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Abstract

The receiver operating characteristic (ROC) curve displays the capacity of a marker or diagnostic
test to discriminate between two groups of subjects, cases versus controls. We present a compre-
hensive suite of Stata commands for performing ROC analysis. Non-parametric, semiparametric and
parametric estimators are calculated. Comparisons between curves are based on the area or partial
area under the ROC curve. Alternatively pointwise comparisons between ROC curves or inverse ROC
curves can be made. Options to adjust these analyses for covariates, and to perform ROC regression
are described in a companion article. We use a unified framework by representing the ROC curve as
the distribution of the marker in cases after standardizing it to the control reference distribution.

1 Introduction

1.1 Definition of the ROC Curve

The receiver operating characteristic curve (ROC) displays the discriminatory capacity of a marker or test.

Suppose D = 0 denotes controls and D = 1 denotes cases and assume without loss of generality that larger

values of Y are more indicative of a subject being a case. The ROC curve for a marker, Y , is a plot of the

true positive rate TPR(c) = P [Y ≥ c|D = 1] versus the false positive rate FPR(c) = P [Y ≥ c|D = 0] for

the thresholding criterion ‘Y > c’ where c varies from −∞ to ∞. It is a monotone increasing function in

the unit square tied down at the boundary points (0,0) and (1,1). A perfect classifier has an ROC curve

that rises steeply along the left axis to the point (FPR=0, TPR=1), while an uninformative marker has

an ROC curve that is the diagonal 45◦ line. Key attributes of the ROC curve are: (i) it does not depend

on the raw measurement units for Y . It is invariant to monotone increasing transformations of Y ; (ii) it
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provides a common scale for comparing performances of different markers; and (iii) it displays the range

of possible performance levels that can be achieved by varying the threshold.

Figure 1 shows empirical ROC curves for 2 pancreatic cancer biomarkers (Wieand, Gail, James, et

al. 1989). The data can be downloaded from the Diagnostic and Biomarker Statistical Center website

(http://www.fhcrc.org/labs/pepe/dabs/), or loaded directly into a Stata session:

.use http://www.fhcrc.org/science/labs/pepe/book/data/wiedat2b

0

1

TPR

0 1

FPR

CA 19−9

CA 125

marker

markers: CA 19−9, CA 125

Figure 1: Non-parametric ROC curves for two markers of pancreatic cancer. 90% confidence intervals for
ROC(0.2) are displayed.

1.2 Representation in terms of percentile values

Let F denote the right continuous cumulative distribution of Y in the control population, F (y) = P (Y <

y|D = 0). We define a standardization of Y :

pvi = F (Yi)

is the proportion of the control population with values below Yi. In lay terms, pvi×100 is the percentile of Yi

when the controls are considered the reference population against which to standardize the marker. We now

show that the ROC curve can be written as the distribution of these standardized marker measurements

in cases (Pepe and Cai, 2004; Pepe and Longton, 2005). This identity suggests simple algorithms for

implementing standard ROC methods and also gives rise to some new methods (Huang and Pepe, 2007).

Result
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The ROC curve is the cumulative distribution of 1 − pvD,

ROC(f) = P [1 − pvD ≤ f ],

where pvD denotes the standardized marker for a case.

Proof

Let y be the threshold that corresponds to a false positive rate f . By definition, a proportion f of the

controls have marker values above y, F (y) = 1 − f . Since F is monotone increasing

ROC(f) ≡ P [YD ≥ y]

= P [F (YD) ≥ F (y)]

= P [pvD ≥ 1 − f ] = P [1 − pvD ≤ f ]

2 Estimating the ROC Curve

The representation in Result 1 suggests that ROC curve estimation can be accomplished in two steps:

(i) Estimate the reference cumulative distribution function (CDF), F , using controls; and calculate

corresponding standardized marker values for cases, and

(ii) Estimate the cumulative distribution of the standardized marker values for cases.

2.1 The Control Reference Distribution

The empirical estimator of the control reference distribution can be employed. Alternatively a parametric

model can be assumed. The roccurve command allows one to use either the empirical method or a normal

parametric distribution model.

Marker values for cases are standardized using the estimator F̂ . Write the standardized values as

p̂vDi = F̂ (YDi) i = 1, . . . nD

where nD is the number of case observations.
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2.2 The CDF of Standardized Markers

The next step is to estimate the CDF of 1 − pvD, denoted by H. The empirical CDF is a nonparametric

option provided by roccurve. A parametric model can be used instead. This has the advantage of

providing a smooth ROC curve instead of a step function. The parametric forms allowed by roccurve are:

H(f) = g(α0 + α1g
−1(f))

where g is a CDF. Observe that this form acknowledges that the domain for H is restricted to (0,1). As

a special case, when g = Φ, the standard normal distribution, the corresponding ROC curve is binormal

(Dorfman and Alf, 1969),

ROC(f) = H(f) = Φ(α0 + α1Φ
−1(f)).

