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Deletion/Substitution/Addition Algorithm for
Partitioning the Covariate Space in Prediction

Annette Molinaro and Mark J. van der Laan

Abstract

We propose a new method for predicting censored (and non-censored) clinical
outcomes from a highly-complex covariate space. Previously we suggested a uni-
fied strategy for predictor construction, selection, and performance assessment.
Here we introduce a new algorithm which generates a piecewise constant estima-
tion sieve of candidate predictors based on an intensive and comprehensive search
over the entire covariate space. This algorithm allows us to elucidate interactions
and correlation patterns in addition to main effects.



1 Introduction

By pinpointing and targeting specific early events in disease development
clinicians aim toward a more preventative model of attacking cancer. These
early events can be measured as genomic, epidemiologic, and/or clinical vari-
ables. Genomic variables are measured on expression or Comparative Ge-
nomic Hybridization (CGH) microarrays, epidemiologic variables with ques-
tionnaires, and clinical variables with pathology and histology reports. These
measurements are then used to predict clinical outcomes such as primary oc-
currence, recurrence, metastases, or death.

To formalize the prediction of clinical outcomes (possibly censored) with
high-dimensional covariate structures encompassing the aforementioned vari-
ables, a unified loss-based approach was suggested in Molinaro et al. (2004).
This approach entails generating a sieve of candidate predictors, selecting
a 'best’ predictor from the sieve, and assessing its performance. In this
‘roadmap’ the user has two decisions to make. First, the investigator must
choose which loss-function to implement (e.g., the squared error loss func-
tion). The choice of loss-function is specific to the parameter of interest, for
example the conditional mean of the outcome given the covariates has as a
corresponding loss function the Ls, or squared error. The second decision is
how to generate an increasingly complex sieve (e.g., in tree estimation the
sieve is obtained by recursive binary partitioning). The choice of how to
generate this sieve is specific to the parameter of interest, the collected co-
variates, and the question the investigator is seeking to answer. For instance,
if the outcome is continuous, the covariates include categorical and continu-
ous variables, and the question is predicted time to outcome, the parameter
of interest is the conditional mean of the outcome given the covariates. Thus,
the user could select linear regression or recursive partitioning to generate
the sieve.

In the previous manuscript (Molinaro et al., 2004) we were interested in
exploring the individual contribution of various covariates as well as their
interactions for the purposes of predicting survival outcomes. As such, we
chose Classification and Regression Trees (CART) (Breiman et al., [1984), a
binary recursive partitioning algorithm, for generating the sieve. The end
product of CART is a list of ’and’ statements. For example, a CART tree is
illustrated in Figure 1. In this tree there are two variables (diagnosis age, a
continuous variable, and tumor grade, an ordered variable) and the outcome
is time to recurrence, a continuous variable. Thus, the parameter of interest
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is the conditional mean of the time to recurrence given the covariates and the
chosen loss function is the squared error. The splitting and pruning (details
can be found in Breiman et al.l (1984)) are based on the loss function and
result in a tree with three terminal nodes. The final predictor can be read as:
if a patient is less than 50 her predicted time to recurrence is (3;; if a patient
is over 50 and her tumor grade is less than or equal to 2 her predicted time
to recurrence is [; if a patient is over 50 and her tumor grade is greater
than 2 her predicted time to recurrence is fs.

Although the importance of such statements is not in debate, there are
settings where the ‘and’ statement ordering does not accurately account for
all of the observed biological phenomena. The motivating example for this
is during the cell cycle there may be several regions of DNA which have
been altered leading to a gain on one chromosome and a loss on another.
Although these two mutations may be mutually exclusive the end result could
be similar. In this situation, we would want to account for ’or’ orderings,
e.g., 'loss at locus 1 “or’ loss at locus 3 ’and’ gain at locus 2 predicts survival
of y months’, in addition to a list of ’and’ statements.

In order to accomplish this task of aggressively searching a highly-complex
covariate space (e.g., thousands of BAC measurements in a array CGH study)
we propose a new algorithm which builds ‘and’ and ‘or’ statements. We
suggest that this will supersede previous approaches by being not only more
aggressive but also more flexible. For example, CART utilizes a limited
set of moves amounting to forward selection (node splitting) followed by
backward elimination (tree pruning). In contrast, our proposed algorithm
will not only split regions (nodes in tree estimation) it will also combine and
substitute regions. These additional moves, more generally introduced in
Sinisi and van der Laan/ (2004), will allow us to unearth intricate correlation
patterns and further elucidate interactions in addition to main effects. As
such, in this chapter we present an algorithm for generating a piecewise
constant estimation sieve of candidate estimators based on an intensive and
comprehensive search over the entire covariate space.

1.1 Motivation

The motivation for this algorithm came from the desire to predict clini-
cal outcomes (possibly censored) with high-dimensional covariate structures
(Figure 2). These structures can include covariates from CGH or expression
microarrays in addition to histology, epidemiology and pathology variables.
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Root Node

Age <50 Age >50

Grade < 2 Grade >2

B, = E[T|Age < 50] ‘

B, =E[T|Age>50 & Grade <2]
B; = E[T|Age>50 & Grade >2]

Figure 1: Classification and Regression Tree Example. This tree shows an
example of recursive binary partitioning using CART with the variables ’Di-
agnosis Age’ and "Tumor Grade’. The terminal nodes, in blue, have predicted

values 31, B2, and, (5.
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It was the focus on array CGH that prompted the need for a new approach.
The reason being that there could be several mutually exclusive chromoso-
mal abberations occurring simultaneously that result in the same subsequent
genomic alteration and/or clinical outcome. Binary recursive partitioning as
described in Breiman et al. (1984) and Molinaro et al.l (2004)), results in a
list of ‘and’ statements which do not accommodate this biological circum-
stance. A better way to address this problem is with ’or’ in addition to
‘and’ statements. In the statistical literature, Logic Regression has been in-
troduced as an algorithm which attempts to construct predictors as Boolean
combinations of binary covariates (Ruczinski et al., 2003; Kooperberg et al.,
2001). Unfortunately, logic regression does not work in this setting because
BACs are continuous, not binary, variables. Although a predetermined split
for a ’gain’ or ’loss’ could be used to dichotomize the BACs, an interest in
piecewise constant algorithms like CART is the ability to find a "best’ split
along a continuous variables, not introduce said variables as binary.

1.2 Outline

In Section 2/ we outline a unified loss based approach for generating candi-
date predictors, selecting a ’best’ predictor, and assessing its performance.
In this approach the user has two fundamental decisions: which loss function
to use (Step 1) and which method or algorithm for generating an increas-
ingly complex sieve of candidate estimators (Step 2). In Sections 2.1-2.4 the
individual elements of the roadmap are detailed in the context of piecewise
constant regression.

Section 2.2.2 reviews the mapping from the full data world to the ob-
served data world which conveniently extends the new algorithm from the
full, or uncensored, to the observed, or censored, data. Parameters of inter-
est for univariate prediction and their corresponding loss functions are also
explored. The reader is directed to Molinaro et al. (2004) for a description of
the parameters of interest and corresponding loss functions for multivariate
prediction and density estimation.

The algorithm is formally introduced in Section 3, including the main
components of moves, ordering, and risk functions. The numerous simula-
tions to evaluate the performance of the proposed algorithm as compared to
CART and hybrids of the algorithm are shown in Section 4/and the conclusion
in Section 5.
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Figure 2: Link observed covariates to clinical outcome of interest (Section
1.1). The observed genomic, histopathologic, and epidemiologic covariates
are explored for main effects, interactions, and underlying correlations in
order to predict the uncensored (Full Data) or censored (Observed Data)
clinical outcome of interest.
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2 Estimation road map for censored data

Our proposed strategy for estimator construction, selection, and performance
assessment is entirely driven by the choice of a loss function for the full,
uncensored data structure. Censored data can be accommodated by mapping
the full data loss function into an observed data loss function with the same
expectation. The suggested strategy is outlined in these three steps:

1. Definition of the parameter of interest in terms of a loss function for
the observed data. For the full data structure, define the parameter
of interest as the minimizer of the expected loss, or risk, for a loss
function chosen to represent the desired measure of performance (e.g.,
squared error loss for a population mean). Apply the general estimating
function methodology of van der Laan and Robins (2002) to map the
full, uncensored data loss function into an observed, censored data loss
function having the same expected value and leading to an efficient
estimator of this risk.

2. Construction of candidate estimators based on a loss function for the
observed data. Define a finite collection of candidate estimators for the
parameter of interest based on a sieve of increasing dimension approx-
imating the complete parameter space. For each element of the sieve,
the candidate estimator is defined as the minimizer of the empirical
risk based on the observed data loss function (e.g., within-node sample
mean for the squared error loss).

