pepe, 2000; Alonzo and Pepe, 2002). Implementation proceeds in two steps: 1) model the distribution

of the marker among controls as a function of covariates. Calculate the case percentile values, and; 2)

model their CDF (i.e. the ROC curve) as a function of covariates. The result is an estimate of the ROC

curve for the marker as a function of covariates, i.e. a covariate-specific ROC curve. We emphasize that

the covariates used in step (1) for adjustment are those that affect the marker distribution in the control

population; these may or may not differ from the covariates that impact the separation between cases and
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controls, used in step (2).

3.2 Estimation

Estimation of the control marker distribution as a function of covariates and calculation of the case per-

centile values proceeds in exactly the same manner as with the covariate adjustment method. The stan-

dardization options allowed by rocreg are the same as with roccurve and comproc. The covariates may be

assumed to act linearly on marker observations, or stratification can be employed if they are discrete. The

percentile values can be calculated by estimating the control marker distribution conditional on covariates

empirically or by assuming a normal model.

Next, a parametric model is specified for the ROC curve (ie the CDF of the case percentile values) as

a function of covariates. The forms allowed by the rocreg program are

ROCZ(f) = P (1− pvDZ ≤ f) = g(α0 + α1g
−1(f) + α2Z + α3Z × g−1(f)),

where g(·) is the standard normal CDF or the logistic function. The parameter α2 allows the covariates

to impact the “intercept” of the ROC curve, while α3 allows Z to impact the “slope” of the ROC curve.

If α3 6= 0, the covariates have a different impact on the ROC curve at different FPRs. Observe that this

ROC model gives rise to binormal (Dorfman and Alf, 1969) or bilogistic (Ogilvie and Creelman, 1968)

ROC curves at each fixed value of Z.

In order to fit the ROC regression model, a discrete set of FPR points, f1, . . . , fnp is chosen. These

points may span (0, 1) or a subinterval of interest, (a, b). For each case observation, a set of np records is

created. The kth record includes the binary outcome Uki = I[1−p̂vDZi
≤ fk] and covariates: g−1(fk), Z, and

Z×g−1(fk). A binary regression model with link g, outcome U , and covariates: g−1(f), Z, and Z×g−1(f)

provides estimates of (α0, α1, α2, α3) (Alonzo and Pepe, 2002). Bootstrapping is used for inference, where

the data are resampled according to the design.

For illustration, an ROC regression model was fit for DPOAE using the audiology data. DPOAE

observations among controls are assumed to depend linearly on age and gender, and their distribution is
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estimated empirically. Age-specific ROC curves are modelled parametrically using

ROCZ(f) = Φ(α0 + α1Φ
−1(f) + α2Zage). (3)

Estimates of the age-specific ROC curves are calculated using the parameter estimates (α̂0, α̂1, α̂2). Figure

5 shows estimated binormal ROC curves for children at 30, 40, and 50 months of age. This figure suggests

that the marker is more accurate among older children, but the effect is not statistically significant (see

below).

3.3 The rocreg Command

3.3.1 Syntax

The syntax of the rocreg command is

rocreg disease var test varlist [if] [in] [, options]

where disease var is the binary outcome and test varlist is the list of markers.

3.3.2 Options

Marker Standardization

The options for marker standardization are the same as with roccurve and comproc. Covariates may or

may not be used for adjustment.

ROC Regression

The option regcov(varlist) specifies the list of covariates that have the same impact on the ROC curve at

all FPRs. sregcov(varlist) specifies covariates that impact the ROC curve differently at different FPRs.

ROC Calculation

The option link governs whether the model assumes a binormal or bilogistic ROC curve at each value of

Z. The interval(a b np) option can be used to specify that the model is fit at np points over the restricted

FPR interval (a, b).

Sampling Variability

Boostrapping is used for inference. The default is that data are resampled conditional on the binary
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outcome. Bootstrap sampling options are as with roccurve.

3.4 Example

The rocreg command applied to the audiology data produced the following results:

. rocreg d y1, adjcov(currage gender) adjm(linear) regcov(currage) cl(id) noccsamp

ROC regression for markers: DPOAE 65 at 2kHz
model intercept term covariates: currage

percentile value calculation
method: empirical

tie correction: no

Covariate adjustment for p.v. calculation:
method: linear model

covariates: currage
Gender

GLM fit of binormal curve
number of points: 10
on FPR interval: (0,1)

link function: probit

model coefficient bootstrap se’s and CI’s based on sampling
w/o respect to case/control status

number of bootstrap samples: 1000

******************************
model results for marker: DPOAE 65 at 2kHz

covariate adjustment - linear model, controls only

Source | SS df MS Number of obs = 4907
-------------+------------------------------ F( 2, 4904) = 20.13

Model | 2418.56541 2 1209.2827 Prob > F = 0.0000
Residual | 294662.363 4904 60.0861263 R-squared = 0.0081

-------------+------------------------------ Adj R-squared = 0.0077
Total | 297080.929 4906 60.5546125 Root MSE = 7.7515

------------------------------------------------------------------------------
y1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
currage | -.2032456 .0323905 -6.27 0.000 -.2667455 -.1397458
gender | .2471744 .2229119 1.11 0.268 -.1898327 .6841815
_cons | -1.486659 1.288611 -1.15 0.249 -4.012913 1.039596

------------------------------------------------------------------------------

************

ROC-GLM model

Bootstrap results Number of obs = .
Replications = 1000

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
alpha_0 | -1.2725052 -.0190699 1.175404 -3.576255 1.031244 (N)

| -3.673484 1.027063 (P)
| -3.623841 1.037872 (BC)

alpha_1 | .93723935 .0144148 .07124306 .7976055 1.076873 (N)
| .8213393 1.101304 (P)
| .8021784 1.076336 (BC)

14

http://biostats.bepress.com/uwbiostat/paper322



currage | .04482277 .0005192 .03057069 -.0150947 .1047402 (N)
| -.0127396 .1081691 (P)
| -.012525 .1081691 (BC)

------------------------------------------------------------------------------
(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

4 Evaluating Incremental Value

4.1 Motivation and Concept

Another way of incorporating covariate information is by evaluating incremental value. When Z is a

set of known risk factors or other baseline predictors, an obvious question concerns the improvement in

classification accuracy associated with adding Y to Z. Note that within this framework, Z is allowed to

help in discriminating between cases and controls. This is in contrast to covariate adjustment methods

which characterize the classification accuracy of Y conditional on Z.