The roccurve command also allows the logistic form, g(·) = exp(·)/(1 + exp(·)), which gives rise to a

biologistic ROC curve (Ogilvie and Creelman, 1968).

To fit these parametric models a set of discrete points on the FPR axis is chosen, {f1, . . . , fnp}. For

each case i and for each fk, a record is created that includes the binary variable, Uki = I[1 − p̂vDi ≤ fk],

and covariate g−1(fk). A binary regression model with link function g, outcome variable U and covariate

g−1(f) yields estimates of (α0, α1) (Alonzo and Pepe 2002).

In some applications one may only want to model the ROC curve over a restricted FPR range, (a, b) ⊂

(0, 1), in which case the FPR points {f1, . . . fnp} should span the interval (a, b).

In figure 2 we display four different estimators applied to data on the pancreatic cancer biomarker CA-

125. The first estimator is the standard empirical ROC curve that results from standardizing with the right

continuous empirical control reference distribution and applying the empirical CDF for H. This is precisely

the same as the empirical estimator that is provided by Stata’s roctab command. The second estimator

is the semiparametric binormal estimator that again calculates the standardized values with the empirical

control distribution for Y but employs a probit link function for g. This rank invariant semiparametric

estimator requires less computation than the binormal estimator provided by Stata’s rocfit command

and appears to have similar efficiency (Alonzo and Pepe 2002). The third estimator assumes that the

marker is normally distributed in controls and is not rank invariant. It calculates standardized values as

pvDi = Φ((YDi −mean)/sd)
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Figure 2: ROC curves for CA-125 as a marker of pancreatic cancer.

where (mean, sd) are the sample mean and standard deviation of the control observations. The fourth

estimator is fully parametric. In addition to modelling the control reference distribution as normal it

assumes the ROC curve is binormal. The two assumptions taken together are equivalent to assuming

markers for both cases and controls are normally distributed. In practice the rank invariant estimators

are more popular. Parametric models for the reference distribution have a more prominent role in settings

where covariates affect marker distributions and covariate-specific distributions are difficult to estimate

empirically (Janes, Longton and Pepe, 2007).

3 Sampling Variability

We use bootstrap resampling to calculate pointwise confidence intervals for the ROC curve, ROC(f), and

for its inverse, ROC−1(t). In particular, if f is the false positive rate, the (1 − α/2) and α/2 quantiles of

the bootstrap distribution of R̂OC(f) are delivered as the (1 − α) confidence limits.

The resampling must reflect the study design. If selection to the study was outcome dependent, that is

if a case-control design was employed as is common in early phase studies (Pepe, Etzioni, Feng, et al. 2001),

then resampling is done separately within case and control strata. On the other hand, if subjects were

enrolled without regard to their outcome status, resampling is done accordingly from the entire dataset.

In addition, if observations are clustered, for example if subjects contribute several observations to ROC
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curve estimation, the cluster() option can be used to identify resampling clusters.

4 The roccurve Command

4.1 Syntax

The syntax for the roccurve command is

roccurve disease var test varlist [if] [in] [, options]

where disease var gives the name of the binary outcome variable, D = 1 for a case and D = 0 for a

control and test varlist gives the names of markers or tests for which ROC curves are to be calculated

4.2 Options

4.2.1 Standardization Method

pvcmeth(method) specifies how F̂ is estimated. Options include empirical (the default), where F̂ is the

empirical control marker distribution, and normal, that assumes a normal distribution and estimates the

control mean and variance with the sample mean and variance.

tiecorr indicates that a correction for ties between case and control values is included in the empirical

pv calculation. The correction is important in calculating summary indices such as the area under the

ROC curve that is discussed later. The tie corrected pv for a case with marker Yi is the proportion of

control values YD̄ < Yi plus 1/2 the proportion of control values YD̄ = Yi.

4.2.2 ROC calculation

rocmeth(method) specifies whether the empirical(default) or a parametric model for the ROC is used.

link(link) is relevant for a parametric ROC model. For a binormal model, link is specified as probit

while the link is specified as logit for the bilogistic model.

interval(a b np) specifies the interval (a, b) and number of points (np) in the interval over which the

parametric ROC model is to be fit. The program uses equally spaced points in the interval. Default values

are a = 0, b = 1, and np = 10.
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roc(f) specifies the false positive rate, f , for calculation of point estimates for ROC(f) and confidence

intervals.

rocinv(t) specifies the true positive rate, t, for calculation of point estimates for ROC−1(t) and confi-

dence intervals.

4.2.3 ROC plot

nograph suppresses the ROC plots; when only returned numerical results are desired.

bw specifies that black line types be used to distinguish between ROC curves rather than solid colors

(default). The graphics scheme s1mono is used if bw is specified; the s1color scheme is used otherwise.

