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Abstract

The time-dependent Receiver Operating Characteristic (ROC) curve is often used
to study the diagnostic accuracy of a single continuous biomarker, measured at
baseline, on the onset of a disease condition when the disease onset may occur
at different times during the follow-up and hence may be right censored. Due
to censoring, the true disease onset status prior to the pre-specified time hori-
zon may be unknown on some patients, which causes difficulty in calculating the
time-dependent sensitivity and specificity. We study a simple method that ad-
justs for censoring by weighting the censored data by the conditional probability
of disease onset prior to the time horizon given the biomarker and the observed
censoring time. Our numerical study shows that the proposed method produces
unbiased and efficient estimators of time-dependent sensitivity and specificity as
well as area under the ROC curve, and outperforms several other published meth-
ods currently implemented in R packages.



A Simple Method to Estimate the Time-dependent ROC
Curve Under Right Censoring

Liang Li1, Tom Greene2, Bo Hu3

1Department of Biostatistics, The University of Texas MD Anderson Cancer
Center, Houston, Texas, U.S.A. E-mail: LLi15@mdanderson.org

2Department of Population Health Sciences, University of Utah, Salt Lake
City, Utah, U.S.A.

3Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland,
Ohio, U.S.A.

Abstract

The time-dependent Receiver Operating Characteristic (ROC) curve
is often used to study the diagnostic accuracy of a single continuous
biomarker, measured at baseline, on the onset of a disease condition when
the disease onset may occur at different times during the follow-up and
hence may be right censored. Due to censoring, the true disease onset
status prior to the pre-specified time horizon may be unknown on some
patients, which causes difficulty in calculating the time-dependent sensi-
tivity and specificity. We study a simple method that adjusts for censoring
by weighting the censored data by the conditional probability of disease
onset prior to the time horizon given the biomarker and the observed
censoring time. Our numerical study shows that the proposed method
produces unbiased and efficient estimators of time-dependent sensitivity
and specificity as well as area under the ROC curve, and outperforms
several other published methods currently implemented in R packages.

keywords: Area under the ROC curve; Biomarker; Diagnostic medicine; Pre-
diction accuracy; Receiver Operating Characteristic; Survival prediction.

1 Introduction

The Receiver Operating Characteristic (ROC) curve is widely used in medicine
to quantify the diagnostic accuracy of a continuous biomarker on a disease con-
dition (Pepe 2003; Zhou, Obuchowski and McClish, 2011). It visualizes the
probability of both true and false positive diagnosis corresponding to a series of
diagnostic rules, or cut off values in the context of a continuous biomarker, and
helps researcher select the cut off with the desired diagnostic accuracy. The area
under the ROC curve (AUC) summarizes both the probabilities of true and false
positive diagnosis over all the possible cut off values into a single number be-
tween 0 and 1, which can be used as an overall index of the diagnostic accuracy
of the biomarker. In many medical studies patients may start at baseline with
no disease and the disease condition may develop at different time points later
in the follow-up. In such situations, the binary classification of patients into
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a true positive group with the disease and a true negative group without the
disease may not be appropriate without taking time into consideration because
the disease status can only be ascertained relative to a particular time point.
For example, if the disease condition of scientific interest is death, then we may
define the true positive group to be any patients who developed the disease
within 3 years after the baseline and the true negative group to be those who
did not develop the disease during that time period. The time point of 3 years
is pre-specified as a scientifically relevant horizon, and other time horizons may
be used. The binary classification ignoring the time-dependence of the disease
condition would not be appropriate in this context because every patient will
die eventually.

