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Abstract

Distance Correlation is another newer choice to compute the relation between
variables. However, the Bayesian counterpart of Distance Correlation is not estab-
lished. In this paper, Bayesian counterpart of Distance Correlation is pro- posed.
Proposed method is illustrated with Liver Chirrhosis Marker data. The relevant
studies information about relation between AST and ALT is used to formulate the
prior information for Bayesian computation. The Distance Correlation between
AST and ALT (both are liver performance marker) is computed with 0.44. The
credible interval is observed with (0.41, 0.46).Bayesian counter- part to compute
Distance correlation is simple and handy.
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Abstract

Distance Correlation is another newer choice to compute the relation between

variables. However, the Bayesian counterpart of Distance Correlation is not

established. In this paper, Bayesian counterpart of Distance Correlation is pro-

posed. Proposed method is illustrated with Liver Chirrhosis Marker data. The

relevant studies information about relation between AST and ALT is used to

formulate the prior information for Bayesian computation. The Distance Corre-

lation between AST and ALT (both are liver performance marker) is computed

with 0.44. The credible interval is observed with (0.41, 0.46).Bayesian counter-

part to compute Distance correlation coefficient is simple and handy.
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Introduction

The dependence between random vectors can be measured by distance cor-

relation(DC). It is equally appropriate for equal and unequal dimensional mea-

surement [1, 2]. The range of DC is [0, 1]. It provides platform to measure

with multivariate independence. It is a generalized form of Pearson correla-

tion.It is found consistent for all dependent alternatives through finite second
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moments [3].The bias outcome of DC through different dimension also been

tested[3]. The unbiased t-test is found suitable to test the independence nature

for distance correlation.Pearson correlation and Spearman’s correlation are the

most explored measurement in medical research over the last century. Both are

widely explored tool to explore relation between variable. The DC is extended

for high dimensional data [4]. The application of distance correlation for func-

tional data also been extended recently through Hilber space [5].However, the

limitation of DC to be applied for high dimension data also being elaborated[6].

Recently, several new tools are available to the scientific community for more

complex issue through Cannonical , Rank and Renyi correlation [4]. However,

all of them having some advantages and limitations[7]. The joint independences

of random variable can be explored through DC [2]. It is matrix inversion free.

Dependences measurement between two random variables can be observed and

tested through it [8]. In experimental study, relation between two variable of

interest plays always important role. Medical practice is based on known infor-

mation about relation between two variables. Preventive and curative measures

of medical disciplines is stand on relative relation between variables.Particularly,

it is essential in experimental and medical research as tool to explore complex

relation between random variables. In this article, we first elaborate the DC.

Next, we discuss Bayesian approach in general and then Bayesian approach to

compute Distance Correlation. In this work the default Bayesian approach is

presented to compute the DC. The method is illustrated with clinical trial exam-

ple. The intention of this work is to present some handy tool to the researcher

involved to explored the relation between variables.

Distance Covariance and Distance Correlation

Distance covariance between the random variables X and Y is defined with

marginal characteristic function of fY (t) andfY (s) by,

V 2(X,Y ) = [f(X,Y )(t, s)− fX(t)fY (s)]
2 (1)

2

http://biostats.bepress.com/cobra/art113



The function f(X,Y ) is joint characteristics function ofX and Y . The terms sand

t are the vectors and the product of t and s is < t, s > .The distance covariance

measures the distance ||f(X,Y )(t, s)− f(X)f(Y )(s)|| between the joint character-

istic function and marginal characteristics function. The random vector X and

Y are in Rp and Rq respectively. The hypothesis is H0 : fX,Y = fXfY and

H1 : fX,Y ̸= fXfY The distance variance is

V (X) = [f(X,X(t, s)− fX(t)fX(s)] (2)

DC between X and Y is defined with finite first moments R(X,Y ) by

R2(X,Y ) =
V 2(X,Y )√
V 2(X)V 2(Y )

> 0 (3)

The distance covariance Vn(X,Y ) is defined with

V 2
n (X,Y ) =

1

n2

n∑
k,l=1

AklBkl (4)

Similarly it can be defined as

V 2
n (X,X) =

1

n2
(5)

The parameters are akl = |Xl − Yl|, āk. = 1
n

∑n
k=1 akl, ā.l =

1
n

∑n
k=1 akl,

and ā.. =
1
n2

∑n
k=1 akl,

A = akl − ā.l + ā.. (6)

Similarly, BkL is defined.

