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Abstract

Modern case-control studies typically involve the collection of data on a large number of out-

comes, often at considerable logistical and monetary expense. These data are of potentially great

value to subsequent researchers, who, although not necessarily concerned with the disease that

defined the case series in the original study, may want to use the available information for a re-

gression analysis involving a secondary outcome. Because cases and controls are selected with

unequal probability, regression analysis involving a secondary outcome generally must acknowl-

edge the sampling design. In this paper, the author presents a new framework for the analysis of

secondary outcomes in case-control studies. The approach is based on a careful re-parametrization

of the conditional model for the secondary outcome given the case-control outcome and regression

covariates, in terms of (a) the population regression of interest of the secondary outcome given

covariates, and (b) the population regression of the case-control outcome on covariates. The er-

ror distribution for the secondary outcome given covariates and case-control status is otherwise

unrestricted. For a continuous outcome, the approach sometimes reduces to extending model (a)

by including a residual of (b) as a covariate. However, the framework is general in the sense that

models (a) and (b) can take any functional form, and the methodology allows for an identity, log

or logit link function for model (a).
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1 Introduction

Case-control studies typically collect information on a large number of outcomes, often at con-

siderable cost. These data are of potentially great value for studying associations, involving a

secondary outcome other than the disease outcome defining case-control status. For instance,

secondary outcomes analyses are now routine in genetic epidemiology, with several recent papers

on genetic variants influencing human quantitative traits such as height, body mass index and

lipid levels, using data mostly from case-control studies of complex diseases (diabetes, cancer and

hypertension) (Lettre et a, 2008, Loos et al, 2008, Sanna et al, 2008, Weedon et al, 2007). Other

examples have emerged in environmental epidemiology, such as the recent study of Weuve et al

(2009), which uses data taken, in part, from a case-control study nested within the Nurses’Health

Study (NHS). In the NHS Lead Study, Boston-area NHS participants had extensive lead exposure

assessment (bone and blood measures). Associations of lead measures with hypertension, bone

mineral density/metabolism, and cognition were then assessed. However, the Lead Study selected

women on the basis of their blood pressure status. Therefore, analyses that aim to evaluate risk

factors of osteoporosis (a binary outcome) and cognitive function decline (a continuous outcome),

may be affected by the case-control sampling design. In fact, Monsees et al (2009) and Lin and

Zeng (2009) established that the non-random ascertainment from the study base, when ignored,

can sometimes lead to inflated Type I error rate for tests of associations of a secondary outcome in

re-purposed case-control samples. They further showed that commonly used analytic techniques,

such as least-squares regression for quantitative traits, can sometimes give biased estimates, and

that such bias can be present when covariates in the regression model in view, are associated with

case-control outcome, which itself is independently associated with the secondary outcome.

A number of analytic strategies have been proposed to eliminate selection bias associated with
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oversampling of cases in analyses of secondary outcomes, see for instance Nagelkerke et al (1995),

Lee et al (1997), Jiang et al (2006), Reilly et al (2005), Richardson et al (2007), Lin and Zeng

(2009), Monses et al (2009), Li et al (2010), Wang and Shele (2011) andWei et al (2013). Suggested

strategies include:

(i) weighting the standard analysis by the inverse of sampling probabilities;

(ii) performing the analysis only in controls;

(iii) analyzing cases and controls separately, i.e., stratifying the analysis by case-control status;

(iv) including case-control status as a covariate in the regression model of the secondary outcome.

The first strategy (i) gives a viable simple solution as it recovers correct inferences about

association measures, without the burden of additional modelling than would be required had

data been sampled independently of case-control status. However, simply weighting by sampling

rates will often be ineffi cient (Robins et al, 1994, Tchetgen Tchetgen, 2012). The second method is

appropriate only when the disease status is rare in the population but does not use data on cases

and therefore may be ineffi cient. Methods that adjust for the primary disease status by either (iii)

or (iv) may yield flawed conclusions because the associations between a secondary outcome and

an exposure of interest in the case and control groups can be quite different from the association

in the underlying target population. More formal likelihood methods have also appeared in the

literature. For instance:

(v) Jiang et al (2006) considered various likelihood methods for categorical secondary outcomes

that can be more effi cient than (i).

(vi) Recently, Lin and Zeng (2009) further generalized the likelihood framework for a continuous

secondary outcome by assuming the latter follows a specific parametric distribution.
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They also establish that the likelihood approach reduces to (iv) approximately under the fol-

lowing assumptions:

(LZ.1) a rare disease assumption about the disease outcome defining case-control status;

(LZ.2) no interaction between the secondary outcome and covariates in a regression model for

the case-control outcome;

(LZ.3) the secondary outcome is normally distributed.

Thus, Lin and Zeng (2009) formally justify via a maximum likelihood argument, the conditional

approach (iv) in settings where (LZ.1)-(LZ.3) hold. More recently,

(vi) Wei et al (2013) develop an estimating equations approach for a continuous secondary out-

come that relaxes the distributional assumption made in (v) somewhat, and instead requires

that the secondary outcome regression is "strongly homoscedastic" in the following sense.

They assume that residuals from the secondary outcome regression are independent of covari-

ates. In other words, they suppose that any association between the vector of covariates and

the secondary outcome is completely captured by a location shift model. Their inferential

framework relies crucially on this assumption, and may not be consistent if the assumption

does not hold exactly.