3. Cross-validation for estimator selection and performance assessment
based on a loss function for the observed data. Use cross-validation to
estimate risk based on the observed data loss function and to select an
optimal estimator among the candidates in Step 2. This step relies on
the unified cross-validation methodology of van der Laan and Dudoit
(2003) and their finite sample and asymptotic optimality results for
cross-validation estimator selection for general data generating distri-
butions, loss functions (possibly depending on a nuisance parameter),
and estimators.

http://biostats.bepress.com/ucbbiostat/paper162



2.1 Models

This section elaborates on the main steps of the estimation roadmap for cen-
sored data (Section [2)) in the context of piecewise constant estimation. As
such, the candidate estimators in Step 2 of the road map are generated by
partitioning a suitably defined covariate space into disjoint and exhaustive
regions. As illustrated in Molinaro et al.l (2004)), univariate prediction, mul-
tivariate prediction, and density estimation can be handled by specifying a
suitable full data loss function for each of these problems. In this chapter we
will focus solely on univariate prediction and refer the reader to the previous
chapter for multivariate prediction and density estimation loss-functions and
implementation.

2.1.1 Full data structure

In the full data world, we observe n i.i.d. observations Xi,...,X,, of a full
data structure X = (T,W). Let T denote the random survival time and
Z =log(T). The baseline covariates, including the genomic, epidemiologic
and histologic measurements are included in W. Denote the distribution of
the full data structure X by Fy. Although the covariate process may contain
both time-dependent and time-independent covariates we will focus on the
time-independent W.

2.1.2 Observed data structure

In the observed data world, we rarely see all of the relevant variables in
the full X = (T, W). Rather, we observe the minimum, 7" = min(7,C), of
the survival time 7" and a univariate censoring variable C'. This missing, or
censored, survival data situation can be due to drop out or the end of follow-
up. The observed data structure can be written as O = (T =min(7,C), A =
I(T < (), X)) and the censoring process as A(t) = [(C < t). By convention,
if T" occurs prior to C', we set C' = oo; thus, C' is always observed and we can
now denote the observed data structure as O = (C, X). The random variable
O has a distribution Py = Pp, ¢, indexed by the full data distribution, F,
and the conditional distribution, G(-|X), of the censoring variable C' given X.
Due to the fact that what we observe about X is determined by C, G(:|X) is
referred to as the censoring or coarsening mechanism. The survivor function
for the censoring mechanism is denoted by G(c | X) = Pr(C > c | X).
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We assume that for ¢ < T, the Lebesgue hazard corresponding to the
censoring mechanism given the full data X is:

Mo(c]X)=Pr(C=c|C>c X)=m(c,X(c)),

for some measurable function, m. This assumption on the censoring mech-
anism, referred to as coarsening at random (CAR), holds if the censoring
distribution only depends on the observed data O. As X does not include
time-dependent covariates, then, under CAR, the censoring time C' is con-
ditionally independent of the survival time 7' given baseline covariates W.
An important consequence of CAR is that it implies the following factor-
ization for the density of the observed data O = (C, X)) (with respect to a
dominating measure satisfying CAR itself), into an Fx-part and a G-part,

Pry,(0) = pry (0)h(0),

where h(o0) is the density gejx(c | #) and pp(0) = fro(X(t)) |i=c only
depends on the measure Fx. Denote by G(CAR) the set of all conditional
distributions G of C' given X satisfying CAR. |Gill et al.| (1997), van der Laan
and Robins (2002) (Section 1.2.3, in particular), and Robins and Rotnitzky
(1992) provide further, thorough explanations of CAR.

2.2 Loss Functions for Univariate Prediction
2.2.1 Full Data Loss Function

In the full data world where we observe X, ..., X,,, the parameter of interest,
Y, is a mapping ¢ : S — IR, from a covariate space S into the real line IR.
Denote the parameter space by V. The parameter ¢ is defined in terms of
a loss function, L(X, 1), as the minimizer of the expected loss, or risk. That
is, 1g is such that

Ep [L(X, o))

[ v

i / L, )dFx () = min By [L(X, 6]

The purpose of the loss function L is to quantify performance. Thus, de-
pending on the parameter of interest, there could be numerous loss functions
from which to choose. Frequently the parameter of interest is the conditional

8
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mean o(W) = E[Z | W] which has the corresponding squared error loss
function, L(X, ) = (Z —(W))?. Another common parameter of interest is
the conditional median ¢o(W) = Med[Z | W] which has the corresponding
absolute error loss function, L(X, ) =| Z — (W) |.

2.2.2 Observed data loss function

In the observed data world, we have a learning set of n i.i.d. observations,
O1,...,0,, from the right-censored data structure, O; ~ Fy = Pp, . The
empirical distribution of Oq,...,0,, is denoted by P,. The goal remains
to find an estimator for a parameter 1y defined in terms of the risk for a
full data loss function L(X, ), e.g., a predictor of the log survival time Z
based on covariates W. An immediate problem is that a loss function such
as the quadratic loss, L(X,v) = (Z — (W))?, cannot be evaluated for an
observation O with censored survival time (A = 0). Risk estimators based
on only uncensored observations, such as £ . L(X;,¥)A;, are biased for
Eo[L(X,4)] and, in particular, estimate the quantity Eo[L(X,%)Go(T|X)]
which is not minimized by the parameter of interest 1.

The general solution is to replace the full (uncensored) data loss func-
tion by an observed (censored) data loss function with the same expected
value, i.e., risk. The general estimating function methodology of van der
Laan and Robins (2002) can be used to link the observed data world to
the full data world. Specifically, the methodology allows full data estimat-
ing functions, D(X), to be mapped into observed data estimating func-
tions, IC(O | Q,G, D), indexed by nuisance parameter G and, possibly,
Q = Q(Fx). IC denotes influence curve as abbreviated in van der Laan and
Robins| (2002). The estimating functions satisfy

ElIC(0]Q.G, D) = Ex,[D(X)]. it G =Gy or Q=Qu=Q(Fy).

In our specific application, the full data estimating function is the loss
function, D(X) = L(X, 1), and the risk for a given estimator 1 is viewed as
the full data parameter of interest, 0y = Eo[D(X)] = Eo[L(X,¢)]. Observed
data loss functions are obtained from the estimating functions I'C, that is,
L(O,¢ | no) = 1C(O | Qo, Go, L(+,7)) is an observed data loss function with
the same risk as the full data loss function L(-,1)), where 1y denotes the
nuisance parameters (Qo, Go)

/L(0,¢ | 10)dPy(0) = /L(m,¢)dFX70(x).

9
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Inverse probability of censoring weighted loss function. The nverse
probability of censoring weighted (IPCW) estimating function was introduced
by Robins and Rotnitzky (1992). Its name derives from the fact that the full
data function D(X) is weighted by the inverse of a censoring probability.
This estimating function is written as:

A
G(T|X)’

CO|G, D) =D(X) (1)

where G is a conditional survival function for C' given X and A = I(T < O)
is the censoring indicator. Given that

Eo[AIX] = Pro(C > T|X) = Go(T|X) >0,  Fygae.,

one has

This suggests the IPCW observed data loss function, L(O,v | ng) = IC(O |
Gy, L(-,1)), with nuisance parameter 79 = Go. The corresponding risk esti-
mator is the empirical mean

A;
ZL (Ois ¢ [11) = ZLXMﬁGmX)

where 7, represents G,,, an estimator of the nuisance parameter Gy derived
under the CAR assumption for the censoring mechanism, i.e., by consid-
ering censoring mechanisms G € G(CAR). For such models, the estimator
G, (T|X) is a function of the observed data O = (C, X) and thus the resulting
risk estimator én depends only on the observed data structure, Oq,...,O,.
Conditions for the IPCW estimating function to provide a consistent risk
estimator are that Go(T|X) > & > 0, Fyg-a.e., for some § > 0, and that
G, is a consistent estimator for Gy. Given o as the endpoint of support
of Fryw(- | W), the first condition holds if G(a® | W) > 0, Fyy-a.e.. The
plausibility of this assumption can be verified with standard diagnostic tools.
Violation of this assumption will lead to a biased estimator.

If a Cox proportional hazards model is assumed for the censoring mech-
anism G, then Ao (t | X) = Ao(t) exp(B7J(t)), where J(t) = f(L(t)) is a set

of covariates extracted from the process L(t) = {L(s) : 0 < s < t} for some

10
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given IR"-valued function f. Standard software can then be employed to ob-
tain maximum (partial) likelihood estimators of the baseline hazard function
Ao and the regression coefficients [ (e.g., coxph function in R).

An alternative to the IPCW estimating function is the doubly robust in-
verse probability of censoring weighted (DR-IPCW). Under an identifiability
condition, the DR-IPCW ensures consistency if at least one of two nuisance
parameters are correctly specified and asymptotic efficiency if both nuisance
parameters are consistently estimated. The DR-IPCW is illustrated for this
application in Molinaro et al. (2004) and explicitly in van der Laan and
Robins| (2002).