In a seminal paper, Heagerty, Lumley and Pepe (2000) extended the tradi-
tional ROC curve analysis for binary data to time to event data and proposed
the time-dependent ROC curve for studies in which the disease status change
over time. Let T denote the time from baseline to the occurrence of the disease
on a continuous scale, and X be a continuous biomarker measured at baseline.
The patient’s disease status at time horizon τ is defined as D(τ) = 1{T 6 τ},
which equals 0 (no disease) or 1 (with disease). Without loss of generality, we
assume that a higher value of X is associated with higher risk of the disease,
and the decision rule of the diagnostic test is that if X > c, the patient is pre-
dicted to have the disease within the time interval (0, τ ]; if X 6 c, the patient
is predicted to be disease free throughout this time interval. Similar to the
traditional definition of sensitivity and specificity for the binary classification
system, Heagerty et al (2000) defined the sensitivity and specificity at time τ as

P (X > c|T 6 τ), sensitivity

P (X 6 c|T > τ), specificity.
(1)

These definitions of sensitivity and specificity are similar to those for the tradi-
tional binary case, except that the disease status is defined with respect to the
time horizon τ . Therefore, these are called the time-dependent sensitivity and
specificity, and the plot of sensitivity (i.e., true positive; on the vertical axis)
and one minus specificity (i.e., false positive; on the horizontal axis) is called a
time-dependent ROC curve at time horizon τ . The time-dependent sensitivity,
specificity, and ROC curve are expected to vary with τ .

In the traditional binary case, the disease status and biomarker are known
in the data set, and the sensitivity and specificity, and hence the ROC curve,
can be easily calculated with the empirical probabilities. In the context of time-
dependent ROC analysis, a challenge is that the time of disease occurrence T
is not always observed due to right censoring. Suppose the data set includes n
independent and identically distributed subjects, and the observed data for sub-
ject i are denoted by {Xi, Yi, δi}, where Xi is a continuous biomarker measured
at baseline, Yi is the observed time of disease onset or censoring, whichever is
earlier, and δi is the censoring indicator, which equals to 1 if the disease onset
is observed and 0 if the subject is censored. Let Ti and Ci be the true time
of disease onset and censoring, then Yi = min(Ti, Ci) and δi = 1{Ti 6 Ci}.
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We assume that Ci is independent of Ti conditionally on Xi, unless stated oth-
erwise. The goal of the time-dependent ROC analysis is to use the data to
estimate the time-dependent sensitivity and specificity in (1), and hence the
time-dependent ROC curve and AUC, at a pre-specified τ , properly accounting
for right censoring.

Heagerty et al (2000) proposed two estimation methods for time-dependent
ROC curve analysis. The first method is based on the Bayes theorem, the em-
pirical distribution of the biomarker, and the Kaplan-Meier estimator of the
survival for the whole data set and for the subgroups with X 6 c and X > c
respectively. This method is simple to implement but it does not guarantee
that the sensitivity (or specificity) is monotone in c, and it does not apply to
situations where the censoring time C depends on the biomarker. The sec-
ond method, called the nearest neighbor estimation method, avoids these two
drawbacks by estimating the bivariate distribution of the biomarker X and the
true survival time T nonparametrically using kernel methods. A bandwidth is
needed as a tuning parameter for the kernel. The sensitivity and specificity are
calculated directly from the estimated bivariate distribution. Both methods are
now available in the survivalROC package of R programming language (R Core
Team, 2013). Several other methods have subsequently been proposed. Chamb-
less and Diao (2006) proposed two methods. The first one uses recursive calcu-
lation over the ordered times of the events similar to the Kaplan-Meier approach
to survival function estimation, and it does not guarantee the monotonicity or
boundedness (between 0 and 1) of the specificity. The second method uses Bayes
theorem to express the sensitivity and specificity in terms of the distribution
function of the biomarker and the conditional distribution of the survival given
the biomarker, and then estimates the latter using a Cox model. Song and Zhou
(2008) studied a similar method but incorporated additional covariates in the
Cox model, producing a covariate-specific time-dependent ROC analysis. Hung
and Chiang (2010a) proposed another estimator based on inverse probability
of censoring weighting (IPCW). Blanche, Dartigues and Jacqmin-Gadda (2013)
proposed a conditional IPCW method that allows the censoring time to be de-
pendent on the biomarker. Uno et al (2007), and Hung and Chiang (2010b)
proposed similar IPCW based estimators when there are multiple biomarkers
and the conditional relationship between survival and biomarkers are specified
through a parametric or semi-parametric model. IPCW based methods require
the estimation of the censoring distribution and weighting the uncensored data
by the inverse of the censoring distribution at appropriate time points. An
IPCW method is implemented in the R package timeROC. Blanche, Dartigues
and Jacqmin-Gadda (2013) and Blanche, Latouche, and Viallon (2013) provided
comprehensive reviews on the methods for time-dependent ROC analysis. The
time-dependent ROC concept and methods have been extended to situations be-
yond random right censoring, including competing risks setting (Blanche et al
2013; Saha and Heagerty 2010), interval censoring (Li and Ma 2011), and semi-
competing risks (Jacqmin-Gadda et al 2014). In this paper, we focus on the
right censored data only. The goal of this paper is to describe a simple method
for estimating the time-dependent sensitivity, specificity, and ROC curves (Sec-
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tion 2), and apply simulations to compare this method with several existing
methods that are available in R (Section 3). We further illustrate the method
with a real data application in Section 4. Discussions are presented in Section
5.