In this paper, the author generalizes the conditional approach to allow for possible violation

of any or all of assumptions (LZ.1)-(LZ.3), without assuming the location shift model of Wei et al

(2013). The new approach is based on a careful nonparametric re-parametrization of the condi-

tional model for the secondary outcome given the case-control outcome and regression covariates,

in terms of (a) the population regression of interest for the secondary outcome given covariates,

and (b) the population regression of the case-control outcome on covariates. As nonparametric
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models may not be feasible in settings with numerous covariates, parametric and semiparametric

models are invariably used in practice for (a) or (b). The re-parametrization ensures models for

(a) and (b) are variation independent, in the sense that a parametric or semiparametric model

for (a) does not restrict the model used for (b) and vice-versa. The error distribution for the

secondary outcome given covariates and case-control status is otherwise unrestricted. In the case

of a continuous outcome, a simple version of the approach entails extending model (a) by includ-

ing a residual of (b) into the regression model as a covariate which gives a conditional regression

model given case-control status directly parametrized in terms of model (a). We show such a

reparametrization appropriately accounts for selection bias without compromising inference about

the population regression parameter. The framework is general in the sense that models (a) and

(b) can take any functional form, and the methodology is developed to allow an identity, log or

logit link function for model (a). For inference, a simple estimating equations framework is first

developed, and a strategy for obtaining a semiparametric locally effi cient estimator is subsequently

described. Simulations and an empirical example are used to illustrate the approach.

2 Regression with an identity link function

2.1 Reparametrization of conditional regression function

Suppose one observes i.i.d case-control data consisting of case-control status D, a continuous sec-

ondary outcome Y, and covariates X. Unless otherwise stated, assume that the sampling fractions

for cases and controls are known, that is, similar to a number of previous papers (e.g. Jiang et al,

2006, Lin and Zeng, 2009 and Wei et al, 2013), we shall assume that disease prevalence is known to

be p = Pr(D = 1) in the target population, and π = Pr(D = 1|S = 1) in the case-control sample,

where S indicates inclusion into the case-control study. Formally, π may be taken as the limit of
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the proportion of cases in the case-control study as sample size grows to infinity. As seen later,

the assumption that p is known is not needed when the disease is rare in the population within

all levels of X. The primary target of inference is the population mean model µ(X) = E(Y |X).

Likewise, let µ̃(X, D) = E(Y |X, D) = E(Y |X, D, S = 1) where the second equality holds since

by design, membership into the case-control study is independent of (Y,X) given D. Then, the

following relation between µ(X) and µ̃(X, D) holds:

µ(X) = µ̃(X, 1) Pr(D = 1|X) + µ̃(X, 0) Pr(D = 0|X)

⇔


µ̃(X, 1) = µ(X) + (1− Pr(D = 1|X)) {µ̃(X, 1)− µ̃(X, 0)}

µ̃(X, 0) = µ(X) + (0− Pr(D = 1|X)) {µ̃(X, 1)− µ̃(X, 0)}

⇔ µ̃(X, D) = µ(X) + {D − Pr(D = 1|X)} {µ̃(X, 1)− µ̃(X, 0)}

= µ(X) + {D − p(X)} γ (X) (1)

where γ (X) ≡ {µ̃(X, 1)− µ̃(X, 0)} describes the association between Y and D on the mean dif-

ference scale, within levels of X, and p(X) ≡ Pr(D = 1|X) is the population risk of D within

levels of X. Thus, one learns that the conditional mean function µ̃(X, D) can be directly parame-

trized in terms of the population regression function of interest µ(X), and the additional functions

{p(X), γ (X)} . These latter functions directly encode the selection bias due to an association be-

tween D and Y within levels of X. Note that the proposed reparametrization is nonparametric

and variation independent, and therefore does not a priori rule out any possible data generating

mechanism. The reparametrization shows that the marginal and conditional regressions of Y on

X coincide exactly when selection bias is absent on the additive scale, i.e. when γ (X) ≡ 0, and

further guarantees that even when γ (x) is not zero for at least one level of x, upon marginalization

over D in the underlying population µ̃(X, D) reduces to µ(X) exactly. Furthermore, we also learn
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from the reparametrization that when:

(ETT.1) γ (X) = γ does not vary with X, and

(ETT.2) the disease is rare in the population, such that µ̃(X, D = 0) ≈ µ(X) and µ̃(X, D =

1) = µ(X) + {1− p(X)} γ ≈ µ(X) + γ,

one obtains µ̃(X, D) ≈ µ(X) +Dγ, which implies that simply extending the population model of

interest µ(X) by adding the main effect forD in order to adjust for case-control sampling is approx-

imately correct. Although this approximate conditional regression is identical to that obtained by

Lin and Zeng (2009), one should note that while their assumptions (LZ.1)-(LZ.3) imply assump-

tions (ETT.1) and (ETT.2), the converse is not generally true. Specifically, it is straightforward

to verify that assumptions (LZ.2) and (LZ.3) imply the no-heterogeneity assumption (ETT.2).

However, without the normality assumption, (LZ.2) and (ETT.2) are not necessarily equivalent.