In the absence of censoring, i.e., when A = 1 and C' = oo, both the IPCW
and DR-IPCW observed data loss functions reduce to the full data loss func-
tion, L(O,v | no) = L(X, ). This ensures that the censored and full data
estimators coincide when there is no censoring. In addition, one can estimate
the nuisance parameter Gy in the IPCW and DR-IPCW loss functions using
other covariates than those for 1, in order to allow for informative censoring
and a gain in efficiency. Properties of the IPCW and DR-IPCW estimating
functions are discussed in detail in van der Laan and Robins| (2002).

2.3 Generating Candidate Estimators with Piecewise
Constant Regression Models

For Step 1 of the estimation roadmap we defined the full and observed data
structures (Section 2.1), the full and observed data loss functions (Section
2.2), and outlined the mapping from the full data loss function to the ob-
served to accommodate censored data (Section 2.2.2). In Step 2 the goal
is to generate a sieve of candidate estimators. As such, in this section we
detail how to approximate the parameter space by a sequence of subspaces
of increasing dimension and generate candidate estimators for each subspace
all in the framework of piecewise constant regression models.

In the full data world, we defined X = (T, W), where T' is the random
survival time and W are the baseline covariates. Consider W to be a d-vector
of baseline covariates. Define a countable set of basis functions, {¢; : j € IN},
indexed by the non-negative integers IN. These basis functions are simply
set indicators {R; : j € I} which form a partition of the covariate space
S, where I is an index set, I € Z, and Z is a collection of subsets of IN.

11
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Here R; denotes regions of S which are disjoint (R; "Ry =0, j # j') and
exhaustive (§ = Uje/R;). Now every parameter ¢ € U can be written (and
approximated) as a finite linear combination of the basis functions:

Yra(-) =Y Bidi(),
jeI
where for a given index set I € Z, the coefficients 3 = (8, ..., f1) belong to

By ={0:¢p€ ¥} C IRM!. These are of the form referred to as piecewise
constant regression models (Hardle, [1989).

The complete parameter space ¥ can be written as the collection of basis
functions {¢; : j € IN} and represented by

U= {ra() = Y B6i(): B T €T},
jeI
Define a sieve, {U}, of subspaces V), C VU, of increasing dimension ap-
proximating the complete parameter space ¥, such as,

Uy, = {¢I,ﬁ(') = 8i;(): B, I, I < k} :

j€I
where k denotes the index set size (i.e., how many basis functions). Now
for every k we want to find the estimator which minimizes the empirical risk
over the subspace V;. That can be done by initially optimizing over the
regression coefficients § € By for a given index set I and then optimizing
over the index sets I. We will postpone the full discussion of the latter until
Section 3.

2.3.1 Estimation of regression coefficients [ for a given subset of
basis functions

Given index sets I € Z, define [-specific subspaces

Uy ={¢r,B:8 € Br}.
For each subspace ¥;, the regression coefficients 5 are estimated by mini-
mizing the empirical risk, i.e.,

= argmingcpg, Z L(Os, Y15 | ),
=1

12
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where 7, is an estimator of the nuisance parameter. It is possible to write
the I-specific estimators as ¢; = U, (-|P,) = V1 6rpy» I € . An example
of this is with the squared error loss function, psi ; is then the least squares
linear regression estimator corresponding with the variables identified by the
index set 1.

2.4 Cross-Validation for estimator selection and per-
formance assessment

In Step 3 of the estimation roadmap cross-validation is introduced for two
purposes: to select an optimal estimator among the candidates generated in
Step 2 (Section 2.3) and to assess the performance of the resulting estimator.
Both of these are based on the observed data loss function chosen in Step 1.
For selecting the optimal estimator, an alternative to cross-validation would
be to minimize the empirical or cross-validated risk as a measure of error
across the entire parameter space. However, this estimate would be highly
variable and too data-dependent. van der Laan and Dudoit/ (2003) derive fi-
nite sample and asymptotic optimality results for the cross-validation selector
for general data generating distributions, loss functions (possibly depending
on a nuisance parameter), and estimators. The implication of these results is
that selection via cross-validation is adequate in thorough searches of large
parameter spaces. Thus, we shall rely on cross-validation, specifically v-fold
cross-validation, for choosing the ’'best’ estimator and assessing its perfor-
mance.

3 New Algorithm for Generating Candidate
Estimators

As an alternative to previous methods for generating piecewise constant es-
timates in Step 2 of the estimation roadmap, we describe a completely data
adaptive, aggressive, and flexible algorithm to search the entire covariate
space. The fundamental steps, or moves, of this algorithm were introduced
in Sinisi and van der Laan/ (2004). Here we define the moves in the context
of both histogram regression and the motivating example detailed in Section
1.1.

In piecewise constant regression the basis functions ¢; defined in Section

13
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2.3 are indicator functions of regions R; of the covariate space S, where these
regions are disjoint (R, MR, =0, j # j') and exhaustive (S = U;e/R;). We
further define subsets of these regions as .S;. Thus, each region can be a union
of several subsets or smaller regions of the covariate space. The subsets S
themselves are disjoint (S;NSy = ), I # I') and exhaustive (§ = U;;S)). The
predicted value for each of the regions is constant resulting in a histogram
estimate of the regression surface.

The new partitioning algorithm utilizes three moves, or step functions, to
generate index sets (i.e., different partitionings of the covariate space) with
the goal of minimizing a risk function over all the generated index sets. These
three moves are described in the following section.

3.1 Algorithm Moves

e Deletion A deletion move forms a union of two regions of the covariate
space regardless of their spatial location, i.e., the two regions may not
be contiguous. Formally, given a particular partitioning, i.e., an index
set I € T, which consists of k basis functions representing indicator
functions of regions, such that |I| = k, we define the set DEL(I) C T
as that which contains all possible unions of two disparate regions. This
new set, DEL(I), is of size C%.

e Substitution A substitution move divides two disparate regions into
two subsets each and then forms combinations of the four subsets re-
sulting in two new regions. Thus, this step forms unions of regions (or
subsets within the regions) as well as divides regions. The motivation
for this was to separate gains from losses in CGH data. The possible
subsets of two regions and combinations thereof can be seen in Figure
3. Formally, given a particular partitioning, i.e., an index set I € 7,
which consists of £ basis functions representing indicator functions of
regions, such that |I| = k, we define the set SUB(I) C Z by splitting
all regions into two subsets each and subsequently form all unique com-
binations of the 2k subsets. This new set, SUB([), is of size 6% C%, due
to the six unique combinations for every two regions (i.e., four subsets)
(see Figure [3).

e Addition An addition move splits one region into two distinct regions.

Formally, given a particular partitioning, i.e., an index set I € Z, which

14
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Figure 3: Possible Substitutions Mowves for two disparate regions. The "best’
split on Region 1 (R;) is found and labeled a and b. The ’best’ split on
Region 2 (R2) is found and labeled ¢ and d. All (six) unique combinations
of a,b,c, and d are formed.

consists of k basis functions representing indicator functions of regions,
such that |I| = k, we define the set ADD(I) C Z as that which contains
two basis functions for every initial basis function. The new basis
functions represent the best split of the original region into two distinct
regions. As such ADD(I) is of size 2k.

'Best split’ as referred to in both the Substitution and Addition Steps
is the same notion as that used in CART. The best split of a region is the
split which most decreases the residual sum of squares for the whole space.
However, since all splits are examined individually it is simply the split which
minimizes the within node (i.e., region) sum of squares.

A unique and highly important contribution of this algorithm is through
the Deletion and Substitution Steps. It is during these steps that unions
of regions (or subsets) are formed. These unions of disparate regions re-
sult in ‘or’ statements. After these steps, the resulting basis functions may
be comprised of numerous ‘and’ and ’or’ statements. For computational

15
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Figure 4: A Region stored in a matriz. The rows of the matrix represent the
p covariates and the columns represent the m subsets of the kth region. The
interval of the covariate within the corresponding subset is represented by

(ap,m,lﬁ bp,m,k] .

ease the regions are stored as individual matrices. The rows of each matrix
represent individual variables (e.g., BACs) and the columns represent the
subsets within the corresponding region. For example, a matrix representing
one region can be seen in Figure'4. This representation allows p covariates
(as rows) and m subsets (as columns) for the kth region. The columns are
connected via unions, or ‘or’ statements and the rows via ‘and’ statements.
Each variable (here assumed to be continuous) has intervals represented by
(@pm s bpm], which are indexed by the covariate (row), subset (column),
and region (matrix).

3.2 Risk Functions

By utilizing the moves Deletion, Substitution, and Addition, the algorithm
generates index sets with the goal of minimizing a risk function over all the
generated index sets. There are two potential risk functions: the empirical
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risk and the cross-validated empirical risk. The search resulting from the two
risk functions is different as well as a slight modification to how the algorithm
is run. As such, each is explained here, their effect on running the algorithm
in the following section, and the resulting effect shown via simulations in
Section 4.