Either scheme can be overridden by explicitly specifying any other graphics scheme as a separate twoway

option.

twoway options various graph options overriding default axis options, titles, and overall graph ap-

pearance. Exceptions include specific ROC line and marker type options and the by() option.

offset(#) specifies the x-axis offset from f for placement of second and subsequent CIs for ROC(f)

or ROC−1(t) to avoid overlap of interval bars for different markers.

4.2.4 Sampling Variability

This is only relevant if either of the roc(f) or rocinv(t) options are specified.

nsamp(#) specifies the number of bootstrap replications to be performed for estimating confidence

intervals. The default is 1000 replications.

noccsamp specifies that bootstrap samples be drawn from the combined sample rather than sampling

separately from cases and controls; case-control sampling is the default.

cluster(varlist) specifies variables identifying bootstrap resampling clusters.

level(#) specifies the confidence level, as a percentage, for confidence intervals.

4.2.5 Additional Options

There are options to create new variables.

genrocvars generates new pairs of variables, fpr# and tpr# for each marker in the test varlist,

with ROC coordinates for corresponding marker values. Point resulting from the empirical rocmeth() are
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plotted as a right-continuous step function. New variable names are numbered (#) according to variable

order in the test varlist.

genpcv generates variables, pcv#, to hold percentile values for each marker in the test varlist. The

numbers (#) correspond to marker variable order in the test varlist.

replace requests that existing variables fpr# , tpr# or pcv# be overwritten by genpcv or genrocvar.

There are also options to adjust the ROC curve estimates for covariates. These options are described

in another article in this journal (Janes, Longton and Pepe, 2007).

4.2.6 Example

The following code produced the plot in Figure 1:

use http://www.fhcrc.org/science/labs/pepe/book/data/wiedat2b

roccurve d y1 y2, roc(.2) level(90)

The 4 panels in Figure 2 were produced using the following 4 commands:

roccurve d y2, pvcmeth(empirical) rocmeth(nonparametric)

roccurve d y2, pvcmeth(empirical) rocmeth(parametric) link(probit)

roccurve d y2, pvcmeth(normal) rocmeth(nonparametric)

roccurve d y2, pvcmeth(normal) rocmeth(parametric)

5 Summary Indices

5.1 Area and partial Area

Measures derived from the ROC curve are used to summarize discriminatory accuracy. More importantly,

they serve as the basis for test statistics to compare ROC curves. The most popular index is the area under

the ROC curve (AUC), also known as the c-index or probability of correct ordering, AUC= Prob(YD > YN )

where (YD, YN ) are a random pair of case and control marker values. We and others (Pepe 2003, pg 78;

Cook, 2007) have argued against using the AUC as a key summary measure because it is not clinically

relevant. Subjects do not present clinically as pairs and typically the clinical problem is not to decide

which member of such a pair is the case.

For clinical applications we prefer use of the ROC (or ROC−1) at a specific point. Consider ROC(f).

Given that one is willing to accept a false positive rate (f), what proportion of cases will be detected? This
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is relevant to clinical practice. However, fixing one FPR of interest can be difficult. A compromise is the

partial AUC that averages the ROC curve over a range of false positive rates (McClish 1989, Thompson

and Zucchini 1989). Since low FPR are typically of interest, one can calculate the partial area between 0

and the largest acceptable FPR, denoted by f0:

pAUC(f0) =

∫ f0

0

ROC(f)df.

Interestingly, the classic nonparametric estimator of the AUC can be written as the sample mean of

the nonparametric case percentile values (Delong et al 1988; Hanley and Hajian-Tilaki, 1997).

ÂUCe =

nD∑

i=1

p̂vDi/nD (1)

When ties between case and control marker values are present, a correction for ties is necessary in

calculating the percentile values so that ÂUCe corresponds to the trapezoidal empirical AUC:

p̂vc
Di = p̂vDi +

1

2
êi

where êi is the proportion of control marker values equal to YDi. The empirical estimator of the partial

AUC (Dodd and Pepe 2003) can also be written as a sample mean

pÂUCe(f0) =

nD∑

i=1

max(p̂vDi − (1 − f0), 0)/nD (2)

again with the aforementioned tie correction for cases tied with controls.

By using a parametric model for the control reference distribution, the average of parametric case per-

centiles yields another estimator of the AUC. Analagously expression (2) with parametric case percentiles

provides a semiparametric partial AUC estimate. Note that tie corrections are not necessary when the

estimated reference distribution is continuous.