The appeal of (ETT.2) is that it does not require making any distributional assumption about

the secondary outcome. One should finally note that (LZ.2) and (ETT.2) are empirically testable,

and can be relaxed to account for possible effect heterogeneity. Specifically, as shown in the next

section, (ETT.2) may be relaxed by modeling γ (X), which lead to the following approximation

µ̃(X, D) ≈ µ(X) +Dγ (X) . Note that in this last approximation, possible interactions between D

and X encoded in γ (X) are not directly interpretable as part of the targeted marginal association

betweenX and Y, only the first term of the expression encodes the marginal association of interest.
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2.2 Inference via simple estimating equations

Next, let π(X) ≡ Pr(D = 1|X, S = 1) denote the risk function of D within levels of X in the

case-control sample. π(X) and p(X) are well known to satisfy the following relation:

logitp(X) = logitπ(X) + log
p (1− π)

π (1− p) ,

so that population and the case-control risks of D agree on the logit scale, up to a constant shift

in the intercept. Next, suppose that the mean function µ(X) follows a parametric model µ(X;β0),

where µ(·;β) is a known function with unknown parameter β0 the main target of inference. A

standard multiple linear regression might take µ(X; β) = (1,X′)β, but more general functional

forms could be specified involving interactions and nonlinear terms. Further suppose that π(X)

follows a logistic model

logitπ(X;ψ0, η0) = η0 +m (X;ψ0) , (2)

wherem (·;ψ) is a known function indexed by a parameter ψ satisfyingm (0;ψ) = 0, with unknown

intercept η0 and slope ψ0. Thus, logitp(X; η0, ψ0) = m (X;ψ0) +η0+ log p(1−π)
π(1−p) . A standard logistic

regression model might take the form m (X;ψ) = ψ′X, but more general functional forms could

be used. Finally, suppose γ (X;α0) is used to model γ (X) , with γ (·;α) a known function, and

unknown parameter α0. A standard linear model might take γ (X;α) = (1,X′)α, but again,

more general functional forms could be considered. Together, these various models produce a

corresponding model for µ̃(X, D) :

µ̃(X, D; θ0) = µ(X; β0) + {D − p(X;ψ0, η0)} γ (X;α0) , (3)

where θ0 = (β′0, η0, ψ
′
0, α

′
0)
′
.
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Given n i.i.d samples on (Y,X, D) , we propose to estimate (η0, ψ
′
0) by standard maximum like-

lihood for the logistic regression model (2) using data (X, D) ,i.e. by maximizing PnL (ψ0, η0)

wrt (η0, ψ
′
0) where L (ψ0, η0) = Dlogitπ(X;ψ0, η0) + log(1− π(X;ψ0, η0)) and Pn (·) = n−1

∑
i (·)i .

Let ε(θ0) = Y − µ̃(X, D; θ0). Then, we propose to estimate (β′0, α
′
0) , with

(
β̂′, α̂′

)
which solves

W
(
θ̂
)

= PnU
(
θ̂
)

= 0, where :

U (θ) =
∂µ̃(X, D; θ)

∂ (β′, α′)′
ε(θ) (4)

Note that for the following standard models, m (X;ψ) = ψ′X, γ (X;α) = (1,X′)α and µ(X; β) =

(1,X′)β, one obtains

U (θ) = (1,X′, (1,X′) {D − p(X;ψ, η)})′ ε(θ)

where

ε(θ) = Y − (1,X′)β − {D − p(X;ψ, η)} (1,X′)α.

Further note that in general, for estimation the analyst could in principle specify any vector

h (X, D, θ) of dimension dim((β′0, α
′
0)
′) in place of ∂µ̃(X, D; θ0)/∂

(
β′, α

′)′
in (4) , to obtainU (θ,h) =

h (X, D, θ) ε(θ) provided the derivative of the resulting estimating equation, more precisely its ex-

pectation, is not singular, and the variance-covariance matrix of U (θ,h) is finite. One can also

verify using the proposition given in Section 5, that assuming p(X) is known, the optimal choice

of h is hopt (X, D, θ) = ∂µ̃(X,D;θ)

∂(β′,α′)
′ var (ε(θ)|X, D)−1, and therefore U (θ,hopt) would be optimal, in

the sense of producing an estimator with minimal asymptotic variance among regular and asymp-

totically linear estimators (RAL), when ε(θ) is homoscedastic and p(X) is known. A standard

argument shows that under usual regularity assumptions, the resulting estimator θ̂ is in large

sample approximately:

θ̂
·∼ N

(
θ0, n

−1Σ (θ0)
)

(5)
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where Σ (θ) is the variance-covariance matrix of

E [∂ (U′ (θ) ,S′ (ψ, η)) /∂θ]
−1 × (U′ (θ) ,S′ (ψ, η))

′

with S (ψ, η) = ∂L (, η) /∂
(
(ψ′, η′)′

)
.

3 Regression with a Log link function

Here we give a generalization of the results presented in the previous section by considering re-

gression analysis for a nonnegative outcome Y ≥ 0 using a log-link function. In order to account

for the retrospective sampling design, we again condition on case-control status in the regression

model, while simultaneously obtaining inferences about a regression model that averages over dis-

ease status in the underlying population. To proceed, we now give a reparametrization of the mean

function E(Y |X, D) = µ̃(X, D) on the multiplicative scale, in terms of the population regression

function of interest µ(X) = E(Y |X). One notes that:

E(Y |X, D) =
E(Y |X, D)

E(Y |X)
× E(Y |X)

=
E(Y |X, D)

E(Y |X, D = 0)
×
{

1∑
d∗=0

E(Y |X, D = d∗)

E(Y |X, D = 0)
Pr(D = d∗|X)

}−1
× E(Y |X)

= exp [log µ(X) + ν(X, D)− ν(X)]

where ν(X, D) = logE(Y |X, D)/E(Y |X, D = 0) measures the multiplicative association between

D and Y within levels of X, and accounts for possible selection bias due to the retrospective

sampling design. The term ν(X) = log {ν(X, D = 1) Pr(D = 1|X) + Pr(D = 0|X)} ensures that

upon marginalization over D in the target population, the conditional mean function E(Y |X, D)
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reduces exactly to E(Y |X). As in the case of the identity link, we emphasize that the proposed

reparametrization is completely nonparametric and variation independent, and therefore, except

for the restriction that E(Y |X, D) ≥ 0, does not a priori rule out any data generating mechanism.