As defined in Section 2.3.1, the I-specific estimators are represented 1@ ;=
Ui(|Pa) = Y165, 1 € Z. In this context of histogram regression with the

squared error loss function, 1&1 is the least squares linear regression estimator
corresponding with the variables identified by the index set I.

For a particular partitioning, or index set, I € Z, the empirical risk of
the I-specific estimator is

[— f() = / Lo, 0y | #)dPy (o)
1 n

i=1

where both zﬂl = U,(-|P,) and the estimator for the nuisance parameters 7,
are estimators based on the empirical distribution P,. With the empirical
risk function, the algorithm searches to minimize it over all index sets I of size
less equal to k, where k = 1,..., K. For each k there is a best partitioning
which can be denoted:

I;(P,) = argming g, p g rery f1(1).

The algorithm searches for an approximation of I;(F,) which is designated
as Iy(P,) and the resulting estimator as @k = Uy(P,). This results in a
sieve of increasingly complex estimators indexed by k. To select the best
partitioning, i.e., index set, v-fold cross-validation is implemented such that,

k(P,) = E, / L(o, U4(P0 s )limsa)dPL g (0),

where \ifk(PgSn) and 7, g0 are based on the empirical distributions for the
training sets.

A second option is the cross-validated empirical risk function. For a par-
ticular partitioning, or index set, I € Z, the cross-validated empirical risk of

17
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the I-specific estimator is
I £al) = Bs, [ Lo, dr(olPs Ion)dPLs, 0

where ‘i’k(PS,sn) and 7, g0 are based on the empirical distributions for the
training sets. With the cross-validated empirical risk function, the algorithm
searches to minimize it over all index sets I. This does not result in a sieve
as the previous risk function, but a single estimator.

3.3 Algorithm Ordering

Having outlined the three moves, Deletion, Substitution, and Addition, in
Section 3.1/ and the risk functions in Section 3.2, the ordering is the final
step of the algorithm. The is will be explained with the empirical risk as
the risk function and then at the end of this section the modification for the
cross-validated risk estimate will be reviewed.

Minimizing the empirical risk function results in a sieve of estimators
indexed by k. The vector BEST (k) will be used to store the estimated
empirical risk corresponding with the best partitioning of size k. Given the
goal of minimizing I — f1(/), there are three parts to this process:

1. Initiate Algorithm. The algorithm is initiated by setting the running
partitioning, [y, to the null set. For piecewise constant regression, the
null set is that set which includes the entire covariate space as one
region. Then fi(/y) is evaluated and BEST(1) is given its value. A
stopping value indicating the maximum number of basis functions to
consider is assigned as M.

2. Move through Step Functions.

o * Set k = |[y|. If £ > 1 find an optimal updated I~ of size k — 1
among all allowed deletion moves, where I~ = argmin;c ppr,1,)f1(1)-
If f(I7) < BEST(k —1) then BEST(k —1) = f(I7), In = I~
and return to *.

e Else, find an optimal updated I~ of size £ among all allowed sub-

stitution moves, where I~ = argmin;cppy ) f1(1). If f(I7) <
BEST(k) then BEST (k) = f(I7), Iy = I~ and return to *.
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e Else, find an optimal updated I" of size k + 1 among all allowed
addition moves, where I = argmin;cppr ) fi(l). If f(IT) <
BEST(k+1) then BEST(k+1) = f(I"), Iy = I and return to
*

3. Stop Algorithm. If |I| = M stop the algorithm.

When the algorithm is stopped there is a list of best estimators Iy (P, ), where
k=1,...,M. As detailed in Section 3.2, cross-validation is used to select
the best k. The entire process is depicted in a flow chart in Figure 5. An
example in two dimensions (i.e., with two BACs as covariates) is shown in
Figures 6 and 7. The algorithm is initiated in the first graph of Figure 6
with all observations in one region. The second graph in the same figure
shows that the 'best split’ was found along BAC1 and now the patients with
a 'loss’ on BAC1 have a higher predicted time to recurrence (z-axis) than
those with a ’gain’ on BAC1. The algorithm continues splitting (Addition
Step) as seen in the first graph in Figure [7. In the second graph of the same
figure a Deletion Step is apparent as now the partitioning reads:

If a loss on BAC1 and a loss on BAC2 the patient has the highest
(longest) time to recurrence. If a gain on BAC1 and a gain on
BAC2 the patient has the lowest (shortest) time to recurrence. If
a loss on BAC1 and a gain on BAC2 OR a loss on BAC2 and a
gain on BAC1 the patient has intermediate time to recurrence.

Thus far, the ordering of the algorithm has been with the empirical risk
function fi([), if the cross-validated empirical risk function fo(7) is used
instead, fi(I) is replaced by f5(I) above and the vector BEST(-) is removed.
At each step function the cross-validated empirical risk function is assessed
and compared to that of Iy’s. If at the conclusion of the Addition step
f2(I7) is not smaller than f5(/y) the algorithm stops. At this point there is
one estimator.

An additional way to limit the number of basis functions for either risk
function is to restrict the minimum number of observation in a region R; or
subset S; such that no more splits can occur if that minimum is reached.
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fi ()= ZLLOwy( IP,)
Initiate Algorithm { Ty, B(K), where k=0,...M }

i) <f(B(TT))
B(I)=T,1,=T

f(I) 2 fBAT)

fi ()= fBUTT)

If I =M

D) <fA(B(IT1))
B(IIFI)=1I-,I,= I

I,=TF,
If f,(I') <
BT
then
B(IT*1)=I*

Stop Algorithm
CV for k

Figure 5: Flowchart of Algorithm. This flowchart shows the ordering of the

algorithm with the empirical risk function fi(7).
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Figure 6: Two dimensional display of Addition Step. The algorithm is initi-
ated on the left and the first 'best’ split is found separating a 'loss’ on BAC1
from a ’gain’.

21

Hosted by The Berkeley Electronic Press



Figure 7: Two dimensional display of Deletion Step. Two disparate regions
on the left form a union on the right. This union reads: ”If a loss on BAC1
and a gain on BAC2 OR a loss on BAC2 and a gain on BAC1 the patient
has intermediate time to recurrence.”
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4 Univariate Simulations

To understand the flexibility and aggressive nature of the proposed algo-
rithm numerous stimulations studies were initiated. This section will relay
the results from the simulations involving one covariate, hence the name "Uni-
variate Simulations’. Many of the results are shown in the following tables.
For each of the simulations a description accompanies the table.

For each simulation several sample sizes, v-folds of cross-validation (e.g.,
2-fold and 5-fold), risk functions, and underlying distributions (e.g., uniform)
were utilized to get truly explore the potential of the algorithm. It is our
belief that this algorithm will fare much better when there are underlying
symmetric distributions as such the simulations involve both normal and
uniform distributions.

4.1 Simulation Study 1

The first simulation study was designed implementing the cross-validated
empirical risk function (CV-RISK). In order to evaluate this attempt at par-
titioning the covariate space for the purposes of prediction samples sizes of
250,500, and 1000 were used as well as different underlying distributions.
To explore difference in choices of v in v-fold cross-validation we looked at
v € {2,5,10}. In Table 1, the full data distribution was simulated from
y = 2% + er, where x ~ N(0,1) and er ~ N(0,.0625). The small error was
chosen to approximate the accuracy asymptotically. For each of 100 repe-
titions a training set was used to build a predictor with the CV-RISK and
this partitioning with an independent test sample of 1000. The mean of the
risk for each of the 100 repetitions is reported in the table along with the
variance of the risk. In addition to ’our’ algorithm, the same training set
was partitioned with rpart, the implementation of CART in R (Therneau
and Atkinson), 1997; Thaka and Gentlemen, 1996). The choice of which is the
'best’ tree as discussed in Breiman et al.| (1984) and Therneau and Atkinson
(1997) is to use the 1 — SE rule. Another option is to choose the subtree
which simply minimizes the cross-validated risk. In the following tables, the
first is labeled as 'rpart’ and the second as 'rpart(’.

In this simulation, the minimum number of observations in a node or a
region was set to 7 (the default for rpart). In the next section, different
minimums for regions and nodes are compared.

As a way to measure how well the proposed algorithm is doing in com-

23

Hosted by The Berkeley Electronic Press



parison to rpart, we calculated an efficiency ratio ('ratio 2’ in the tables).
This ratio relays a sense of how fast our algorithm is approaching the truth
as compared to rpart. For example, if the ratio is one then the two methods
are doing equally well. However, if the ratio is less than one our method is
getting to the truth faster.