Properties

The DC provides the scope to generalize the correlation between variables

(X and Y ) by R. It is defined on arbitrary dimensions R = 0 for independent

of X and Y . The range of DC is 0 < R < 1.The R can be defined as the

function of Pearson correlation coefficient ρ with R(X,Y ) < |ρ(X,Y )| with

equality when ρ±1. The random variables X and Y are express as Ai = Xi+ ϵi

and Bj = Yj + ϵj respectively. The error terms ϵi and ϵj are independent with
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the variables Xiand Yj . Let the relation between random functions Ai and Bj

is irrelevant. But the relation between Xi and Yj is importance and matter of

concerned. The strength of relation between X and Y can be measured through

DC in this scenario.

In One-sided Test

The frequency approach test the problem through p(X) value of the null

hypothesis H0. In contrast, Bayesian measures through posterior probability

p(H0|X). Let the data follows normal distribution (θ, σ2)with null hypothesis

H0 : θ ≤ 0 andH1 : θ > 0. The frequency and robust Bayesian often coincide [9].

Let the marginal DC ρ is applied between p(X) = 1−Φ(X/σ) and p(H0|X).The

DC should be greater than or equal to zero. Because p(X) and p(H0|X) both

are decreasing with respect to X.

Parameter and Unbiased Estimator

Suppose, (θ,X) are the random variables with joint characteristics function

f(X,Y )(t, s) and marginal distribution of θ is π. The estimator of θ is δ(X) and

square error loss is r(π, δ) = E[δ(X) − θ]2 and risk is δπ(X) = E(θ/X). The

DC between θ and δ(X) is

ρ(θ, δ(X)) =
var(θ) + cov{θ, b(θ)}√

var(θ)
√
var{θ + (θ)}+ τ(π, δ)− E{b2(θ)}

(7)

Method

The Bayes’ Theorem provides the prior information about the relevant pa-

rameter for the specific statistical analysis. It is helpful to test the hypothesis

in presence of posterior probability of the parameter of interest. The parameter

of interest R(X,Y ) can be computed with posterior probability through Bayes’

theorem

P (R(X,Y )/Information) =
P (Information/R(X,Y ))P (R(X,Y ))

P (Information)
(8)
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The term P (R(X,Y )) is the prior probability of R(X,Y ) observed from the

previous study. The term P (information/R(X,Y )) is likelihood of R(X,Y )

occurred in the previous study or data collected by the investigator. The sum

of the function 1
(P (Information)) should be equal to 1 as the theory of total Bayes

theorem. The relation between posterior and prior is

PosteriorProbability ∝ Likelihood× PriorProbability (9)

The posterior density of R(X,Y ) is generated with

P (R(X,Y )/x, y) ∝ P (R(X,Y ))
(1−R(X,Y )2)(n−1)/2

(1−R(X,Y ) ∗ r)n− 3
2

(10)

Let the mean and variance of X and Y are µ1, µ2, σ
2
1 , σ

2
2 respectively. The

mean(z) is derived from

ez =
µ1σ

2
2

µ2σ2
1

(11)

The term R(X,Y ) is defined by tanhϵ and it is assumed ϵ ∼ N(z, 1
n ). The

mathematical formulations are detailed in Fisher (1915). The hyperbolic trans-

formation plays role to consider the conjugate prior with normal distributions.