A simplification occurs when D is rare in the population. Then, one observes that E(Y |X, D =

0) ≈ E(Y |X) and therefore ν(X) ≈ 1, which gives E(Y |X, D = 1) ≈ exp [log µ(X) + ν(X, 1)] .

Therefore E(Y |X, D) ≈ exp {log µ(X) + ν(X, 1)D}. Note here again, that only the first term on

the exponential scale can be interpreted as an association measure between X and Y in the target

population, any interaction between X and D encoded in the second term of the expression does

not have such an interpretation. Under the assumption that the multiplicative association between

D and Y is constant across levels of X, simply adding the main effect for D to the population

model of interest to obtain E(Y |X, D) ≈ exp {log µ(X) + νD} is approximately correct.

Suppose that µ(X) follows a parametric model of the form exp {t(X; β0)} where t(·; β0) is

known up to the parameter of primary interest β0. A familiar example of such a model is given by

t(X; β0) = X′β0. Suppose also that the association function ν(X, D) is modeled parametrically with

ν(X, D;α0) where α0 is an unknown parameter, and ν(X, D;α) satisfies the restriction ν(X, 0;α) =

ν(X, D; 0) = 0. The resulting parametric model for E(Y |X, D) is given by:

µ̃(X, D; θ) = exp [t(X; β) + ν(X, D;α)− ν(X;ψ, η, α)] (6)

θ0 = (β′, η, ψ′, α′)
′

Estimation and inference about θ0 then proceeds as in the case of an identity link function, by

solving the estimating equationW
(
θ̂
)

=
∑

iUi

(
θ̂
)

= 0 given by (4) , upon substituting in equa-

tion (6) for the conditional mean model µ̃(X, D; θ), and by letting
(
ψ̂, η̂

)
be the mle defined in the
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previous section. The asymptotic distribution of θ̂ is then given by (5) upon making the foregoing

substitutions.

4 Regression with a logit link function

Next, suppose that the secondary outcome Y were binary. We give a novel reparametrization of

E(Y |X, D) = Pr(Y = 1|X, D) on the logit scale, in terms of the population regression function

of interest E(Y |X) = Pr(Y = 1|X). To proceed, let ODDS(X, D) = Pr(Y = 1|X, D)/Pr(Y =

0|X, D) denote the odds of {Y = 1} within levels of (X, D) . Likewise, let ODDS(X) = Pr(Y =

1|X)/Pr(Y = 0|X) denote the odds of {Y = 1} within levels of X. Then, note that

µ̃(X, D)

1− µ̃(X, D)
≡ ODDS(X, D)

=
ODDS(X, D)

ODDS(X)
×ODDS(X)

=
ODDS(X, D)

ODDS(X, D = 0)
×
{

1∑
d∗=0

ODDS(X, d∗)

ODDS(X, D = 0)
Pr(D = d∗|X, Y = 0)

}−1
×ODDS(X)

= exp

{
log

µ(X)

1− µ(X)
+ ν(X, D)− ν(X)

}
(7)

where

µ(X) = Pr(Y = 1|X)

is the outcome risk function in the population,

ν(X, D) = logODDS(X, D)/ODDS(X, D = 0)
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measures the log-odds ratio association between D and Y within levels of X, and accounts for

selection bias due to the sampling design. As formally shown later, the term

ν(X) = log {exp {ν(X, D = 1)}Pr(D = 1|X, Y = 0) + Pr(D = 0|X, Y = 0)}

ensures that upon marginalization overD in the target population, the conditional oddsODDS(X, D)

reduces to the marginal odds of interest ODDS(X), and therefore the corresponding mean func-

tion µ̃(X, D) = Pr(Y = 1|X, D) marginalizes to µ(X) = Pr(Y = 1|X) exactly. Interestingly,

note that the population density of D used in the above re-parametrization conditions on {Y = 0}

and hence differs from the density function of D involved in previous reparametrizations for the

identity or log-link functions. This choice of parametrization is an immediate consequence of the

following property of odds ratios. While E {ODDS(X, D)|X} 6= ODDS(X), it is however the

case that E {ODDS(X, D)|X, Y = 0} = ODDS(X), marginalization of the conditional odds with

respect to disease status in the underlying population of individuals free of the secondary outcome

gives the marginal odds function of primary interest. Equation (7) is equivalently written as a

conditional logistic regression:

µ̃(X, D) = Pr (Y = 1|D,X) =

[
1 + exp

{
− log

µ(X)

1− µ(X)
− ν(X, D) + ν(X)

}]−1

where

Pr (Y = 1|X) = [1 + exp {−µ(X)}]