2 Estimation

The sensitivity and specificity is easy to calculate in traditional ROC analysis
because both the disease status Di and biomarker Xi are available for every
subject in the data set. In the time-dependent ROC analysis, the difficulty
comes from the fact that the disease status at time horizon τ , Di(τ), may be
unknown for some subjects due to censoring. However, not all subjects have
an undetermined disease status. There are four scenarios. First, if Yi > τ , we
call that subject a control (or survivor, assuming without loss of generality that
the disease condition represents death) at τ , and the disease status Di(τ) = 0.
We assign a weight Wi = 0 to this subject. Second, if Yi 6 τ and δi = 1,
we call that subject a case (or non-survivor) at time τ , and the disease status
Di(τ) = 1. We assign a weight Wi = 1 to this subject. Third, if Yi = τ and
δi = 0, then we know that Ti > Yi = τ and the disease status Di(τ) = 0. The
weight Wi of this subject is 0. Note that when the time is on a continuous scale,
then theoretically the probability of this scenario is zero. Fourth, if Yi < τ and
δi = 0, the disease status is unknown for this subject, but the probability that
this subject is a non-survivor is P (Ti 6 τ |Yi, Xi), and the probability that this
subject is a survivor is P (Ti > τ |Yi, Xi). For each subject with Yi < τ and
δi = 0, we define the weight of this subject to be the probability of being a
non-survivor:

Wi = P (Ti 6 τ |Yi, Xi) = 1− ST (τ |Xi)

ST (Yi|Xi)

where ST (t|X) = P (T > t|X) denotes the conditional survival distribution of T
given the biomarker X, which can be estimated using kernel weighted Kaplan-
Meier method with a bandwidth h:

P̂ (Ti > t|Xi) =
∏

s∈Ω,s6t

{
1−

∑
j Kh(Xj , Xi)1(Yj = s)δj∑
j Kh(Xj , Xi)1(Yj > s)

}
(2)

where Ω is the set of distinct Yi’s with δi = 1. This quantity can be calculated
conveniently via the R function survfit() in the survival package, with the
weights argument. The uniform kernel is used throughout the paper. The sen-
sitivity and specificity can then be estimated in non-iterative, closed expression
as:

P̂ (Xi > c|Ti 6 τ) =

∑n
i=1Wi1{Xi > c}∑n

i=1Wi

P (Xi 6 c|Ti > τ) =

∑n
i=1(1−Wi)1{Xi 6 c}∑n

i=1(1−Wi)