In Table 1, we see that we are approaching the truth faster in almost all
situations except with 2-fold cross-validation in sample sizes 500 and 1000.
In addition to the mean of the risk being smaller for our algorithm, of impor-
tance is that it is using less basis functions than rpart is nodes. This means
that the algorithm is coming up with the sparsest way of describing the data.
By the time the sample size reaches 1000 that description is in half of the
parameters that rpart is using (i.e., 12.06 basis functions to 28.72 nodes
for 5-fold CV). Interestingly, there seems to be quite a gain from simply
minimizing the CV risk as opposed to using the 1 — SE rule for rpart.

In Table 2, the exact same simulation is shown except for the fact that the
underlying simulation is now uniform (i.e., U(0,1)). In this simulation one
can see that we are doing a small amount better than 'rpart0” up to n = 1000
and much better than 'rpart’. Because both methods are piecewise constant
estimators there is no reason to think that asymptotically our algorithm will
supersede CART with an underlying uniform distribution.

4.2 Simulation Study 2

The second simulation study was designed again implementing the cross-
validated empirical risk function (CV-RISK). This simulation is set-up the
same as Simulation 1 except for two additional comparisons. First, the vari-
ance of the underlying model. In Simulation 1 it was 0.0625, here there are
two variances 0.5625 and 1. In Table 3, the full data distribution was simu-
lated from y = 2% +er, x ~ NORM(0,1) and er ~ N(0,0.5625). In Table
4, the full data distribution was simulated from y = 2% + er, z ~ N(0,1)
and er ~ N(0,1). In Table 5, the full data distribution was simulated from
y =122 +er, v ~ unif(0,1) and er ~ N(0,0.5625). In Table 6, the full
data distribution was simulated from y = z* + er, where x ~ U(0,1) and
er ~ N(0,1).

The second and most substantial difference is that in addition to selecting
over the best partitioning indexed by k the algorithm is also selecting over ¢,
the minimum number to include in a region (or node) before it can be split.
There are four estimators in this simulation: 'ours(k, d)’ chooses over k and
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Table 1: Simulation study CV-RISK. Full data simulated from y = 2 +er,
where x ~ N(0,1) and er ~ N(0,.0625). Candidate estimator was chosen
over 100 repetitions of three sample sizes (col 1), three v-fold cross-validations
(col 2) for both our algorithm and rpart (col 3). The results (cols 4-7) in
table are based on an independent test sample of n = 1000. col 4 is the
average of the 100 risks (with the Ly loss function) for each method, col 5 is
the variance of the risks over the 100 reps, col 6 is the average size (number
of basis functions for ours and number of splits for rpart) and col 7 is the
ratio of averaged risks (col 4) (ours/rparts).

Sample 100 Repetitions
Size | v — fold | Method | mean | std dev | avg size | ratio | ratio2
ours | 0.32188 | 0.14985 | 6.32 1
2 rpart | 0.55843 | 0.18393 | 4.67 | .576 | .523
rpart0 | 0.36851 | 0.09927 | 13.32 | .873 | .848
ours 0.26125 | 0.09384 7.44 1
250 D rpart | 0.45305 | 0.14105 | 5.69 | 577 | .509
rpart0 | 0.35172 | 0.09927 | 14.45 | .743 | .687
ours | 0.27828 | 0.14513 | 7.46 1
10 rpart | 0.46529 | 0.15208 | 5.76 | .598 | .536
rpart0 | 0.36282 | 0.11626 | 14.94 | .767 | .719
ours | 0.24002 | 0.12801 | 8.02 1
2 rpart | 0.31778 | 0.10918 | 7.31 | .755 | .695
rpart0 | 0.21727 | 0.06906 | 20.66 | 1.105 | 1.147
ours 0.18935 | 0.07318 9.95 1
500 D rpart | 0.27216 | 0.08574 | 9.55 | .696 | .606
rpart0 | 0.22187 | 0.07544 | 21.26 | .853 | .796
ours | 0.18111 | 0.06535 | 10.18 1
10 rpart | 0.25474 | 0.07448 | 10.26 | .711 | .617
rpart0 | 0.21756 | 0.07088 | 21.44 | .832 | .765
ours | 0.15648 | 0.06088 | 10.73 1
2 rpart | 0.19593 | 0.06042 | 11.51 | .799 | .704
rpart0 | 0.14695 | 0.04875 | 25.78 | 1.065 | 1.113
ours | 0.14080 | 0.04016 | 12.06 1
1000 5 rpart | 0.18489 | 0.05206 | 13.02 | .762 | .640
rpart0 | 0.15403 | 0.04916 | 28.44 | 914 | .855
ours | 0.13791 | 0.04503 | 12.44 1
10 rpart | 0.18301 | 0.05667 | 13.62 | .754 | .626
rpart0 | 0.15434 ] 0.04817 | 28.72 | 894 | .821
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Table 2: Simulation study CV-RISK. Full data simulated from y = 2 +er,
where z ~ U(0,1) and er ~ N(0,.0625). Candidate estimator was chosen
over 100 repetitions of three sample sizes (col 1), three v-fold cross-validations
(col 2) for both our algorithm and rpart (col 3). The results (cols 4-7) in
table are based on an independent test sample of n = 1000. col 4 is the
average of the 100 risks (with the Ly loss function) for each method, col 5 is
the variance of the risks over the 100 reps, col 6 is the average size (number
of basis functions for ours and number of splits for rpart) and col 7 is the
ratio of averaged risks (col 4) (ours/rparts).

Sample 100 Repetitions
Size | v — fold | Method | mean | std dev | avg size | ratio | ratio2
ours | 0.07014 | 0.00371 5.08 1

2 rpart | 0.07416 | 0.00537 | 3.27 | .946 | .655
rpart0 | 0.07064 | 0.00466 | 5.42 | .993 | .939
ours | 0.07016 | 0.00356 | 5.42 1
250 D rpart | 0.07322 | 0.00504 | 3.51 | .958 | .715

rpart0 | 0.07058 | 0.00427 |  5.55 994 | 948
ours | 0.06948 | 0.00367 | 5.78 1

10 rpart | 0.07237 | 0.00486 | 3.564 | .960 | .707
rpart0 | 0.07028 | 0.00404 | 5.66 | .980 | .897
ours | 0.06724 | 0.00351 | 6.11 1

E rpart | 0.07039 | 0.00391 | 3.67 | .955 | .601

rpart0 | 0.06775 | 0.00356 5.16 992 | 903
ours | 0.06763 | 0.00305 6.5 1

500 5 rpart | 0.06967 | 0.00375 | 4.04 | 971 | .715
rpart0 | 0.06746 | 0.00317 | 5.94 1 1.03
ours | 0.06780 | 0.00339 | 6.96 1
10 rpart | 0.06908 | 0.00359 | 4.15 | .081 | .805
rpart0 | 0.06719 | 0.00312 | 6.2 | 1.009 | 1.13
ours | 0.06623 | 0.00332 | 7.02 1
2 rpart | 0.06810 | 0.00332 | 4.42 | .O71 | .656
rpart0 | 0.06639 | 0.00319 | 6.06 | .998 | .959
ours | 0.06584 | 0.00328 | 8.01 1
1000 5 rpart | 0.06743 | 0.00369 | 4.54 | 976 | .677
rpart0 | 0.06541 | 0.00345 | 6.84 | 1.006 | 1.148
ours | 0.06633 | 0.00337 | 8.63 1
10 rpart | 0.06729 | 0.00324 | 4.73 | .936 | .7996

rpart) | 0.06553 | 0.00309 7.31 1.012 | 1.26
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d; 'ours(k)’ chooses only over k with 0 set at 7; 'add only’ only utilizes the
Addition Step in the algorithm with § set at 7 (this is a type of forward se-
lection); 'rpart0’ is the CART estimator that chooses the tree thatminimizes
the cross-validated risk. The other details of the simulation are exactly the
same as in Section 4.1.

In Table 3, we see that ’ours(k,d)’ is approaching the truth faster (‘ratio
2’) in almost all situations compared to the other three estimators except for
’add only” in n = 1000. Importantly, in all situations the size of ‘ours(k, J)’
is less. This means that ’ours(k,d)’ is coming up with the sparsest way
of describing the data. In Table 4, we see similar results even with a larger
variance in the model. Here the gain in efficiency and accuracy is not as great
as in the previous table; however, the number of parameters for "ours(k, )’
still remains low in comparison to 'add only’ and 'rpart0’.

In Tables 5 and 6, 'ours(k, )" does negligibly better at any point ex-
cept for a small gain in n = 1000 in Table 5. Similar to Simulation 1, our
assumption is that the proposed algorithm will not significantly supersede
other histogram regression methods when confronted with underlying uni-
form distribution.