Suppose that the log odds function log [µ(X)/ {1− µ(X)}] follows a parametric model of the

form µ†(X; β0) where µ†(·; β0) is known up to the parameter of primary interest β0. A familiar

example of such a model is given by µ†(X; β0) = X′β0. Suppose also that the log-odds ratio
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function ν(X, D) is modelled parametrically with ν(X, D;α0) where α0 is an unknown parameter,

and ν(X, D;α) satisfies the restriction ν(X, 0;α) = ν(X, D; 0) = 0. Let

logitπ(X;ψ0, η0) = logitPr(D = d∗|X, Y = 0, S = 1;ψ0, η0) = η0 +m (X;ψ0) (8)

now denote a parametric model for Pr(D = d∗|X, Y = 0, S = 1) in the case-control sample, with

unknown parameter α0. Let logit Pr(D = d∗|X, Y = 0;α0) = logitπ(X;α0) + log p(1−π)
π(1−p) denote the

corresponding model in the population. The resulting parametric model for Pr (Y = 1|D,X) is

given by:

Pr (Y = 1|D,X; θ0) =
[
1 + exp

{
−µ†(X; β0)− ν(X, D;α0) + ν(X;ψ0, η0, α0)

}]−1
(9)

θ0 = (β′0, η0, ψ
′
0, α

′
0)
′

Estimation and inference about θ0 can then proceed as in the identity or log link settings, by solving

the estimating equationW
(
θ̂
)

=PnU
(
θ̂
)

= 0 given by (4) , upon substituting in equation (9) for

the conditional mean model µ̃(X, D; θ), but with
(
ψ̂, η̂

)
the mle obtained using the log-likelihood

function PnL (ψ0, η0) where L (ψ0, η0) = (1−Y ) {Dilogitπ(X;ψ0, η0) + log(1− π(X;ψ0, η0))}. The

asymptotic distribution of θ̂ is then given by (5) once the above substitution is made. Finally,

we briefly note that when D is rare, the logit link is well approximated by the log-link and

Pr(D = 1|X, Y = 0) ≈ Pr(D = 1|X) and therefore the approximate approach developed in the

previous section can again be used for inference.
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5 Semiparametric locally effi cient estimation

In this section, we present an alternative potentially more effi cient strategy for estimating θ0,

based on semiparametric effi ciency theory. To proceed, first note that as argued by Breslow et

al (2000), the law of the observed data is formally given by the conditional density f(Y,X|D) =

f(Y |X, D)f(X|D) which is up to a proportionality constant equivalent to the density of an experi-

ment in which D is itself randomly sampled from a Bernoulli density with known event probability

equal to π. Thus, we derive the effi cient score for i.i.d data (Y,X, D) sampled from the joint density

f(Y |X, D)f(X|D)πD(1− π)1−D

= f(Y |X, D)
f(D|X)f(X)

f(D)
πD(1− π)1−D

∝ f(Y |X, D)f ∗(D|X)f ∗(X) (10)

where f(Y |X, D) is the population density of Y given (X, D), f(D) is the known marginal density

of D in the target population; f(D = 1|X) = p(X) is the population probability that D = 1

given X; logitf ∗(D = 1|X) =logitπ(X) =logitp(X) − log p(1−π)
π(1−p) is the probability that D = 1

given X in the case-control sample; f ∗(X) ∝ f(X) f(D=0|X)
f∗(D=0|X) is the case-control density of X.

Define the semiparametric model M1, with sole restrictions given by the restricted mean model

µ̃(X, D; θ) for Y given (X, D), with identity link (equation (3)) or log link (equation (6)); and

the parametric model (2) for D given X. The model is otherwise nonparametric in the density of

ε(θ) = Y − µ̃(X, D; θ) given (X, D), as well as in the population density f(X) and thus in f ∗(X).

To handle the logistic model, likewise define the semiparametric model M2 with sole restriction

the parametric models (8) and (9), and the model is otherwise unrestricted in f(X) and therefore

in f ∗(X). Note that whereasM1 parametrizes Pr(D = d∗|X, S = 1),M2 places a model for the
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density Pr(D = d∗|X, Y = 0, S = 1). Nonetheless, as we show next, model (8) together with model

(9) recover a parametric model for the conditional density f(Y,D|X, S = 1) using the following

nonparametric characterization of a joint density (see for example Tchetgen Tchetgen et al, 2010

and Tchetgen Tchetgen and Rotnitzky, 2012):

f(Y,D|X, S = 1) =
f(Y |D = 0,X, S = 1)OR(Y,D|X, S = 1)f(D|Y = 0,X, S = 1)∑
d,y f(Y |D = 0,X, S = 1)OR(Y,D|X, S = 1)f(D|Y = 0,X, S = 1)

=
f(Y |D = 0,X)OR(Y,D|X)f(D|Y = 0,X, S = 1)∑
d,y f(y|D = 0,X)OR(y, d|X)f(d|Y = 0,X, S = 1)

=
f(Y |D = 0,X)OR(Y,D|X)f(D|Y = 0,X) {p (1− π) /π (1− p)}D∑

d,y f(y|D = 0,X)OR(y, d|X)f(d|Y = 0,X, S = 1) {p (1− π) /π (1− p)}d
(11)

where OR(Y,D|X, S = 1) = OR(Y,D|X) =

f(Y |D,X)f(Y = 0|D = 0,X)

f(Y |D = 0,X)f(Y = 0|D,X)