(3)
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In the special situation where there is no censoring, the disease status is known
for every subject and Di(τ) = Wi and Wi equals to either 0 or 1. The equations
in (3) automatically reduce to the formula used in the traditional ROC analysis
where the disease status is known at time τ ; in that situation, the sensitivity
is estimated by the empirical proportion of non-survivors with Xi > c and
specificity is estimated by the empirical proportion of survivors with Xi 6 c.
The probability weight Wi can be interpreted as the probability that a subject is
a case, or heuristically but equivalently, the fraction of the subject that is a case.
Therefore, in the presence of censoring, the group of non-survivors includes not
only those that are known to have developed the disease within time τ , but also
“fractions” of those whose disease status is uncertain due to censoring prior to
τ . Likewise, the group of survivors includes not only those that are disease free
beyond time τ , but also “fractions” of those whose disease status is uncertain
due to censoring prior to τ .

The following derivation provides theoretical justification for the heuristic
arguments above in the case of sensitivity. The justification for the specificity
estimator is similar.

P (X > c|T 6 τ) =
E (1{X > c} × 1{T 6 τ})

E (1{T 6 τ})

=
E {1{X > c}E (1{T 6 τ}|Y,X)}

E {E (1{T 6 τ}|Y,X)}

= lim
n→∞

∑n
i=1 1{Xi > c}P (Ti 6 τ |Yi, Xi)∑n

i=1 P (Ti 6 τ |Yi, Xi)

(4)

The time-dependent ROC curve can be calculated by plotting the sensitivity
and 1-specificity for a range of c’s and the AUC can be calculated by trapezoidal
integration. The variance and confidence interval of sensitivity, specificity, and
AUC can be estimated by bootstrap.

The estimators in (3) are not only simple to calculate with standard soft-
ware, they also possess attractive properties. First, these estimators are both
monotone in c, which is a desirable property, as elucidated in Heagerty et al
(2000). In contrast, the Kaplan-Meier method in Heagerty et al (2000) and the
recursive method in Chambless and Diao (2006) do not produce monotone esti-
mators. Second, owing to the simple, quick and stable calculation, the bootstrap
can be completed quickly. In contrast, while the bootstrap is recommended for
the nearest neighbor method in Heagerty et al (2000), the computation is very
lengthy due to the complexity of the algorithm for the point estimator. Third,
the proposed method automatically accounts for the possible dependence be-
tween the censoring time C and the biomarker variable X. The Kaplan-Meier
estimator of Heagerty et al (2000), the recursive estimator of Chambless and
Diao (2006), and the inverse probability of censoring weighting estimators in
Uno et al (2007) and Hung and Chiang (2010a) do not apply to this situation.
While the inverse probability censoring weighting idea can be modified to adjust
for such dependence (Blanche et al 2013), it requires modeling the conditional
distribution of censoring time given the biomarker and this model is usually not
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of direct scientific interest. Occasionally, the inverse probability weights may
become excessively large due to a small estimated probability in the censoring
distribution, causing instability in computation, particularly when the censoring
rate is small or during automated bootstrap iteration. In contrast, the weights
Wi in (3) are always confined between 0 and 1. Fourth, the nearest neighbor
method of Heagerty et al (2000), perhaps the most widely used method in prac-
tice, involves the use of a bandwidth, and a practical guidance on how to choose
the bandwidth is not yet available (Blanche et al 2013). In the numerical studies
of Sections 3 and 4, we will show that the result of the nearest neighbor method
is sensitive to the bandwidth choice. Notably, while the estimators in (3) also
use a bandwidth, the results appear to be insensitive to the bandwidth. Further
more, the proposed method can be easily modified and made to be invariant to
monotone transformations of X, by using a span instead of a fixed bandwidth.
A span is the proportion of subjects involved in the kernel estimation in (2).