4.3 Simulation Study 3

The third simulation is designed to compare cross-validation selection meth-
ods to CART (via rpart) and oracle estimators. The oracle estimators are
built similarly to the others estimators except an independent sample of
10,000 evaluates the estimator instead of v-fold cross-validation. Thus, the
oracle estimator approximates the truth. In this simulation the estimators
under consideration are:

e OURS. The proposed algorithm minimizing over k, the number of basis
functions, and § the minimum number of observations in a region (or
subset) in order to split it. The empirical risk function is minimized
with a restriction of M € 10, 15, 20 employed. Minimum of 5-fold cross-
validation risk (CV(k)) is used to choose the 'best’ of the candidate
estimators, k =1,..., M.

e Sparse .0x The proposed algorithm as described in OURS except 2%
is added to the minimum CV(k). The smallest k£ which falls in th
interval CV (k) 4+ 2% is chosen.

27

Hosted by The Berkeley Electronic Press



Table 3: Simulation study CV-RISK. Full data simulated from y = 2 +er,
x ~ NORM(0,1) and er ~ N(0,0.5625). 50 repetitions of three sample sizes
(col 1), three v-fold cross-validations (col 2). The results (cols 4-7) in table
are based on an independent test sample of n = 1000. col 4 is the average of
the 50 risks (with the Ly loss function) for each method, col 5 is the variance
of the risks over the 50 reps, col 6 is the average size.

Sample 50 Repetitions
Size | v — fold | Method mean std dev | avg size | ratio | ratio2
ours(k,8) | 0.91890 | 0.12443 | 5.6(6)
ours(k) | 1.02020 | 0.16043 1.6 0.90 | 0.78
2 add only | 0.94866 | 0.12081 141 | 095 | 092
rpart0 | 1.01403 | 0.15204 79 0.91 | 0.79
ours(k,0) | 0.88729 | 0.12735 | 6.2(5.6)
ours(k) | 0.96799 | 0.18040 5.1 0.92 | 0.80
250 5 add only | 0.92756 | 0.12585 | 14.6 | 0.96 | 0.89
rpart0 | 0.98300 | 0.15122 8.4 0.90 | 0.77
ours(k,0) | 0.90082 | 0.12205 | 6.5(5.5)
ours(k) | 0.96908 | 0.14049 5.5 0.93 | 0.83
10 add only | 0.95173 | 0.12876 | 15.1 | 0.95 | 0.87
rpart0 | 0.99345 | 0.14993 8.7 0.91 | 0.79
ours(k,0) | 0.77999 | 0.09932 | 7(6.7)
ours(k) | 0.80779 | 0.10913 6.3 0.97 | 0.89
2 add only | 0.75785 | 0.07929 | 152 | 1.03 | 1.11
rpart0 | 0.78901 | 0.09653 | 10.4 | 0.99 | 0.96
ours(k,0) | 0.75375 | 0.080503 | 7.9(5.7)
ours(k) | 0.77583 | 0.08900 6.9 0.97 | 0.896
500 5 add only | 0.75748 | 0.07453 | 16.4 | 0.995 | 0.98
rpart0 | 0.77456 | 0.08416 | 11.7 | 0.97 | 0.90
ours(k,0) | 0.74842 | 0.06409 | 8.5(5.6)
ours(k) | 0.77202 | 0.06919 74 0.97 | 0.87
10 add only | 0.75956 | 0.07667 | 17.4 | 0.99 | 0.94
rpart0 | 0.77790 | 0.09251 | 12.1 | 0.96 | 0.86
ours(k,9) | 0.68110 | 0.04817 | 8.9(6.3)
ours(k) | 0.70124 | 0.06083 7.9 0.97 | 0.85
2 add only | 0.67018 | 0.04975 | 16.9 | 1.02 | 1.10
rpart0 | 0.68681 | 0.05731 | 12.9 | 0.99 | 0.95
ours(k,0) | 0.68142 | 0.02747 | 10.5(6)
ours(k) | 0.6936 | 0.02694 95 0.98 | 0.91
1000 D add only | 0.67750 | 0.02394 | 17.9 | 1.01 | 1.03
rpart0 | 0.69691 | 0.02666 | 15.2 | 0.93 | 0.88
ours(k,8) | 0.68081 | 0.05745 | 10.5(5.6)
ours(k) | 0.70599 | 0.069005 | 9.4 0.96 | 0.82
10 add only | 0.693203 [ 0.067235 | 182 | 0.98 | 0.90
rpart0 | 0.71248 | 0.074105 | 155 | 0.96 | 0.79
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Table 4: Simulation study CV-RISK. Full data simulated from y = 2 +er,
x ~ N(0,1) and er ~ N(0,1). 50 repetitions of three sample sizes (col 1),
three v-fold cross-validations (col 2). The results (cols 4-7) in table are based
on an independent test sample of n = 1000. col 4 is the average of the 50
risks (with the Ly loss function) for each method, col 5 is the variance of the
risks over the 50 reps, col 6 is the average size.

Sample 50 Repetitions
Size | v — fold | Method mean | std dev | avg size | ratio | ratio2
ours(k,0) | 1.42876 | 0.19039 | 5.1(6)
ours(k) | 1.50388 | 0.21861 4.3 0.95 | 0.85
2 add only | 1.46023 | 0.16760 | 12.9 | 0.98 | 0.93
rpart0 | 1.49847 | 0.14625 6.2 0.95 | 0.86
ours(k,d) | 1.37600 | 0.15532 | 5.5(6)
ours(k) | 1.41195 | 0.15068 5.2 0.97 | 0.91
250 5 add only | 1.43679 | 0.16052 | 145 | 0.96 | 0.86
rpart0 | 1.46440 | 0.16455 77 10939 081
ours(k,d) | 1.38398 | 0.14863 | 5.8(5.3)
ours(k) | 1.41520 | 0.15748 5.3 0.98 | 0.93
10 add only | 1.45299 | 0.14411 | 154 | 0.95 | 0.85
rpart( 1.46560 | 0.16638 7.2 0.94 | 0.82
ours(k,0) | 1.24121 | 0.07730 | 6.8(6.2)
ours(k) | 1.29458 | 0.14130 5.9 0.96 | 0.82
2 add only | 1.25467 | 0.08901 | 155 | 0.99 | 0.95
rpart0 | 1.27564 | 0.10481 9.4 0.97 | 0.88
ours(k,d) | 1.23782 | 0.09230 | 7.2(5.7)
ours(k) | 1.26498 | 0.09105 6.1 0.98 | 0.897
500 5 add only | 1.25763 | 0.08390 17 0.98 | 0.92
rpart0 | 1.26562 | 0.09809 10 0.98 | 0.895
ours(k,0) | 1.24538 | 0.10267 | 7.4(6)
ours(k) | 1.24789 | 0.10408 6.9 0.99 | 0.99
10 add only | 1.25758 | 0.10143 | 17.1 | 0.99 | 0.95
rpart0 | 1.26257 | 0.11444 | 10.1 | 0.99 | 0.93
ours(k, 0) | 1.15565 | 0.07665 | 8.4(6.4)
ours(k) | 1.17479 | 0.08406 73 0.98 | 0.89
2 add only | 1.14613 | 0.07644 | 16.7 | 1.01 | 1.07
rpart0 | 1.17308 | 0.083109 | 10.9 | 0.99 | 0.899
ours(k,d) | 1.14230 | 0.06129 | 10(5.7)
ours(k) | 1.145129/0.064496 | 85 | 0.997 | 0.98
1000 D add only | 1.13967 | 0.06021 | 17.9 1.0 | 1.02
rpart0 | 1.15039 | 0.063386 | 12.6 | 0.99 | 0.95°
ours(k, 0) | 1.15745 | 0.06233 | 9.95(6.1)
ours(k) | 1.15737 | 0.07351 8.4 1.0 | 1.0
10 add only | 1.14641 | 0.06678 18 1.01 | 1.08
rpart0 | 1.16241 | 0.07268 | 135 | 0.996 | 0.969
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Table 5: Simulation study CV-RISK. Full data simulated from y = 2 +er,
x ~ unif(0,1) and er ~ N(0,0.5625). 50 repetitions of three sample sizes
(col 1), three v-fold cross-validations (col 2). The results (cols 4-7) in table
are based on an independent test sample of n = 10000. col 4 is the average of
the 50 risks (with the Ly loss function) for each method, col 5 is the variance
of the risks over the 50 reps, col 6 is the average size.