The posterior mean can be represented with

µposterior = ϵ2posterior[ηpriortanh
−1R(x, y)prior+ηlikelihoodtanh

−1R(x, y)likelihood]

(12)

σ2
posterior =

1

ηprior + ηlikelihood
(13)

The prior with the form

P (R(X,Y )) ∝ (1−R(X,Y )2)c (14)

The prior is dependent on the choice of c. The c = 0 gives the P (R(X,Y ) ∝ 1

The specification of prior is important for testing the parameters in hypothesis

H0 and H1. The main focus of research in Bayesian approach is the specification

of prior. The prior specification is carried out through regression modeling. Let

the response of interest (Y ), covariates (X) ,error(ϵ) and intercept (α) are in

regression line through

Y = α+ βX + ϵ (15)
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Zellner (1986) has introduced the g prior for the above mentioned β coefficeint.

However, it is the extension of Jeffrey’s prior on the error precision ϕ with

uniform prior of interest α by

p(β|ϕ, g,X) = N(0,
g

ϕ
(XTX)−1), p(ϕ, α) ∝ 1

ϕ
(16)

The information about β can be obtained through ϕ−1(XTX)−1. Further, spec-

ified value of g gives the exposure about observed data. The specified value of

g = 1 says no influences of observed data. Whereas, g = 5 gives 15 weight as the

observed data. The selection of value of g is very important[10]. It is considered

as g = n. n is the sample size. discussed to consider g = k. (k is the number of

parameters). There are several literatures about selection of g prior. The work

is contributed with Jeffrey’s-Zellner-sion (JZS) prior for g-value. It was repre-

sented by Liang and his colleagues [11] and applied for correlation coefficient

[12]. The prior is like

p(β|ϕ, g,X) =

∫
N(0,

g

θ
(XTX)−1)p(g)dy (17)

p(ϕ) ∝ 1

ϕ
(18)

p(g) =
n
2 )

1
2

Γ(12 )
g−

3
2−

n
2g (19)

The above mentioned formula is also useful to calculate Bayes factor. The prior

is applied as default prior for t-test [8]. The Bayesian factor is applied through

JZS for DC in regression line. The regression coefficient β is allowed to the

application JZS prior. Our goal is to compute DC, Intercept (α), regression

coefficient (β) and error term (ϵ) s detailed in equation(1). Let the equation (1)

further separated into Model (M1) and Model(M0) by

M1 : Y = α+ βX + ϵ (20)

M0 : Y = α+ ϵ (21)

The model ((M1)) states the presence of DC and absence of it by Model ((M0)).

Now, the Bayes Factor through JZS is defined [11] as,
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BF10 =
(n2 )

1/2

Γ(1/2)
×
∫ ∞

0

(1 + g)((n−2)/2 × [1 + (1− r2)g]−
(n−1)

2 g−
3
2 e−( n

2g )dg (22)

BF10 =
p(Y/M1)

p(Y/M0)
(23)

If the value of BF10 becomes more than 1, it state about presences of DC

otherwise not.

Testing

Under the null hypothesis H0, the model (M0) is assumed and (M1) for

alternative one i.e H1. The prior probability of null is assigned as p(M0) and

alternative as p(M1). Thereafter, Baye’s theorem is applied on the observed

data to compute posterior probability of the hypothesis. The appearance of

posterior probability of alternative Hypothesis is computed as

p(M1|Y ) =
p(Y |M1)p(M1)

p(Y |M1)p(M1) + p(Y |M0)p(M0)
(24)

The termP (Y |M1)is the marginal likelihood of the data for alternative hypoth-

esis. Further, the marginal likelihood is calculated as

p(Y |M1) =

∫ ∞

θ

p(Y |θ,M1)p(θ|H1)dθ (25)

Bayes Factor ([13]) is useful to compute the appearance of P (M1|Y ) in compar-

ison to P (M0|Y ):

p(M1|Y )

p(M0|Y )
= BF10 ×

p(M1)

p(M0)
(26)