The proposed method has connections to two existing methods. The model-
based approach in Chambless and Diao (2006) is similar to (3). The difference
is that they defined Wi as the conditional probability of Ti 6 τ given Xi for all
subjects, but our Wi equals to the conditional probability of Ti 6 τ given Xi on
those subjects with Yi < τ and δi = 0; Wi is either 0 or 1 for the rest of the sub-
jects whose disease status is known from the data. In addition, the approach in
Chambless and Diao (2006) is semi-parametric in the sense that the conditional
distribution of Ti given Xi is modeled by a Cox model, while our method is non-
parametric with the use of kernel. In the context of semi-competing risks data,
Jacqmin-Gadda et al (2014) proposed an imputation estimator that is similar
to the estimators in (3). However, their model between survival and biomarker
is a parametric illness-death model, while the proposed method is nonparamet-
ric without explicit assumptions on the relationship between the biomarker and
survival times. Additionally, in the context of the study in Jacqmin-Gadda
et al (2014), they seemed to reach a conclusion that the IPCW method per-
forms better than the imputation estimator. However, our general conclusion
from the numerical study under the right censored data setting (Sections 3 and
4) is that the proposed method has better performance than all the methods
in comparison, including the IPCW method. Since the right censored setting
is the most widely encountered situation in practice, this finding is important
for practical uses of the time-dependent ROC curve analysis. Furthermore,
while the proposed method and other nonparametric method such as the near-
est neighbor method (Heagerty et al 2000) both involve kernel estimation and
a tuning parameter such as a bandwidth, we found that the proposed method
is substantially less sensitive to the tuning parameter than the nearest neighbor
method.

3 Simulation

We conducted detailed simulations to study the performance of the proposed
method and compare it with three other methods: the Kaplan-Meier type
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method (KM) and the nearest neighbor estimation method (NNE) proposed in
Heagerty et al (2000) and implemented in the R package survivalROC, and the
IPCW method studied by Hung and Chiang (2010a) and Blanche et al (2013),
and implemented in R package timeROC. We simulate independent and identi-
cally distributed data assuming that Xi, log Ti, and logCi follow a trivariate
normal distribution: Xi

log Ti
logCi

 ∼ MVN

 0
0
µC

 ,

 1 ρ1 ρ2

ρ1 1 ρ1ρ2

ρ2 ρ1ρ2 1


In this model, we use ρ1 to introduce different strengths of association between
the biomarker X and the true survival time T , with higher biomarker indicating
higher risk of the event (−1 < ρ1 < 0), and use ρ2 (|ρ2| < 1) to introduce
dependence between censoring time C and the biomarker variable X. The
correlation between log Ti and logCi is specified as ρ1ρ2, which ensures that
log Ti and logCi are conditionally independent given Xi. We use µC (µC = −0.5
or 1) to control the censoring proportions, with the smaller value leading to
higher proportion of censored data. The sample size n is 200 or 500. τ = 0.8.
In each scenario, 200 simulations were performed, and results were aggregated
to study the percent bias and mean squared error in estimating the AUC.

Tables 1 and 2 show the performance of the four methods under every com-
bination of n, µC , and ρ1 with independent right censoring (ρ2 = 0). The
parameter to be estimated is the area under the ROC curve (AUC). We used a
span of 0.1 in both the proposed and NNE methods, i.e., 10% of the data were
used in the kernel estimation. The result shows that the proposed method, KM
and IPCW all had negligible bias (< 1%), but the NNE method had a small
bias (usually < 6%). The proposed method had the smallest MSE in almost all
scenarios. The KM method appeared to be competitive in terms of bias, but we
observed that sometimes it produced sensitivity and specificity estimates that
were not monotone in the cut off values; this drawback was also observed by
Heagerty et al (2000). The bias with the NNE was perhaps partially due to the
suboptimal choice of the bandwidth, because we found that the result of this
method is sensitive to the bandwidth choice. However, no practical guidance on
the bandwidth selection has been proposed in the literature.