= ν(X, 1)

is the odds ratio function relating D and Y within levels of X, which yields under our choice of

parametrization:

f(Y,D|X, S = 1; θ0) =
exp

{
Y µ†(X; β0) + Y ν(X, D;α0)− Y ν(X;α0, ψ0, η0) +Dη0 +Dm (X;ψ0)

}∑
d,y exp {yµ†(X; β0) + yν(X, d;α0)− yν(X;α0, ψ0, η0) + dη0 + dm (X;ψ0)}

(12)

This in turn implies a parametric model f(D = 1|X, S = 1; θ0) =
∑

y f(y,D = 1|X, S = 1; θ0) for

π(X) in terms of θ0. Note that in the target population, the analog to equation (11) is

f(Y,D|X) =
f(Y |D = 0,X)OR(Y,D|X)f(D|Y = 0,X)∑

d,y f(y|D = 0,X)OR(y, d|X)f(d|Y = 0,X, S = 1)
,
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which in turn can be used to verify that under the proposed parametrization (7) ,

logitE {µ̃(X, D)|X} = logit
∑
d

f(Y = 1, D = d|X) = µ̃(X, D)

= [1 + exp {−µ(X)}]−1

= f(Y = 1|X)

formally justifying the earlier claim that our choice of parametrization is made to ensure such

marginalization whether nonparametric, semiparametric or parametric models are used.

The following theorem gives the effi cient score for θ0 in modelsMj, j = 1, 2.

Proposition 1 The effi cient score of θ0 in modelM1 is given by

R (θ0) =

(
R(β,α) (θ0)

R(η,ψ) (θ0)

)

where

R(β,α) =
∂µ̃(X, D; θ)

∂ (β′, α′)′
{var (ε(θ)|X, D)}−1 ε(θ),

and

R(η,ψ) (θ) = S (ψ, η) +
∂µ̃(X, D; θ)

∂ (ψ′, η)′
{var (ε(θ)|X, D)}−1 ε(θ).

The effi cient score in modelM2 is given by the score equation of θ corresponding to the log-likelihood

Pn log f(Y,D|X, S = 1; θ) defined in equation (12) .

Next, suppose that σ̂2
(
X, D, θ̂

)
= v̂ar

(
ε(θ̂)|X, D

)
is a consistent estimate of the condi-

tional variance σ2 (X, D, θ0) = var (ε(θ0)|X, D) , then, upon defining R̂ (θ) as R (θ) by replac-

ing σ2 (X, D) with σ̂2
(
X, D, θ̂

)
, the estimator θ̂eff that solves PnR̂

(
θ̂eff

)
= 0 is regular and
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asymptotically linear, with large sample variance the semiparametric effi ciency bound in M1

which is given by E
{
R (θ0)R

T (θ0)
}−1

. In practice, σ̂2
(
X, D, θ̂

)
may be based on a paramet-

ric/semiparametric model, and therefore, may be inconsistent if modeling error were present.

Then, θ̂eff would still be RAL, although not asymptotically effi cient. For this reason, θ̂eff is

known as a semiparametric locally effi cient estimator that is consistent and asymptotically nor-

mal regardless of whether σ̂2
(
X, D, θ̂

)
is consistent or not, and that is asymptotically effi cient

at the submodel where σ̂2
(
X, D, θ̂

)
is consistent. The result also states that when Y is binary,

the semiparametric effi ciency bound is achieved by the maximum likelihood estimator that solves

PnRbin (θ) = Pn∂ log f(Y,D|X, S = 1; θ)/∂θ = 0, with variance obtained by an empirical version

of E
{
Rbin (θ0)R

T
bin (θ0)

}−1
. This results follows from standard maximum likelihood theory.

Interestingly, upon close inspection of the effi cient score R(η,ψ) (θ) one notes that information

about (ψ, η) the parameter indexing the density of D given X, naturally comes from the score of

the corresponding factor of the likelihood function, i.e. S (ψ, η) ; however, additional information

is obtained from the factor corresponding to the conditional density of Y given (D,X) . Although

unusual, this is not entirely surprising given that this density was carefully reparametrized to

depend on (ψ, η) . This further reveals that the simple estimating equations approach that gave

θ̂ in previous sections, do not generally exploit this additional information since
(
ψ̂, η̂

)
solve the

score equation Pn {S (ψ, η)} = 0 instead of the effi cient score equation Pn
{
R(η,ψ) (θ)

}
= 0, and is

therefore generally ineffi cient, except perhaps when the disease is rare.

6 A simulation study

We performed a simulation study to compare in the context of simple linear regression, the per-

formance of the locally effi cient estimator to that of two common strategies used in practice. The
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first approach involves inverse-probability weighting (ipw) by the selection probability given case-

control status, while the second approach involves including case-control status as a covariate in

the regression for the secondary outcome. We also compared these methods to ordinary linear re-

gression based on the entire data set, which one expects to be significantly biased. We generated X

from a mixture of normals with densityN(0, 4) with probability 0.88 and densityN(2, 4) otherwise.

The logistic model is logitPr (D = 1|X) = −2.5 + ψ0X, where ψ0 = 0.5. The model for Y given

X is the linear regression model, Y = 50 + β1X + ε, where ε|X is a mean zero residual error, that

is generated such that model (3) holds with γ (X;α0) = 3 + 2X, and ε (θ0) |D,X ∼ N(0, 4). The

simulation study explores both null (β1 = 0) and non-null (β1 = 4) conditions. The rate of disease

is approximately 0.12 in the target population and therefore, the rare disease approximation does

not hold. The case-control study has 500 cases and 500 controls, we generated 1000 simulated

data sets.