Sample 50 Repetitions
Size | v — fold | Method mean | std dev | avg size | ratio | ratio2
ours(k,d) | 0.61252 | 0.02184 | 3.5(.05)
ours(k) | 0.60452 | 0.01641 | 3.2 1.0l | 1.19
2 add only | 0.65218 | 0.03192 | 12.3 94 56
rpart0 | 0.60094 | 0.02216 | 2.4 1.02 1.3
ours(k,d) | 0.62821 | 0.03091 | 4.1(.04)
ours(k) | 0.62299 | 0.03154 | 3.6 1.01 | 1.09
250 5 add only | 0.64963 | 0.02093 | 11.3 97 75
rpart0 | 0.59377 | 0.02307 | 2.7 1.06 | 1.98
ours(k, 0) | 0.63574 | 0.03293 | 4.0(.04)
ours(k) [ 0.62026 | 0.03042 | 3.8 1.02 | 1.26
10 add only [ 0.66294 | 0.02795 | 13.9 96 73
rpart0 | 0.59590 | 0.02281 | 2.7 1.07 | 2.19
ours(k,d) | 0.59330 | 0.01815 | 4.3(.05)
ours(k) | 0.60105 | 0.01970 4.1 99 .80
2 add only | 0.63093 | 0.01735 | 15.1 94 45
rpart0 | 0.50277 | 0.01088 | 2.7 1 1.02
ours(k, 0) | 0.60360 | 0.01819 | 4.3(.05)
ours(k) | 0.60788 | 0.02163 | 4.3 99 91
500 5 add only [ 0.63555 | 0.01742 | 16.7 95 56
rpart0 | 0.58673 | 0.01021 | 2.8 1.03 1.7
ours(k, 0) | 0.61003 | 0.02301 | 4.7(.03)
ours(k) | 0.61198 | 0.02232 4.4 1.0 .96
10 add only | 0.63542 | 0.01850 | 16.9 96 65
rpart0 | 0.58496 | 0.01602 | 3.1 | 1.011.04 | 2.1
ours(k,d) | 0.57554 | 0.00979 | 4.9(.05)
ours(k) | 0.58079 | 0.01043 | 4.5 99 71
2 add only | 0.59863 | 0.01156 | 15.5 96 36
rpart0 | 0.57837 | 0.01115 | 2.8 1995 82
ours(k, 0) | 0.58326 | 0.01166 | 4.9(.03)
ours(k) | 0.591630] 0.01478 | 5.1 99 71
1000 D add only | 0.60428 | 0.01063 | 17.2 97 50
rpart0 | 0.57642 | 0.00051 | 3.4 1.01 15
ours(k,8) | 0.58728 | 0.01372 | 5.1(.03)
ours(k) [ 0.59778 | 0.01720 | 5.1 98 70
10 add only | 0.60405 | 0.01349 | 17.8 97 .60
rpart0 | 0.57516 | 0.01122 | 3.6 1.02 | 1.96
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Table 6: Simulation study CV-RISK. Full data simulated from y = 2 +er,
x ~ unif(0,1) and er ~ N(0,1). 50 repetitions of three sample sizes (col
1), three v-fold cross-validations (col 2). The results (cols 4-7) in table are
based on an independent test sample of n = 10000. col 4 is the average of
the 50 risks (with the Ly loss function) for each method, col 5 is the variance
of the risks over the 50 reps, col 6 is the average size.

Sample 50 Repetitions
Size | v — fold | Method mean | std dev | avg size | ratio | ratio2
ours(k,0) | 1.07887 | 0.03831 | 3.4(.05) | 1
ours(k) [ 1.06419 | 0.03012 | 3.1(.03) | 1.01 | 1.23
2 add only [ 1.16395 | 0.04685 | 12.6 | .93 | .48
rpart0 | 1.05864 | 0.02579 | 1.8 | 1.02 | 1.34
ours(k,d) | 1.10572 | 0.05783 | 3.5(.05) | 1
ours(k) [1.00595 | 0.05060 | 3.5 | 1.01 | 1.10
250 D add only | 1.15806 | 0.04919 | 11.6 | .95 | .66
rpart0 | 1.05771 | 0.05126 | 2.5 | 1.05 | 1.83
ours(k,d) | 1.13338 | 0.05617 | 3.8(.03) | 1
ours(k) | 1.09249 | 0.05152 | 3.3 | 1.04 | 1.44
10 add only | 1.18075 | 0.05103 | 14.8 | .96 | .74
rpart0 | 1.05373 | 0.05204 | 2.5 | 1.0S | 2.48
ours(k, 0) | 1.04841 | 0.02776 | 3.8(.06)
ours(k) | 1.05374 | 0.029934 | 4.0(.01) | .99 | .90
2 add only [ 1.11661 | 0.03643 | 15.0 | .94 | .42
rpart0 | 1.03259 | 0.02104 | 2.1 | 1.02 | 1.49
ours(k,d) | 1.06194 | 0.03128 | 3.8(.04)
ours(k) [1.06652 | 0.03523 | 3.7 | .996 | .93
500 D add only | 1.12845 | 0.02870 | 17.2 | .04 | .48
rpart0 | 1.02831 | 0.01544 | 2.2 | 1.08 | 2.19
ours(k,0) | 1.07972 | 0.03252 | 4.1(.03) | 1
ours(k) [1.00095 | 0.04195 | 3.9 99 | 88
10 add only | 1.13839 | 0.03059 | 17.4 | .95 | .58
rpart0 | 1.03799 | 0.02161 | 2.4 | 1.04 | 2.1
ours(k,d) | 1.02659 | 0.02041 | 4.2(.05) | 1
ours(k) | 1.02726 | 0.01720 | 4.1(.01) | 1.0 | .08
2 add only | 1.06692 | 0.02313 16 96 | .40
rpart0 | 1.02242 | 0.016063 | 2.2 1.0 | 1.19
ours(k,d) | 1.03701 | 0.02485 | 4.6(.04)
ours(k) | 1.04759 | 0.03211 | 4.5 99 | .78
1000 D add only | 1.073821 0.024011 | 17 | 1.1l | .50
rpart0 | 1.01059 | 0.02417 | 3.0 | 1.02 | 1.89
ours(k,0) | 1.04208 | 0.02203 | 4.3(.03) | 1
ours(k) | 1.05722 | 0.02389 | 4.4 99 | 74
10 add only | 1.07512 | 0.02016 | 17.2 | .97 | .56
rpart0 | 1.02166 | 0.01482 3 1.02 | 1.4
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e 1-SE The proposed algorithm as described in OURS except 'best’ esti-
mator is chosen finding the smallest k thats in the range of min(C'V (k))+
SE(min(CV(k))).

e MinCVrisk The proposed algorithm with the cross-validated empirical
risk as the risk function.

e MINBUCKTY The proposed algorithm as described in OURS except
only minimized over k with 6 = 7.

e ADDONLY A hybrid of the proposed algorithm whereas only the Addi-
tion Step is implemented. This is a type of forward selection approach.

e RPARTS The CART algorithm as implemented in R as rpart. Restric-
tion of complexity parameter value as an argument in rpart. Minimizes

over both k and 4.

In the following three figures, column 1 indicates the sample size 250,
column 2 the error added to the underlying symmetric model, and column
3 shows any restrictions on OURS or RPARTS, e.g., BF' = 10 means that
OURS was limited to a maximum of M = 10 basis functions. Columns
4 through 7 are the results of the estimators chosen using 5-fold cross-
validation. Column 4 indicates which method, Column 5 has the mean of the
risk as assessed by an independent test sample of 10,000 over 50 repetitions.
Column 6 shows the average number of basis functions (over 50 repetitions)
and column 7 indicates the § chosen. Columns 8 through 10 are the results of
the oracle estimators. These were chosen with an independent test sample of
10,000 instead of 5-fold cross-validation. Column 9 is the relative efficiency
ratio as described previously.

Figure 8 shows the results of the smallest sample size, n = 250. For the
smaller error, OURS does quite well compared to it’s own oracle estimator
and to the others. By increasing M from 10 to 15 there is a marginal increase
in accuracy. The biggest difference is when the error in the model is increased.
Now OURS is not doing as well, ADDONLY and 1— SFE are doing quite well
in comparison to RPARTS though. Interestingly, The oracle estimator for
OURS is doing better than the other estimators and oracles. This indicates
that there is a problem with the selection of k£ and § by cross-validation. If
those problems are accommodated OURS could approach the accuracy of its
oracle and thus, do the best.
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Figure 9 shows very similar results at a much smaller scale. Now the
discrepancy between OURS and RPARTS is not as big in the smaller error
models and grows rapidly with a larger error. The second smallest oracle es-
timator is that of OURS. This indicates that if the cross-validation difficulty
is remedied OURS would be potentially one of the best of these estimators.
Interestingly, ADDONLY does the best in both of the larger error simula-
tions.

Figure 10 the results are quite similar. However, OURS is doing quite
badly in the largest error compared to RPART. It definitely does better when
the number of basis functions is restricted to 15. OURS oracle estimator is
also doing a slight bit worse than RPARTS’. When the error added to the
model is smaller, OURS does marginally better.