To further study this issue, we conducted additional simulations in Table
3, where we compared the proposed method with the NNE as the bandwidth
(quantified by span) varied. The proposed method was clearly not sensitive to
the bandwidth choice and had little bias, unless an unrealistically large span,
such as 40% of the data, was used. The insensitivity increases with smaller
percentage of censored data, as expected. The NNE method was much more
sensitive to the bandwidth. This result offers an explanation of the relatively
large bias associated with NNE method in Tables 1 and 2. A heuristic explana-
tion of the insensitivity of the proposed method is as follows. First, for subjects
who are not censored or those who are censored after the time horizon τ , their
disease status is known for the purpose of calculating the sensitivity and speci-
ficity. The bandwidth plays a role only for those who are censored prior to time
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τ , and this is a smaller proportion than the overall proportion of subjects who
are censored. Second, the probability weight Wi for those subjects with Yi < τ
and δi = 0 is defined through the ratio of two probabilities ST (τ |Xi)/ST (Yi|Xi).
If an inappropriately larger or smaller bandwidth causes a bias in ST (t|Xi), that
bias usually goes in the same direction for different t’s, especially in the case
when t = Yi and t = τ are close. As a result, their biases in the weight may
cancel to some extent.

Table 4 shows that the proposed method produced unbiased results when
the censoring time is conditionally independent of the true survival given the
the biomarker variable but there is correlation between the censoring time and
biomarker. To put the percent bias numbers in perspective, we also reported
the results from the KM method, which is known to be biased in such situations
(Heagerty et al 2000).

4 Example

We illustrate the proposed method with a data set from a randomized placebo-
controlled trial of the drug D-penicillamine (DPCA) for treating primary biliary
cirrhosis (PBC) conducted at Mayo Clinic between 1974 and 1984. The data set
has been used in many statistical publications (Murtaugh et al 1994; Therneau
and Grambsch 2000; Fleming and Harrington 1991; Heagerty and Zheng 2005),
and is available in the survivalROC package of R. The data include 312 subjects,
of whom 125 died during the trial and the rest were right censored. We study
the prognostic accuracy of a mortality risk prediction score developed from a
Cox model with five baseline covariates. The score ranges from 3.74 to 11.25.
Figure 1 shows the time-dependent ROC curves estimated from the proposed
method (green), the NNE method (blue), and the IPCW method (red) at three
time horizons: one year, three years, and six years. We did not include the
KM method in the comparison because it produced non-monotone ROC curves.
The curves produced by the IPCW method and the proposed method are very
close, and the latter appears to be slightly smoother, perhaps due to the use of
kernel smoothing. The NNE curve resulted in smaller sensitivity for the same
estimated specificity. Both NNE and the proposed method used the same span,
which equals 0.25n−0.2 where n = 312 is the sample size. This span was used
for the example in the survivalROC documentation. We further examined the
sensitivity of the proposed method and the NNE method to the span selection
in Figure 2. Consistent with the simulation results in Table 3, the proposed
method is much less sensitive to the span than the NNE method. This feature
is important because currently there is little guidance in the literature on how
to choose the span or bandwidth.
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5 Discussion

In this paper, we studied a simple weighting method to estimate the time-
dependent ROC curve nonparametrically under right censoring. Due to cen-
soring, the true disease status of some subjects in the data may be uncertain.
Consistent estimation of the time-dependent sensitivity and specificity can be
achieved by simply weighting these subjects by their conditional probabilities of
being either in the case or control groups, given the data. The proposed method
is nonparametric in the sense that no parametric distributional assumption is
made regarding the marginal, conditional, or joint distributions of the biomarker
variable X and the time to event variable T . The method involves nonpara-
metric estimation of the conditional distribution of T given X through kernel
weighting with a bandwidth, similar to Heagerty et al (2000). However, the
proposed method is much less sensitive to the choice of the bandwidth than
the NNE method in Heagerty et al (2000). This is a desired property, given
that the existing methods either use a parametric model (Chambless and Diao
2006; Jacqmin-Gadda et al 2014) to estimate the conditional distribution of T
given X, or use nonparametric methods without proper guidance on how the
bandwidth or span should be chosen. We compared the proposed weighting
method with several popular methods that are currently implemented in R, and
the proposed method demonstrated similar or improved performance in terms
of bias and mean squared error. The proposed ROC curve estimator is simple
to program, fast in computation, insensitive to bandwidth specification, and
applicable when the censoring time is dependent on the biomarker variable. In
addition, it proposes sensitivity and specificity probabilities that are monotone
in the cut-off values, and automatically reduces down to the traditional sen-
sitivity and specificity estimators when there is no censoring. It can also be
made invariant to monotone transformation of the biomarker. R functions that
implement the proposed method are available upon request.