Illustrated Example

The importance of Aminotransferases to detect malfunction of live, heart,

lungs, skeletal and brain [14]. The Aminotransferases can be separated into Ala-

nine aminotransferase(ALT) and Aspartate aminotransferase(AST) [15]. Serum

ALT is useful to detect various liver disease[16]. Recently, AST and ALT is found
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as suitable marker for healthy Indian population for Liver Cirrhosis [17]. This

study is devoted to explore the DC between AST and ALT measurements of the

same individuals. The generated information between AST and ALT is used as

prior information of sample size of 4917 individuals[17]. The raw data on AST

and ALT of 606 individuals are detailed [18]. This work is devoted to illustrate

the DC between AST and ALT observations of 606 individuals. In both the

above mentioned study, the relation between Serum alanine aminotransferase

(ALT) and serum aminotransferase (AST) are observed. The relations between

variables are explored through distance covariance with Bayesian approach.The

first relation between ALT and AST is observed [17]. The measured distance

correlation data is observed with error. Bayesian posterior estimate is computed

for robust DC between ALT and AST by,

σ2
posterior =

1

ηprior + ηlikelihood
=

1

4917 + 606
= 0.00018 (27)

µPosterior = 0.00018(4917tanh−1 + 606tanh−10.80) (28)

µposterior = 0.44 (29)

The confidence interval is

µposterior ± 1.96
√
(σ2

post) = 0.44± 1.96(0.00018)1/2 (30)

i.e. (0.41, 0.46). It shows the posterior estimates of DC i.e R(X, Y ) is 0.44 with

credible interval (0.41, 0.46). This simple approach for DC can be extended in

other experimental research. The posterior computed mean is 0.44 and sample

size 606. The values are applied to obtain the BF10 in equation (23). The BF10

is calculated with 8.3. It is the evidence in favor of M1 in comparison to model

M0. The presence of DC is tested through g prior.

Discussion

Recently, the testing process to check the presences of DC has been at-

tempted. The t-test is found suitable to test the presence of DC. The relevant
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factors are proposed to perform it[3]. The evaluation of direct relation between

two variables is important. Pearson and Spearman correlations are commonly

applied tools to explore relation between variables. The strength of relation be-

tween variable can be classified by Cannonical, Rank and Renyi Correlation [4].

The widely explored correlation tool-Pearson correlation fails in multivariate

data set. It becomes zero for independent bivariate normal distribution. But

it failed to specify multivariate dependence in general. The limitation can be

overcome by joint independence of the random variable through DC. The DC

is product-moment correlation and generalized form of bivariate measures of

dependency. It is very much useful and unexplored area for statistical inference.

The idea of this work is to establish the application of new types of correlation

tools for measurement of dependence between variables. It is more applicable

for complicated multivariate data. The detailed application DC is recently es-

tablished [2]. There are several advantages for application of DC over simple.

The Bayesian application on DC computation has been elaborated [7]. But, the

application of g-prior of DC testing is completely new. It is general tendency to

avoid the prior information about the relation between variable. The Bayesian

gives the scope to consider the prior information of the relation between variables

to explore the strength of current relation between variables.The application of

Bayesian to compute DC is illustrated and Hypothesis test statistics through

Bayes Factor is detailed on Biochemcal marker for liver performance. The work

is illustrated with the estimation of DC between AST and ALT.It is dedicated

for Bayesian test to compute DC. The work is not an attempt to develop a

new statistical model. But it is an effort to explore the application of Bayesian

approach to compute DC. The application is illustrated with biomarker of liver

cirrhosis observed through clinical trial data analysis. Bayesian can be useful to

get prominent evidence for test statistics on relation between variables. Bayes

factor is useful for computation of DC. It is useful to figure out the strength of

hypothesis. It can be considered as easily interpretable tool to discover the rela-

tions.This illustrated tool can be widely accepted for future research to explore

relation between variables.
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