5 Discussion

We have proposed a new partitioning algorithm for generating a piecewise
constant estimation sieve of candidate estimators based on an intensive and
comprehensive search over the entire covariate space. This new algorithm
builds ‘and’ and ‘or’ statements. This allows combinations and substitutions
of regions for the purpose of discovering intricate correlations patterns and
interactions in addition to main effects. We suggest that this approach will
supersede previously suggested methods by being not only more aggressive
but also more flexible. In addition, we are currently implementing a bagging
scheme with the intention of further improving prediction.
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Estimator Chosen by Cross-Validation Oracle Estimator Relative
Sample size Error  Restrict Method Mean Size Delta Method Mean Size | Efficiency
BF=10 OURS 0.283933 9.34 0.0208 OURS 0.274081 9.44| 0.797
Sparse .01 0.285164 8.9
Sparse .02 0.286492 8.52
Sparse .03 0.291409 7.86
1-SE 0.363773 5.10
MinCVrisk 0.291676 13.38 MinCVrisk ~ 0.290050 13.24 0.825
MINBUCK?7 0.348052 8.82 MINBUCK?7  0.341099 8.84
ADDONLY 0.304824 9.98 ADDONLY  0.299695 10
Cp=.001 RPARTS 0.340204 12.48 RPARTS 0.331355 12.96
0.25 [BrF=T5 OURS 0279152 12.94 00206] OURS 0269621  11.86] 0.786 _
Sparse .01 0.279406 11.46
Sparse .02 0.279729 10.66
Sparse .03 0.283235 9.9
1-SE 0.359579 5.42
MinCVrisk 0.291676 13.38 MinCVrisk  0.290050 13.24( 0.832
MINBUCK7 0.344667 11.58 MINBUCK?7  0.338233 11.32
250 ADDONLY 0.277417 14.94 ADDONLY  0.272266 14.8
CP=0 RPARTS 0.337966 15.84 RPARTS 0.328718 15.64
BF=10 OURS 1.441586 9 0.0211 OURS 1.309177 5.44( 1.102
Sparse .01 1.441670 8.36
Sparse .02 1.436106 8.08
Sparse .03 1.429405 7.78
1-SE 1.379621 5.78
MinCVrisk 1.409958 7.86 MinCVrisk ~ 1.384494 7.18| 1.023
MINBUCK?7 1.457210 8.22 MINBUCK7  1.363833 5.16
ADDONLY 1.334329 9.6 ADDONLY  1.300900 8.84
Cp=.005 RPARTS 1.400555 7.56 RPARTS 1.341487 7.92
1 BF=15 OURS 1.508310 10.86 0.0204 OURS 1.336559 55 1.179
Sparse .01 1.504889 10
Sparse .02 1.498654 9.48
Sparse .03 1.493648 9.16
1-SE 1.431853 6.26
MinCVrisk 1.455152 7.74 MinCVrisk ~ 1.404150 71| 1.056
MINBUCK7 1.501373 9.08 MINBUCK7  1.397916 5.26
ADDONLY 1.388528 13.14 ADDONLY  1.309970 8.98
CP=0 RPARTS 1.431067 7.58 RPARTS 1.357756 7.84

Figure 8: Simulation study Oracle vs. Cross-validation selector. Full
data simulated from y = z* 4+ er,  ~ N(0,1) and er ~ N(0,error). 50
repetitions of sample size = 250 with error (col 2), basis functions (BF) and
cp (col 3), selection method (col 4), average risk with Ls loss function (col
5), average number of basis functions (or nodes) (col 6), chosen § (col 7), and
oracle estimator results based on independent test set of 10,000 (col 8-10).
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Estimator Chosen by Cross-Validation Oracle Estimator Relative

Sample size  Error Restrict Method Mean Size Delta Method Mean Size Efficiency
BF=10 OURS 0.189608 9.66 0.0105 OURS 0.186198 9.76| 0.977
Sparse .01 0.189873 9.58
Sparse .02  0.190672 9.18
Sparse .03  0.191562 8.92
1-SE 0.224406 6.84
MinCVrisk ~ 0.181053 19.18 MinCVrisk 0.180600 19.04| 0.911
MINBUCK7  0.214364 9.46 MINBUCK7  0.211434 9.86
ADDONLY  0.243516 10 ADDONLY 0.239421 10
Cp=.001 RPARTS 0.192565 19.1 RPARTS 0.188683 19.42
0.25 [BF=15 OURS 0.179309 13.48 0.0102 OURS 0.174786 14.2[ 0.899

Sparse .01 0.179923 12.64
Sparse .02  0.180917 12.08
Sparse .03  0.181666 11.48

1-SE 0.216560 7.38
MinCVrisk ~ 0.181053 19.18 MinCVrisk 0.180600 19.04( 0.913
MINBUCK7  0.206912 13.34 MINBUCK?7 0.202296 13.8
500 ADDONLY  0.191173 15 ADDONLY 0.188642 15
CP=0 RPARTS 0.192409 21.6 RPARTS 0.186567 22.4
BF=10 OURS 1.288866 9.48 0.0107 OURS 1.201862 6.56| 1.226
Sparse .01 1.290389 8.82
Sparse .02 1.290850 8.66
Sparse .03  1.288236 8.52
1-SE 1.267996 7.08
MinCVrisk  1.289258 10.08 MinCVrisk 1.255939 9.26| 1.228
MINBUCK?7  1.284121 9.3 MINBUCK?7 1.229240 6.88
ADDONLY  1.210023 9.96 ADDONLY 1.202851 9.84
Cp=.005 RPARTS 1.235523 9.68 RPARTS 1.204612 10.88
1 BF=15 OURS 1.385647 13.54 0.0100 OURS 1.202157 6.5 1.637

Sparse .01 1.384786 12.72
Sparse .02  1.381353 12.26
Sparse .03 1.375156 11.98

1-SE 1.334312 10.18
MinCVrisk  1.289258 10.08 MinCVrisk 1.255939 9.26| 1.228
MINBUCK?7  1.354310 12.92 MINBUCK?7 1.229620 6.8
ADDONLY  1.213414 14.44 ADDONLY 1.182773 12.06
CP=0 RPARTS 1.235523 9.68 RPARTS 1.204612 10.88

Figure 9: Simulation study Oracle vs. Cross-validation selector. Full
data simulated from y = z* 4+ er,  ~ N(0,1) and er ~ N(0,error). 50
repetitions of sample size = 500 with error (col 2), basis functions (BF) and
cp (col 3), selection method (col 4), average risk with Ls loss function (col
5), average number of basis functions (or nodes) (col 6), chosen § (col 7), and
oracle estimator results based on independent test set of 10,000 (col 8-10).
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Estimator Chosen by Cross-Validation Oracle Estimator Relative
Sample size  Error Restrict Method Mean Size Delta Method Mean Size Efficiency
BF=15 OURS 0.137484 14.61 0.0051 OURS 0.136517 14.86| 0.857
Sparse .01  0.138429 13.86
Sparse .02 0.140330 13.29
Sparse .03  0.140851 12.96

0.25 1-SE 0.169069 9.11
MinCVrisk  0.139129 25.11 MinCVrisk  0.138034 25.11| 0.876
MINBUCK7 0.153104 14.50 MINBUCK7 0.151968 15.00
ADDONLY 0.160150 15.00 ADDONLY 0.158697 15.00
Cp=.0001 RPARTS 0.149979 28.71 RPARTS  0.144944 30.46
BF=10 OURS 1.183230 9.74 0.0057 OURS 1.142713 7.98] 1.155
Sparse .01 1.186038 8.86
Sparse .02 1.186785 8.62
1 000 Sparse .03 1.188314 8.30
1-SE 1.182286 7.38
MinCVrisk  1.239488 14.02 MinCVrisk  1.190828 12.00| 1.510
MINBUCK7 1.176304 9.78 MINBUCK?7 1.155677 7.86
ADDONLY 1.178627 10.00 ADDONLY  1.172320 9.96
Cp=.002 RPARTS 1.158613 12.76 RPARTS  1.136611 13.14
1 BF=20 OURS 1.328907 18.56 0.0050 OURS 1.141729 8.13| 2.090

Sparse .01 1.326708 17.29
Sparse .02 1.323793 16.85
Sparse .03 1.318888 16.23

1-SE 1.295150 14.83

MinCVrisk  1.240015 14.08 MinCVrisk  1.189328 11.98| 1.525

MINBUCK?7 1.288648 17.96 MINBUCK?7  1.154195 7.96

ADDONLY  1.147161 19.90 ADDONLY  1.120470 14.90
Cp=.002 RPARTS  1.157388 12.94 RPARTS  1.133392 13.77

Figure 10: Simulation study Oracle vs. Cross-validation selector. Full
data simulated from y = z* 4+ er,  ~ N(0,1) and er ~ N(0,error). 50
repetitions of sample size = 1000 with error (col 2), basis functions (BF) and
cp (col 3), selection method (col 4), average risk with Ls loss function (col
5), average number of basis functions (or nodes) (col 6), chosen § (col 7), and
oracle estimator results based on independent test set of 10,000 (col 8-10).
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