Heagerty and Zheng (2005) proposed three definitions of the time-dependent
sensitivity and specificity (cumulative/dynamic, incident/static, incident/dynamic).
In this paper, we have focused only on the cumulative/dynamic definition be-
cause this is the most widely used definition in practice. Future work is needed
to study the weighted estimation of sensitivity and specificity under other defi-
nitions.
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Table 1: Simulation results comparing methods in estimating the AUC under
independent right censoring (ρ2 = 0). The sample size is 200. % censor: percent
of data that are censored; % bias: percent bias; MSE: mean squared error.

ρ1 % censor method true AUC % bias MSE (×10−3)
-0.3 64 proposed 0.637 -0.43 3.05
-0.3 64 KM 0.637 0.23 3.13
-0.3 64 NNE 0.637 -3.0 3.20
-0.3 64 IPCW 0.637 0.71 3.10
-0.6 64 proposed 0.780 -0.31 2.24
-0.6 64 KM 0.780 0.45 2.46
-0.6 64 NNE 0.780 -4.4 3.64
-0.6 64 IPCW 0.780 0.45 2.36
-0.9 64 proposed 0.940 -0.01 0.389
-0.9 64 KM 0.940 0.58 1.14
-0.9 64 NNE 0.940 -3.6 1.94
-0.9 64 IPCW 0.940 0.28 0.445
-0.3 24 proposed 0.637 0.80 1.95
-0.3 24 KM 0.637 0.79 1.94
-0.3 24 NNE 0.637 -2.1 1.93
-0.3 24 IPCW 0.637 0.88 1.98
-0.6 24 proposed 0.780 -0.44 1.31
-0.6 24 KM 0.780 -0.46 1.32
-0.6 24 NNE 0.780 -4.6 2.81
-0.6 24 IPCW 0.780 -0.43 1.30
-0.9 24 proposed 0.940 0.06 0.216
-0.9 24 KM 0.940 0.02 0.232
-0.9 24 NNE 0.940 -3.7 1.73
-0.9 24 IPCW 0.940 0.07 0.220
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Table 2: Simulation results comparing methods in estimating the AUC under
independent right censoring (ρ2 = 0). The sample size is 500. % censor: percent
of data that are censored; % bias: percent bias; MSE: mean squared error.

ρ1 % censor method true AUC % bias MSE (×10−3)
-0.3 64 proposed 0.637 -0.20 1.21
-0.3 64 KM 0.637 0.36 1.23
-0.3 64 NNE 0.637 -3.7 1.53
-0.3 64 IPCW 0.637 0.44 1.46
-0.6 64 proposed 0.780 -0.25 0.781
-0.6 64 KM 0.780 0.23 0.841
-0.6 64 NNE 0.780 -5.1 2.42
-0.6 64 IPCW 0.780 0.15 0.892
-0.9 64 proposed 0.940 -0.16 0.160
-0.9 64 KM 0.940 0.28 0.407
-0.9 64 NNE 0.940 -4.5 2.16
-0.9 64 IPCW 0.940 0.12 0.176
-0.3 24 proposed 0.637 -0.30 0.651
-0.3 24 KM 0.637 -0.24 0.654
-0.3 24 NNE 0.637 -4.0 1.20
-0.3 24 IPCW 0.637 -0.22 0.663
-0.6 24 proposed 0.780 -0.06 0.437
-0.6 24 KM 0.780 -0.01 0.448
-0.6 24 NNE 0.780 -5.4 2.35
-0.6 24 IPCW 0.780 0.01 0.465
-0.9 24 proposed 0.940 -0.13 0.0836
-0.9 24 KM 0.940 -0.10 0.103
-0.9 24 NNE 0.940 -4.9 2.37
-0.9 24 IPCW 0.940 -0.12 0.0847
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Table 3: Simulation results comparing the proposed method versus the nearest
neighbor method (NNE) on the estimation of AUC under different bandwidths.
ρ1 = −0.6. ρ2 = 0. The true AUC is 0.7803. The bandwidth is quantified by
the span, which is the percent of data used in the kernel estimation. % bias:
percent bias (%); MSE: mean squared error (×10−3).