In general, calculation of areas and partial areas under parametric ROC curves requires numerical

integration and are not output by our programs. The one exception is that the area under the binormal

ROC curve has the closed form expression Φ(α0/
√

1 + α2
1). Stata’s rocfit command provides this after

fitting a binormal curve. Our programs do not. We only provide estimates that are non-parametric with

regard to the shape of the ROC curve. This is also true for point estiamtes of ROC(f) and ROC−1(t) that

are outbut by the comproc command.
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5.2 Comparisons

To compare ROC curves we calculate a confidence interval for the difference between ROC summary indices.

A Wald statistic, dividing the observed difference by its standard error is compared to the standard normal

distribution in order to report p-value. Confidence intervals and standard errors are again derived from

the bootstrap distribution of the estimators. The comproc command outputs results either for the AUC,

ROC(f), ROC−1(t) or pAUC(f) where the fixed FPR=f or fixed TPR= t of interest are specified by the

data analyst.

6 The comproc Command

6.1 Syntax

The syntax of the comproc command is

comproc disease var test var1 [test var2] [if] [in] [, options]

where disease var is the binary outcome status variable and test var1 and test var2 are the markers.

If only one marker is specified, summary indices are output for that marker but no comparisons are made.

6.2 Options

Options for percentile value calculation and for dealing with sampling variability are the same as described

above for the roccurve command. Options to include covariate adjustment in making comparisons are

described in a companion paper (Janes, Longton and Pepe, 2007).

The options for summary indices to evaluate and to compare between markers are:

auc, the area under the ROC curve

pauc(f), the partial area under the ROC curve between 0 and f

roc(f), the ROC (f), the TPR value corresponding to FPR=f

rocinv(t), the ROC−1(t), the FPR value corresponding to TPR= t

6.2.1 Example

The comproc command applied to the pancreatic cancer marker data shown in Figure 1 yielded the

following results:
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. comproc d y1 y2, auc roc(0.2)

Comparison of test measures
test 1: CA 19-9
test 2: CA 125

percentile value calculation method: empirical
percentile value tie correction: no

bootstrap samples drawn
separately from cases and controls

# bootstrap samples: 1000

****************
AUC estimates and difference,

test 2 - test 1 (aucdelta)

Bootstrap results Number of obs = 141
Replications = 1000

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
auc1 | .86056644 -.0010577 .03067768 .8004393 .9206936 (N)

| .7964053 .9174292 (P)
| .7989107 .9185185 (BC)

auc2 | .70413947 .0007451 .0471203 .6117854 .7964936 (N)
| .6093682 .7955338 (P)
| .6069717 .7921569 (BC)

aucdelta | -.15642697 .0018028 .05788385 -.2698772 -.0429767 (N)
| -.266122 -.0415033 (P)
| -.2666667 -.0422658 (BC)

------------------------------------------------------------------------------
(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: auc1 = auc2
z = -2.7 p = .0069

****************
ROC estimates and difference,

test 2 - test 1 (rocdelta)

ROC(f) @ f = .2

Bootstrap results Number of obs = 141
Replications = 1000

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
roc1 | .77777779 .0011778 .04836552 .6829831 .8725725 (N)

| .6888889 .8777778 (P)
| .7 .8888889 (BC)

roc2 | .48888889 -.0091667 .13398627 .2262806 .7514971 (N)
| .2222222 .7 (P)
| .2333333 .7222222 (BC)

rocdelta | -.2888889 -.0103444 .14291224 -.5689918 -.0087861 (N)
| -.5777777 -.0444444 (P)
| -.5777777 -.0333334 (BC)

------------------------------------------------------------------------------
(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: roc1 = roc2
z = -2 p = .043
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Observe that the bootstrap results are output using Stata’s estat bootstrap command

7 Remarks

Our programs rely on representing the ROC curve as the CDF of the case marker values after they are

standardized to the control reference distribution. This representation gives rise to simple algorithms

for calculating standard nonparametric estimators of the ROC, AUC, and pAUC(f). The representation

also provides alternative estimators of the ROC and its summary indices that are semiparametric or fully

parametric. In a companion article (Janes, Longton and Pepe, 2007) we describe methods for covariate

adjustment and ROC regression. The percentile value representation is particularly useful in these settings.

Applications to continuous data are our focus. Though the methods can be applied to ordinal markers

and diagnostic tests, some standard ROC methods for ordinal data are not included in our routines. In

particular, our algorithm for fitting the binormal ROC model does not correspond to the Dorfmann and

Alf algorithm (Dorfman and Alf, 1969) for ordinal data. In addition, the AUC corresponding to a fitted

binormal model is not output. Rather non-parametric AUC estimates are provided. We recommend the

roctab command in the main Stata package for fitting binormal models and calculating corresponding

AUCs with ordinal data.

The DABS Center website is a repository of information for statistical evaluation of diagnostic tests

and biomarkers. Included on the website are datasets. They can be used to gain familiarity with methods

and software described here.
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