For the simulation study, the locally effi cient approach is implemented by maximizing the log-

likelihood log{f(ε (θ) |X,D)f ∗(D|X; η, ψ)} which corresponds exactly to solving the effi cient score

of Proposition 1, under homoscedastic normal error, i.e. assuming ε(θ)|X,D ∼ N(0, σ2). This

specific choice of likelihood model facilitates the implementation of the locally effi cient approach

using standard off-the shelf software, we used Proc NLMIXED in SAS to implement the approach.

Insert Table 1

The simulation results given in Table 1 confirm that ipw and the locally effi cient approach both

have small bias and produce 95% confidence intervals with appropriate coverage under either the

null or the alternative hypothesis. In contrast, as expected, ordinary linear regression using the

entire sample and ignoring the sampling design is noticeably biased with disastrous coverage (= 0%)
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in all scenarios. Simply adding a main effect for disease status corrects some of the bias but still

produces 95% confidence intervals with poor coverage. In terms of effi ciency, as expected, locally

effi cient estimation clearly outperforms ipw in both scenarios with relative effi ciency sometimes

greater than 200%.

We also implemented the ineffi cient estimating equations of Section 2.2, together with stan-

dard logistic maximum likelihood estimation of ψ0. Although both approaches show little bias

(results not shown), as projected by Proposition 1, the locally effi cient estimator outperforms this

alternative strategy in terms of effi ciency and demonstrates remarkable effi ciency gain not only for

the parameter of primary interest β0 (ARE (β0) = 115%, ARE (β1) = 180%), where ARE (β) =

var(β̂)/var(β̂eff ) but also for the logistic regression parameter ψ0 (ARE (ψ0) = 300%). This

result confirms that as projected by Proposition 1, the locally effi cient approach can, when the

disease is not rare, recover information about ψ0 that standard logistic regression cannot exploit.

7 An empirical application

This section illustrates the locally effi cient approach in an analysis of data from a population-based

case-control study of ovarian cancer (Modan et al, 2001). Two controls per case were selected from

a central population registry in Israel, matching on age within two years, area of birth and place

and length of residence. Blood samples were collected on both cases and controls and were tested

for the presence of mutation in two major breast and ovarian cancer susceptibility genes BRCA1

and BRCA2. Additional data were collected on reproductive and gynecologic history, such as par-

ity, number of years of oral contraceptive use and gynecologic surgery. The main objective of the

study was to examine the interplay of the BRCA1/2 genes and known reproductive/gynecologic

risk factors for ovarian cancer. In reanalyses of these data, a number of authors have exploited a

21 Hosted by The Berkeley Electronic Press



gene-environment independence assumption to obtain more effi cient estimates of interactions be-

tween BRCA1/2, and parity and oral contraceptive use respectively (Chatterjee and Carroll, 2005,

Tchetgen Tchetgen and Robins, 2010, Tchetgen Tchetgen, 2011). Specifically, they assumed that

in the target population BRCA1/2 is jointly independent of parity and oral contraceptive within

levels of covariates. As a secondary analysis, we evaluate this hypothesis empirically and estimate

the mean association in the target population, between BRCA1/2 status and years of oral contra-

ceptive use (Y1) and parity (Y2) respectively, adjusting for covariates. Thus, let X =(BRCA1/2,

age (categorical defined by decades), ethnic background ( Ashkenazi or non-Ashkenazi), the pres-

ence of personal history of breast cancer, a history of gynecologic surgery, and family history of

breast or ovarian cancer (no cancer vs one breast cancer in the family vs one ovarian cancer or two

or more breast cancer cases in the family)). The analysis uses data on 832 cases and 747 controls

who did not have bilateral oophorectomy and who were interviewed for risk factor information

and successfully tested for BRCA1/2 mutations. To illustrate the method with both identity and

log link functions, Y1 is coded as number of years of oral contraceptive use and a linear regression

of Y1 on X is evaluated, while Y2 is a count of live births, and a log-linear model is assumed for

the regression of Y2 on X. As suggested by Chatterjee and Carroll (2005), we set the population

rate of ovarian cancer to p = 8.7× 10−4 which implies the rare disease approximation is appropri-

ate, and thus an estimate of the risk of ovarian cancer as a function of X is not strictly needed.

Nonetheless, we performed both analyses, with and without the rare disease approximation, and

obtained identical results.

For each outcome, we compare inferences based on standard OLS ignoring case-control status,

IPW and the locally effi cient approach with and without possible effect heterogeneity by BRCA1/2

in the case-control adjustment, i.e. γ (X;α0) = α0 vs γ (X;α0) = α0 + α1×BRCA1/2.
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Insert Table 2 here.