span method % bias MSE span method % bias MSE

n = 200, censoring rate = 64% n = 200, censoring rate = 24%
0.05 proposed -0.17 1.86 0.05 proposed -0.39 1.29
0.05 NNE -1.6 2.24 0.05 NNE -2.2 1.82
0.1 proposed -0.31 2.24 0.1 proposed 0.34 0.905
0.1 NNE -4.4 3.64 0.1 NNE -3.9 1.93
0.2 proposed -0.81 1.88 0.2 proposed -0.38 1.32
0.2 NNE -8.6 6.23 0.2 NNE -8.9 6.06
0.4 proposed -2.9 2.42 0.4 proposed -0.42 1.18
0.4 NNE -14 13.2 0.4 NNE -14 13.4

n = 500, censoring rate = 64% n = 500, censoring rate = 24%
0.05 proposed -0.25 0.802 0.05 proposed 0.18 0.398
0.05 NNE -2.4 1.24 0.05 NNE -1.9 0.700
0.1 proposed -0.53 0.793 0.1 proposed 0.09 0.409
0.1 NNE -5.5 2.67 0.1 NNE -5 2.04
0.2 proposed -1.6 0.989 0.2 proposed 0.14 0.511
0.2 NNE -11 7.69 0.2 NNE -10 6.80
0.4 proposed -4 1.78 0.4 proposed -0.46 0.408
0.4 NNE -16 16.9 0.4 NNE -16 16.2
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Table 4: Simulation results comparing methods in estimating the AUC when the
censoring time C is correlated with the biomarker variable X but conditionally
independent of the true survival time T given X. The true AUC is 0.7803. The
sample size is 200. ρ1 = −0.6. % censor: percent of data that are censored; %
bias: percent bias; MSE: mean squared error.

n ρ2 % censor method % bias MSE (×10−3)
200 -0.4 66 proposed -1.4 2.62

-0.4 66 KM 7.4 7.20
-0.4 21 proposed -0.36 1.31
-0.4 21 KM 0.42 1.39
0.4 62 proposed 0.09 2.59
0.4 62 KM -8.0 5.18
0.4 26 proposed 0.75 1.42
0.4 26 KM -0.82 1.27

500 -0.4 66 proposed -0.62 1.06
-0.4 66 KM 7.4 4.82
-0.4 21 proposed -0.14 0.419
-0.4 21 KM 0.70 0.473
0.4 63 proposed -0.33 0.905
0.4 63 KM -8.5 4.93
0.4 26 proposed 0.39 0.540
0.4 26 KM -1.1 0.573
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Figure 1: Time-dependent ROC curves estimated from the proposed method
(green), the NNE method (blue), and the IPCW method (red) at three time
horizons: one year, three years, and six years. The green and red curves are
very close. We plotted the green curve with thicker lines to avoid overlap. The
AUC of the three methods (proposed, NNE, IPCW) are (0.918, 0.889, 0.918) for
1 year, (0.898, 0.869, 0.898) for 3 years, and (0.879, 0.856, 0.883) for 6 years
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Figure 2: Time-dependent ROC curves estimated from the proposed method
(green) and the NNE method (blue) using different span, which quantifies the
percent of data used in each kernel calculation. The second span, 0.079, equals
to 0.25n−0.2, where n = 312 is the sample size. The time horizon is 3 years.
The proposed method is not sensitive to the choice of span.
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