Incremental value is quantified by comparing the ROC curve for (Y, Z) to the ROC curve for Z alone.

The optimal combination of Y and Z for classification is the risk score, P (D = 1|Y, Z) (McIntosh and

Pepe, 2002). The risk score can be estimated using a wide variety of binary regression techniques, including

logistic regression, logic regression, classification trees, neural networks, and support vector machines.

4.2 Estimation

We propose the following approach to estimating incremental value. First, we fit logistic regression models

with and without the marker, Y :

P (D = 1|Y, Z) = g(β0 + β1Y + β2Z + β3Z × Y )

and

P (D = 1|Z) = g(γ0 + γ1Z),

where g(·) = exp(·)/(1 + exp(·)) is the logistic function. Forms other than linear can be employed for the

predictors (eg splines), and interactions may or may not be included. The primary advantage of using
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logistic regression is that the linear predictors, g−1(P (D = 1|Y, Z)) and g−1(P (D = 1|Z)), which have the

same ROC curves as the risk scores, are consistently estimated (up to constants) with case-control data

(Prentice and Pyke, 1979).

Having fit the two regression models, we next calculate the associated predicted values for all subjects in

the dataset. We analyze the predicted values on the linear predictor scale where distributional assumptions

are more easily verified, and again note that the ROC curves for g−1(P (D = 1)) and P (D = 1) are the

same.

The final step is to plot and compare the ROC curves for the linear predictions from the two models.

This can be accomplished using the programs roccurve and comproc.

This procedure is simplistic in at least two respects. First, fitting and evaluating models on the same

data is known to produce overly optimistic estimates of model performance. Cross-validation could be

used to correct for this overoptimism. Second, the bootstrapping implemented in roccurve and comproc

conditions on the fitted regression models. This accounts for uncertainty in the ROC estimates, but not

in the predicted values. Bootstrapping the entire process, from sampling to risk score estimation to ROC

estimation, would be desirable. For simplicity, we ignore these issues here, but plan to implement a Stata

program that incorporates cross-validation and bootstrapping of the model fitting process in the near

future.

4.3 Example

We again use the audiology data to illustrate estimation of incremental value. We evaluate the incremental

value of the marker DPOAE over and above age and gender. Figure 6 shows ROC curves for two fitted

logistic regression models, one including age and gender, and the other including age, gender, and DPOAE.

All covariates are modelled linearly. The ROC curves are estimated empirically (without adjustment for

any covariates). We see that DPOAE substantially improves the ability of age and gender to discriminate

between hearing impaired and unimpaired ears. The commands used to generate the results are:

logit d currage gender

predict p1

logit d currage gender y1
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predict p2

roccurve d p1 p2, cl(id) noccsamp

5 Remarks

The methods and Stata programs presented here facilitate incorporating covariates into ROC analysis in

three distinct ways: by characterizing the performance of the marker conditional on covariates (ie covariate

adjustment), by allowing the accuracy of the marker to depend on the covariates (using ROC regression),

and by examining the improvement in classification accuracy associated with adding the marker to the

covariates (incremental value). The representation of the ROC curve as the CDF of standardized case

marker observations provides a natural means of incorporating covariate information, and gives rise to

parametric, semi-parametric, and non-parametric estimates of the quantities of interest.

We have focused on continuous markers but these methods can also be applied to ordinal markers.
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Figure 1: A simulated marker Y and binary covariate Z = 0, 1. Under scenario 1, Z is associated with
the outcome: P [D = 1|Z = 0] = 0.36 and P [D = 1|Z = 1] = 0.83. Under scenario 2, Z is independent of
the outcome: P [D = 1|Z = 0] = P [D = 1|Z = 1] = 0.50. (a) The densities of Y conditional on Z = 0,
conditional on Z = 1, in the pooled data under scenario 1, and in the pooled data under scenario 2. A
common threshold is indicated. (b) The common covariate-specific ROC curve, the pooled ROC curve
under scenario 1, and the pooled ROC curve under scenario 2. The performances of the common threshold
rule are indicated.
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Figure 2: Three different estimates of the age- and gender-adjusted ROC curve for DPOAE based on the
Norton et al. (2002) audiology data.
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Figure 3: Age- and gender-adjusted ROC curves for DPOAE and TEOAE based on the Norton et al.
(2002) audiology data.
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Figure 4: A simulated marker Y and binary covariate Z = 0, 1. The marker is more accurate when Z = 0
than when Z = 1, and marker observations among controls also depend on Z. The performances of a
common threshold are indicated.
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Figure 5: Age-specific ROC curves for DPOAE based on the Norton et al. (2002) audiology data. The
ROC curves are adjusted for age and gender.
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Figure 6: The incremental value of DPOAE over and above age and gender, estimated using the Norton et
al. (2002) audiology data. ROC curves are estimated for disease risk prediction models with and without
DPOAE. Both models include age and gender.
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