Table 2. summarizes the results for BRCA1/2 associations with Y1 and Y2. In both sets

of analyses, standard OLS gives the largest point estimates for the effect of BRCA1/2 on the

average years of oral contraceptive use and parity, respectively. For both outcomes, IPW and the

locally effi cient approach incorporating a D × BRCA1/2 interaction correct the OLS estimate,

nonetheless the three methods agree in their conclusion and none rejects the null hypothesis of

no gene-environment association at the α=0.05 level. Interestingly, not including the interaction

in the locally effi cient approach has different effects in the two analyses. For Y1, not including

the interaction leads to a wider Wald 95% confidence interval that rejects the null hypothesis of

no BRCA1/2 association, which suggests the need to account for the interaction. In contrast,

removing the interaction in the Y2 regression leads to a shorter confidence interval without altering

the overall conclusion, suggesting that perhaps the interaction is not necessary.

8 Conclusion

In this paper, we have described a general yet simple framework for performing regression analysis

for a secondary outcome in the context of case-control sampling. The current results focused on the

three most common link functions used in practice, the identity link typically used for a continuous

outcome, the log link typically used with counts, and the logit link typically used for binary data.

A simple set of estimating equations is described for inference, and a potentially more effi cient

approach is also given. A particular appeal of the approach is that it is readily implemented

with off-the-shelf statistical software. The framework also gives a formal justification for including

the case-control status as a covariate in the regression model in view to account for study design

when the case-control disease is rare, without requiring the distributional assumptions that have
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previously appeared in the literature. It is also straightforward to extend our basic argument to

justify this type of conditional approach for other link functions, such as the complementary log-log

link, or the probit link, under rare disease. When the disease is not rare, the approach requires that

sampling fractions are known for cases and non-case controls, which may be a challenge in certain

settings, but is usually feasible if the case-control sample is nested within a well-defined cohort

study. It is also straightforward to extend our framework to the context of matched case-control

studies, the simplest strategy would be to include matching factors into the regression model.

Finally, an interesting and important direction for future work is to further develop the frame-

work to handle settings where the secondary outcome is a vector of correlated variables, arising

either from a longitudinal process, or due to spatial or other potential sources of clustering.
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APPENDIX

PROOF OF PROPOSITION 1: Let L02 denote the Hilbert space of mean zero functions

of O = (Y,D,X), with inner product given by the expectation wrt FO the case-control distrib-

ution of O with density equivalently written f(ε(θ0)|X, D)f ∗(D|X;ψ0, η0) f
∗(X). The model is

semiparametric in the sense that the conditional density of the residual ε(θ0) given (X, D) and the

case-control density of X are left unrestricted. Throughout, assume that the population disease

prevalence is known. The nuisance tangent space Λnuis for the model is given by the closed linear

span of all regular parametric scores for the conditional density of ε(θ0) given (X, D) and of f ∗(X).

Then, one can verify that

Λnuis =


a1 (O) + a2 (X) : such that

E {a1 (O) |X, D} = E {ε(θ0)a1 (O) |X, D} = E {a2 (X)} = 0

 ∩ L02

It follows that the set of all influence functions is contained in the ortho-complement of Λnuis :

Λ⊥nuis = {h1 (X, D) ε(θ0) + h2 (X) {D − Pr (D = 1|X, S = 1;ψ0, η0)} : h1, h2} ∩ L02

Next, let Sθ0(O; θ0) = ∂ log f(ε(θ0)|X, D)/∂θ0 + ∂ log f ∗(D|X;ψ0, η0)/∂θ0 denote the score wrt
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θ0 = (β′0, α
′
0, η0, ψ

′
0)
′ , Then:

Sθ0(O; θ0) = S1θ0(O; θ0) + S2θ0(O; θ0)

= −∂f(ε(θ0)|X, D; θ0)

∂ε(θ0)
× 1

f(ε(θ0)|X, D; θ0)
× ∂µ̃(X, D; θ)

∂θ
|θ0

+


0

1

∂m(X;ψ0)
∂ψ0

 {D − Pr (D = 1|X, S = 1;ψ0, η0)}

therefore, the effi cient score of θ0 is given by the orthogonal projection of Sθ0(O; θ0) onto Λ⊥nuis.

Upon noting that E
(
∂f(ε(θ0)|X,D;θ0)

∂ε(θ0)
× 1

f(ε(θ0)|X,D;θ0) × ε(θ0)|X
)

= −1, it is straightforward to verify

that this projection is given by R(η,ψ) (θ0) , with S2θ0(O; θ0) = S (ψ0, η0) .

�
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Table 1. Simulation results

absolute bias variance Coverage

β1 = 0

Standard OLS 0.734 2.2×10−3 0.000

Conditional OLS 0.227 2.8×10−3 4×10−3

IPW 1.95× 10−4 3.3×10−3 0.970

Locally Effi cient 1.11×10−3 1.8×10−3 0.960

β1 = 4

Standard OLS 0.730 2.3×10−3 0.000

Conditional OLS 0.231 2.7×10−3 2×10−3

IPW 4.0×10−3 3.4×10−3 0.957

Locally Effi cient 4.2×10−4 2.0×10−3 0.956

Table 2. Parameter estimates (standard errors) of mean effect of BRCA1/2

on oral contraceptive use and Parity.

Y1 Y2

BRCA1/2 (se) BRCA1/2 (se)

Standard OLS 0.212 (0.144) -0.053 (0.047)

IPW 0.327 (0.570) -5×10−4 (0.142)

Locally Effi cient without interaction 0.332 (0.152) -0.020 (0.033)

Locally Effi cient with interaction 0.287 (0.109) 0.094 (0.175)

Analyses further adjust for age, ethnic background, personal history of breast cancer,

history of gynecologic surgery, and family history of breast or ovarian cancer.
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